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Revisiting the Normal Form of Input-Output
Linearization

Manfredi Maggiore, Senior member, IEEE

Abstract— This paper revisits the normal form arising
in the context of input-output feedback linearization for
nonlinear control systems possessing well-defined relative
degree. The objective is to investigate the validity of the
normal form in a neighbourhood of the zero dynamics
manifold, as opposed to a neighbourhood of a point on the
manifold. The two main results of the paper are necessary
and sufficient conditions under which the normal form ex-
ists in some neighbourhood of the zero dynamics manifold,
or in a given a priori neighbourhood of the manifold in
question. A special case is the existence of a global normal
form. These results naturally lead to conditions for either
local or regional (global, as a special case) asymptotic
stabilization of the zero dynamics manifold. To illustrate
these contributions, a normal form is derived for the kine-
matic unicycle model leading to a novel global circular path
following controller.

Index Terms— feedback linearization, normal form, non-
linear control, set stabilization, zero dynamics manifold

I. INTRODUCTION

THE notion of (vector) relative degree of a nonlinear

control system with outputs is one of the fundamental

concepts in nonlinear control theory. This notion originated

in [11] in the context of invertibility of nonlinear control

systems, i.e., the ability to find input signals generating desired

output signals, and in that context it was referred to as relative

order. It is, however, with the work of Byrnes and Isidori that

the notion of relative degree came to the fore, and its deep

relationships with other fundamental concepts of nonlinear

control was established. In [2], the authors defined relative

degree with an eye to generalizing the notion of frequency

domain zeros of LTI systems to the nonlinear setting, and using

this generalization for the stabilization of equilibria for so-

called minimum-phase systems. Shortly thereafter, with work

in [3], [5], it became clear that the notion of relative degree is

intimately connected with the existence of the zero dynamics

manifold (ZDM), the maximal controlled invariant subset of

the set where the output function is zero. This subject is

reviewed in Section III.

A well-defined relative degree is not required in order for the

ZDM to be well-defined, and in [15] the authors showed that

under certain regularity conditions weaker than relative degree,

one can assert the existence of the ZDM in a neighbourhood
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of a point. Additionally, [15] developed a constructive pro-

cedure to find the ZDM reminiscent of Silverman’s structure

algorithm in [29] and its nonlinear generalization in [11] (see

also [30], [6]). This procedure came to be known as the zero

dynamics algorithm in later work ([4], [5]).

While relative degree is not a required property for the

ZDM to exist, there are good reasons for investigating systems

with well-defined relative degree. For one, such systems afford

a direct characterization of the ZDM as the zero level set

of the output function and a number of its Lie derivatives

along the drift vector field. Moreover, these systems are

feedback equivalent to a cascade connection of a reduced-

order nonlinear control system driven by parallel chains of

integrators. In the square multi-input multi-output case, this

so-called normal form of input-output linearization has the

structure

ż = α(z, ξ) +

m
∑

i=1

βi(z, ξ)vi

ξ̇ij = ξij+1, i ∈ 1:m, j ∈ 1:ri − 1

ξ̇iri = vi, i ∈ 1:m

yi = ξi1, i ∈ 1:m,

(1)

where the ξij states constitute m decoupled chains of integra-

tors with inputs vi resulting from a feedback transformation

reviewed in the following, and outputs yi. In (z, ξ) coordinates,

the ZDM is the set {(z, ξ) : ξ = 0}, and thus z represents the

component of the state on the ZDM. The dynamics on the

ZDM are represented by the subsystem ż = α(z, 0).
The above normal form, originating in [14], [3], [5], has

brought about much insight into the equilibrium stabilization

problem. The interested reader may consult the survey paper

by Isidori ([13]) for an account of the history of the zero

dynamics and research perspectives.

While historically the notion of relative degree and the

associated normal form have been developed with the intention

of stabilizing equilibria, these tools are in fact important in the

broader context of set stabilization. Indeed, a wealth of control

specifications ultimately involve the asymptotic stabilization of

the ZDM itself, not necessarily an equilibrium on it. In this

context, the availability of a normal form defined at least in a

neighbourhood of the manifold is of central interest.

To illustrate this point, suppose the control specification is to

design a feedback controller that asymptotically sends a certain

function h(x) to zero, where the zero level set h−1(0) has

some physical significance (e.g., a path to follow, a constraint

to enforce, and so on). It is a well-known consequence of
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the Birkhoff theorem on limit sets that any bounded state

trajectory x(t) resulting from a controller making h(x(t))
converge to zero will, by necessity, converge to a controlled

invariant subset of h−1(0). Since the ZDM is the maximal

such subset, x(t) will necessarily converge to the ZDM. The

punch-line is that if one wants to asymptotically zero out the

output of a control system, one should, at a minimum, render

the ZDM attractive. From a practical viewpoint, attractivity

without stability is an undesirable property, so it is natural to

design controllers that asymptotically stabilize the ZDM.

The problem of stabilizing the ZDM is central in the

literature on bipedal locomotion (e.g., [33], [32]), where a

stable walking gait is induced by asymptotically stabilizing

the ZDM associated with a suitably defined output function

representing a virtual constraint.

Just as the asymptotic stabilization of an equilibrium for a

system with relative degree often involves the normal form for

input-output linearization in a neighbourhood of that equilib-

rium, if one wants to investigate the asymptotic stabilization

of the ZDM, one would benefit from a normal form valid not

just near a point, but at a minimum in a neighbourhood of the

ZDM. The literature, however, has only focused on the two

extreme cases of normal forms defined in a neighbourhood of

a point and one defined globally. This paper fills the gap, as

detailed below.

In some cases, the control specification leads directly to

a target set to be stabilized that is controlled invariant. The

question in this setting is whether such target set could be

viewed as the ZDM associated with a certain choice of output

function yielding a well-defined relative degree. If this were

the case, then the target set could be stabilized using input-

output linearization. This question leads to the problem of

transverse feedback linearization, investigated in [1], [25],

[26], and more recently in [7] using tools of exterior differen-

tial geometry.

While the focus of this paper is on normal forms for input-

output feedback linearization, there are other normal forms

that play an important role in nonlinear control theory. For

example, in [17], [16], [31] the authors investigate normal

forms that are made up of a linear part plus nonlinear terms

that are homogeneous of a certain degree. In [21] Menini and

Tornambè use the Poincaré-Dulac normal form to determine

when there exists an immersion mapping a nonlinear vector

field to a linear one.

Contributions of this paper. For square MIMO control-

affine systems with well-defined vector relative degree, this

paper investigates conditions under which the normal form

for input-output linearization is valid on an open subset of the

state space containing the ZDM. We present two main results.

In Theorem 3, we show that if relative degree is well-defined

on the ZDM, there always exists a normal form defined in

some neighbourhood of the ZDM. Here, we expose the role

of smooth retractions in determining the coordinate transfor-

mation. The second result, in Theorem 6, gives necessary and

sufficient conditions for the existence of a regional normal

form, one valid in a given a priori neighbourhood of the

zero dynamics manifold. A special case of the theorem gives

necessary and sufficient conditions for the existence of a global

normal form which slightly generalize those by Byrnes and

Isidori in [5] which are only sufficient. Leveraging the results

summarized above, we investigate in Propositions 12 and 13

the asymptotic stabilization of the ZDM in the case when this

latter is a compact set (we discuss the non-compact case in a

remark), giving conditions under which a normal form-based

controller either locally asymptotically stabilizes the ZDM, or

it does so with a guaranteed basin of attraction.

Finally, we illustrate the construction of Theorem 6 with the

derivation of an almost global normal form in the context of

the circular path following problem for a kinematic unicycle. A

global normal form does not exist for this problem. Using this

normal form, we derive a smooth almost global path following

controller that does not enforce a direction of traversal of the

path. With a hybrid supervisor, this controller is then turned

into a global path following controller enforcing a desired

direction of traversal.

II. NOTATION AND PRELIMINARIES

If k, l ∈ N with k ≤ l, then we let k : l denote the index set

{k, k + 1, . . . , l}. Given a vector x ∈ R
n, xi denotes the i-th

element of x. For v, w ∈ R
n, we denote ‖v‖ := (

∑

i v
2
i )

1/2

and 〈v, w〉 := v⊤w. For v ∈ R
k, w ∈ R

l, col(v, w) ∈ R
k+l

is the concatenation of v and w. We use the abbreviations

cθ := cos(θ), sθ := sin(θ).
We denote by S

1 the set of real numbers modulo 2π,

diffeomorphic to the unit circle. If v ∈ R
2 is nonzero, ∡v ∈ S

1

denotes the angle of v, i.e., the unique element θ of S
1 such

that v = ‖v‖ col(cθ, sθ).
If X is a smooth manifold and p ∈ X , TpX is the tangent

space to X at p, and TX := {vp ∈ TpX : p ∈ X} is the

tangent bundle of X . If (x1, . . . , xn) are local coordinates in

a coordinate chart of X , then we denote by { ∂
∂xi

, i ∈ 1 :n},

the coordinate basis for TpX at each p in the chart domain.

We denote by X
∞(X ) the set of smooth vector fields on X ,

i.e., functions f : X → TX such that f(p) ∈ TpX for each

p ∈ X .

If F : X → Y is a smooth map of manifolds and p ∈ X ,

then dFp : TpX → TF (p)Y is the differential map at p. In

local coordinates, this is the linear function whose matrix

representation is the Jacobian matrix of the local coordinate

representation of F . Sometimes we will find it useful to

use parenthesis around the map to be differentiated, such as

d(Hr)x in what follows.

If F : X → Y is a diffeomorphism of manifolds and f ∈
X

∞(X ), F∗f denotes the pushforward of f , i.e, the unique

g ∈ X
∞(Y) such that g(F (p)) = dFp(f(p)) for all p ∈ X . We

denote by Φf
t (x0) the flow of f ∈ X

∞(X ), i.e., the solution at

time t with initial condition x(0) = x0 of the ODE on X , ẋ =
f(x). If f, g ∈ X

∞(X ) and k ∈ N, adkf g ∈ X
∞(X ) denotes

the k-th iterated Lie bracket of f and g, defined recursively as

ad0f g := g and adkf g = [f, adk−1
f g]. Moreover, if h : X →

R is a smooth function, Lk
fh denotes the k-th iterated Lie

derivative of h along f , defined recursively as L0
fh := h and

Lk
fh = Lf (L

k−1
f h).

A distribution ∆ on X is the assignment to each point

x ∈ X of a subspace ∆(x) ⊂ TxX . A distribution is
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smooth if it is locally spanned by a finite number of smooth

vector fields on X , by which is meant the following: in

a neighbourhood U of every point of X , there exist an

integer k and fi ∈ X
∞(X ), i ∈ 1 : k, such that for each

x ∈ U , ∆(x) = span{f1(x), . . . , fk(x)}. We denote by

span{f1, . . . , fk} the distribution spanned by {f1, . . . , fk} in

the manner just described. We denote by C∞(X ) the ring

of smooth real-valued functions on X , and say that the vector

fields {f1, . . . , fk} are C∞(X )-linearly independent if for any

αi ∈ C∞(X ), i ∈ 1:k,
∑

i αifi = 0 implies αi = 0.

The rank of a distribution ∆ at x ∈ X is dim∆(x), and

∆ is nonsingular if it has constant rank on X . If f ∈ X
∞(X )

and ∆ is smooth distribution, we write f ∈ ∆ to mean that

for each p ∈ X , f(p) ∈ ∆(p). A smooth distribution ∆ on X
is involutive if for each δ1, δ2 ∈ ∆, [δ1, δ2] ∈ ∆. Nonsingular

and involutive distributions admit maximal integral manifolds

by the Frobenius theorem (see, e.g., [19]).

A smooth distribution ∆ on X is invariant under f ∈
X

∞(X ) if for each δ ∈ ∆, [f, δ] ∈ ∆. We use the shorthand

[f,∆] ⊂ ∆ for this property.

III. REVIEW OF RELATIVE DEGREE AND ZERO DYNAMICS

In this section we review the concept of relative degree for

nonlinear control-affine systems as developed in [12], [5] (see

also [27]). Let X be a C∞ manifold and consider the square

multi-input multi-output (MIMO) control-affine system on X

ẋ = f(x) +

m
∑

i=1

gi(x)ui

yi = hi(x), i ∈ 1:m,

(2)

where f, g1, . . . gm ∈ X
∞(X ) and hi ∈ C∞(X ). We recall

from [5], [12] that system (2) has vector relative degree

{r1, . . . , rm} at x0 ∈ X if there exists a neighbourhood

of U ⊂ X of x0 such that for each x ∈ U and i, j ∈
1 : m, LgiLk

fh
j(x) = 0 for all k ∈ 0 : rj − 2 and the

decoupling matrix A(x0) ∈ R
m×m defined as [A(x0)]ij :=

LgjLri−1
f hi(x0) is nonsingular. We denote r := {r1, . . . , rm}

and r := r1 + · · ·+ rm, and define a map Hr : X → R
r as

Hr = col(h1, . . . , Lr1−1
f h1, . . . , hm, . . . , Lrm−1

f hm).

Since the matrix-valued function A : X → R
m×m is smooth

and nonsingular at x0, by possibly making U smaller one may

assume without loss of generality that A(x) is nonsingular for

all x ∈ U .

In what follows, we associate with a vector relative degree

r the set of index pairs

Ir := {(i, k) : i ∈ 1:m, k ∈ 1:ri}.

We also use two different notational systems to refer to

components of the vector ξ = Hr(x). Define the bijection

idx : Ir → 1 : r, idx(i, k) :=
∑i−1

k=1 rk + k. Then, the j-

th component of ξ ∈ R
r will be denoted either by ξj or by

ξik, with (k, i) = idx
−1(j). This way, if ξ = Hr(x), then

ξik = Lk−1
f hi(x). We denote by eik the vector whose element

in position idx(i, k) is one and all other elements are zero.

The basic geometric properties of control systems possess-

ing a well-defined relative degree are summarized in the next

result.

Theorem 1 ([5], [12]): Suppose there exists an open set

U ⊂ X and integers ri ∈ 1 : n, i ∈ 1 : m, such that

for each x ∈ U and all i, j ∈ 1 : m, LgiLk
fh

j(x) = 0,

k ∈ 0 : rj − 2, and A(x) is nonsingular for all x ∈ U . Then,

letting r := {r1, . . . , rm} and r :=
∑

i ri, we have

(i) The smooth map Hr : U → R
r is a submersion, i.e.,

rank d(Hr)x = r for all x ∈ U .

(ii) The distribution ∆(x) = Ker(d(Hr)x) defined on U is

smooth, has constant rank n− r, and is involutive.

(iii) The vector fields {adk−1
f gi : (i, k) ∈ Ir} are C∞(U)-

linearly independent. Moreover, letting G denote the

smooth nonsingular distribution on U defined as

G(x) := span{adk−1
f gi : (i, k) ∈ Ir},

we have that

(∀x ∈ U) ∆(x)⊕G(x) = TxX .

(iv) Letting

f̃ := f −
[

g1 · · · gm
]

A−1 col(Lr1
f h1, . . . , Lrm

f hm)

g̃j =
∑

i

gi
[

A−1
]

ij
. (3)

the following properties hold on U :

[f̃ ,∆] ⊂ ∆

[g̃j ,∆] ⊂ ∆, j ∈ 1 : m.

(v) For each x0 ∈ U , there exist a neighbourhood V ⊂ U of

x0 and a smooth function p : V → R
n−r such that the

map T : V → R
n−r×R

r, x 7→ (z, ξ) = (p(x),Hr(x)) is

a diffeomorphism onto its image. Moreover, the feedback

transformation

u = A−1(x)
(

− col(Lr1
f h1, . . . , Lrm

f hm) + v
)

, (4)

and the coordinate transformation (z, ξ) = T (x) give the

local normal form (1).

From an input-output viewpoint, part (v) expresses the fact

that the feedback transformation (4) gives driyi/dt
ri = vi(t),

for any output signal yi(t) = hi(x(t)), where x(t) is a state

trajectory contained in V . If r = n, the z subsystem is absent

and therefore system (2) is locally feedback equivalent to m
decoupled chains of integrators.

The combination of a diffeomorphism and a feedback

transformation such as (4) is called a feedback equivalence.

If system (2) has vector relative degree r at each x0 ∈ X ,

the system is said to possess a uniform vector relative degree

r. In this case, the properties (i)-(iv) in Theorem 1 hold with

U = X , while property (v) is globalized in the following result

by Byrnes and Isidori in [5].

Theorem 2 ([5]): Suppose (2) has uniform vector relative

degree r, let Z = (Hr)
−1(0), and f̃ , g̃i ∈ X

∞(X ), i ∈ 1 :m,

be given as in (3). If the vector fields adk−1

f̃
g̃i, (i, k) ∈ Ir,

are complete1, then there exists a smooth function p : X → Z
1This means that for each initial condition x0 ∈ X , the integral curve of

adk−1

f̃
g̃i through x0 is defined for all t ∈ R.
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such that the map T : X → Z × R
r given by x 7→ (z, ξ) =

(p(x),Hr(x)) is a diffeomorphism and in (z, ξ) coordinates

after the feedback transformation (4), system (2) takes on the

normal form (1) with state (z, ξ) ∈ Z × R
r.

When the nonlinear control system (2) is globally feedback

equivalent to the normal form (1) with state (z, ξ) ∈ Z ×R
r,

we say that system (2) admits a global normal form.

For a system with uniform vector relative degree, the set

Z = {x ∈ X : Lk−1
f hi(x) = 0, (i, k) ∈ Ir}

is a closed embedded submanifold of X of codimension r,

and it is called the zero dynamics manifold (ZDM) of (2).

It is shown in [5] that Z is the maximal controlled invariant

subset of the zero level set of the output, h−1(0), and there is

a unique smooth feedback u⋆ : Z → R rendering Z invariant:

u⋆ = −A−1 col(Lr1
f h1, . . . , Lrm

f hm)
∣

∣

∣

Z

. The vector field f⋆ ∈
X

∞(Z) defined as f⋆ := (f + gu⋆)
∣

∣

Z
is called the zero

dynamics vector field.

IV. NORMAL FORM IN A NEIGHBOURHOOD OF THE ZDM

We have reviewed the fact, proved in [5], that when sys-

tem (2) has a uniform vector relative degree r, the ZDM

Z = (Hr)
−1(0) is the maximal controlled invariant subset

of h−1(0). For this property to hold, uniform vector relative

degree is not required, and the following assumption suffices2.

Assumption 1: System (2) has vector relative degree r at

each x0 ∈ (Hr)
−1(0). △

It is natural to ask whether under Assumption 1 one can assert

the existence of the normal form (1) valid in a neighbourhood

of Z . In this section we show that the answer is yes, always.

The literature has focused on the two extreme cases re-

viewed in Section III: the existence of a local normal form

valid in a neighbourhood of a point x0 ∈ (Hr)
−1(0), and that

of a global normal form valid everywhere. The intermediate

case of a normal form valid in a neighbourhood of Z is quite

interesting in its own right, as such a normal form plays a role

in the local asymptotic stabilization of Z (see Proposition 12

below).

To construct the normal form, we need the notion of smooth

retraction. Let U ⊂ X be an open set and Z ⊂ U be a closed

embedded submanifold of X . A smooth retraction of U onto

Z is a smooth map p : U → Z satisfying p(z) = z for

all z ∈ Z . It is a consequence of the tubular neighbourhood

theorem (see [10]) that every embedded submanifold Z ⊂ X
admits a retraction p : U → Z of a neighbourhood U of Z
onto Z .

Now the main result of this section.

Theorem 3 (Normal form in a neighbourhood of Z):

Suppose system (2) satisfies Assumption 1, and let p : U → Z
be a smooth retraction of a neighbourhood U ⊂ X of Z onto

Z . Let σ : Z → Z̃ be a diffeomorphism (one may let Z̃ = Z
and σ be the identity map idZ : Z → Z). Then there exists a

neighbourhood V ⊂ U of Z such that the map

T : V → Z̃ × R
r, x 7→ (z, ξ) = (σ ◦ p(x),Hr(x))

2Recall from the introduction that a well-defined vector relative degree is
not required for the ZDM to exist and have the mentioned properties.

is a diffeomorphism onto its image and T (V ) has the form

T (V ) = Z̃ × W , where W ⊂ R
r is a neighbourhood of

the origin. Moreover, in (z, ξ) coordinates, after the feedback

transformation (4), system (2) takes on the normal form (1)

with state (z, ξ) ∈ Z̃ ×W .

The proof of this result is found in Appendix I.

Remark 4: The map σ in the theorem statement allows

one to replace Z by any manifold Z̃ diffeomorphic to it. To

illustrate, when Z is diffeomorphic to a generalized cylinder

Z̃ = S
1 × · · · S1 × R · · · × R (this is always the case when

dimZ = 1), one gets a global parametrization of Z by

means of the state z = (θ1, . . . , θs, ts+1, . . . , tn−r) ∈ Z̃ , with

θi ∈ S
1 and tj ∈ R. This parametrization allows one to write

the dynamics of the z-subsystem in (1) in a set of global

coordinates. For another illustration, if Z is diffeomorphic to

a matrix group, then we can use σ to represent the state z as a

matrix in the group. This flexibility will be further illustrated

in the unicycle example of Section VII. △

V

Z̃

Z

Hr(x) = cnst
p(x) = cnst

x

p(x)

z

σ

R
r

0

ξ

Hr

Fig. 1. The coordinate transformation T : x 7→ (z, ξ) on a
neighbourhood V of Z.

Remark 5: The coordinate transformation of Theorem 3

can be understood intuitively as follows (see Figure 1). In

a sufficiently small neighbourhood V of Z , we may represent

x ∈ V via a pair (z, ξ). The vector ξ = Hr(x) ∈ R
r

determines which level set of Hr the point x is on, while

z = σ ◦ p(x) ∈ Z̃ indicates where x is situated on the

level set of the function Hr. Indeed, the level sets of the

function σ ◦ p : V → Z̃ are embedded submanifolds of X
of dimension r, while the level sets of Hr : V → R

r are

embedded submanifolds of X of complementary dimension

n − r. The fact that T : V → T (V ) is a diffeomorphism

means geometrically that each level set of Hr : V → R
r and

each level set of r : V → Z̃ intersect at a unique point. Thus,

knowing the pair (z, ξ) we can uniquely reconstruct x, and do

so smoothly.

One can think of the retraction p : V → Z as a nonlinear

projection of V onto Z . In fact, if X is a Riemannian manifold,

one can always define p to be the orthogonal projection onto

Z , and the tubular neighbourhood theorem guarantees that if

V is a sufficiently small neighbourhood of Z such orthogonal

projection is well-defined and smooth. In some cases, however,

the orthogonal projection may not be the most convenient

choice of retraction. We also remark that p can always be

chosen to take the form (8) reviewed in the next section. △
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V. REGIONAL NORMAL FORM

In this section we investigate necessary and sufficient condi-

tions for the existence of a regional normal form, one valid in

a given a priori neighbourhood of the ZDM. A special case is

when the neighbourhood is the entire state space X , in which

case the problem has been studied by Byrnes and Isidori in [5]

and its solution was reviewed in Theorem 2. We thus begin our

treatment by reviewing the ideas of [5]. We will build upon

them to get the main result.

We assume that system (2) has uniform vector relative

degree r and the vector fields adk−1

f̃
g̃i, (i, k) ∈ Ir, are

complete.

Let λj
l : X → R be the differentiated output

λj
l := Ll−1

f hj , (j, l) ∈ Ir. (5)

Byrnes and Isidori in [5] show that there exist vector fields

τ ik ∈ X
∞(X ), (i, k) ∈ Ir, such that

Lτ i
k
λj
l =

{

1 i = j, k + l = ri + 1

0 otherwise.
(6)

In other words, the output of the dynamical system

ẋ = τ ik(x)

s = λj
l (x),

has the property that its time derivative along solutions satisfies

ṡ = 1 if i = j and k + l = ri + 1, and ṡ = 0 otherwise. In

terms of the flow of the vector field τ ik, this property can be

rewritten as

λj
l ◦ Φ

τ i
k

t (x) =

{

λj
l (x) + t i = j, k + l = ri + 1

λj
l (x) otherwise,

(7)

for all x ∈ X and all t ∈ R for which the flow is defined.

In [5] it is shown that the choice

τ ik = (−1)k−1adk−1

f̃
g̃i, (i, k) ∈ Ir,

satisfies (6), and the assumption that adk−1

f̃
g̃i is complete

ensures that the identities in (7) hold for all t ∈ R.

The authors in [5] define3 a map p : X → Z as

p(x) :=Φ
τm
1

−λm
rm

(x) ◦ · · · ◦ Φ
τm
rm

−λm
1
(x) ◦ · · ·

· · · ◦ Φτ1
1

−λ1
r1

(x) ◦ · · · ◦ Φ
τ1
r1

−λ1
1
(x)

(x).
(8)

The completeness assumption ensures that p is a well-

defined smooth map on X , and the identities (7) ensure that

h1(p(x)) = 0. Indeed, recalling that h1(x) = λ1
1(x) and

using (7) recursively r times, we get

h1(p(x)) = λ1
1 ◦ Φ

τm
1

−λm
rm

(x) ◦ · · · ◦ Φ
τ1
r1

−λ1
1
(x)

(x)

= λ1
1 ◦ Φ

τm
2

−λm
rm−1

(x) ◦ · · · ◦ Φ
τ1
r1

−λ1
1
(x)

· · ·

= λ1
1 ◦ Φ

τ1
r1

−λ1
1
(x)

(x)

= λ1
1(x)− λ1

1(x) = 0.

3The order of composition of flows in [5] is different than in (8) but the
order is immaterial, as discussed below.

In a similar manner, one shows that Lk−1
f hi(p(x)) = 0,

(i, k) ∈ Ir, which implies that p(x) ∈ Z for all x ∈ X .

Note moreover that if x ∈ Z , then λj
l (x) = 0, (j, l) ∈ Ir, and

therefore p(x) = x, meaning that the restriction of p to Z is

the identity map. Thus the function p(x) is a smooth retraction

of X onto Z .

One can see that the map T : X → Z × R
r, x 7→

(p(x),Hr(x)) is a diffeomorphism with inverse

T−1(z, ξ) = Φ
τ1
r1

ξ1
1

◦ · · ·◦Φτ1
1

ξ1r1
◦ · · · ◦Φτm

rm

ξm
1

◦ · · · ◦Φτm
1

ξmrm
(z). (9)

This is the main idea in the proof of Theorem 2.

The order of the composition of flows in the definition of

p does not affect the analysis, even though the vector fields

τ ik generally do not commute. A permutation of the vector

fields in p will give a different retraction onto Z , and therefore

a different diffeomorphism T , but both of these are equally

viable choices.

The idea presented above can be generalized in two di-

rections. First, the vector fields (−1)k−1adk−1

f̃
g̃i are not the

only ones yielding the identity (6). If we add to f̃ and g̃i,
i ∈ 1:m any vector fields in the distribution ∆ of Theorem 1,

the identity (6) is still satisfied (this is proved in Lemma 18

in the appendix). As long as there exist complete vector fields

τ ik satisfying (6), Byrnes and Isidori’s proof goes through

unchanged and gives a global normal form, even if the vector

fields adk−1

f̃
g̃i are not complete.

The second, more important, generalization concerns the

domain of validity of the diffeomorphism T . If the control

system has a well-defined vector relative degree in a certain

neighbourhood of the ZDM, it is still possible to employ the

retraction p in (8), or a variation of it, as long as the flows of

the vector fields used to construct p are well defined. We next

make this idea precise.

We begin with an assumption on the properties of the set

U ⊂ X over which relative degree is well-defined. First we

need some notation. Recall the map idx : Ir → 1 : r defined

in Section III. Given a bijection π : Ir → Ir (called a

permutation in what follows), for j ∈ 1 : r define indices

(ij , kj) := π ◦ idx−1(j) and lj := idx(ij , kj). Then, π induces

the isomorphism Pπ : Rr → R
r, Pπ(ξ) := col(ξl1 , . . . , ξlr ).

In what follows, we will use π and Pπ to change the

ordering of flows in the retraction (8).

Assumption 2: System (2) has vector relative degree r at

each x0 ∈ U := (Hr)
−1(C), where C ⊂ R

r is a convex open

set containing the origin and enjoying the following property.

There exists a permutation π : Ir → Ir such that for each

ξ ∈ C and each j ∈ 1 : r − 1, col
(

0, . . . , 0, ξlj+1
, . . . , ξlr

)

∈
Pπ(C). △

The assumption is illustrated in Figure 2.

Theorem 6 (Normal form on U ): Suppose system (2) sat-

isfies Assumption 2. Let f̃ and g̃ be the vector fields defined

in (3) and σ : Z → Z̃ be a diffeomorphism. If, and only

if, there exist vector fields δ1, δ
i
2 ∈ ∆, i ∈ 1 : m, such

that, letting f̂ := f̃ + δ1, ĝi := g̃i + δi2, the vector fields

τ ik := (−1)k−1adk−1

f̂
ĝi, (i, k) ∈ Ir, enjoy the following

properties for each x ∈ U and each (i, k) ∈ Ir:



6

Pπ(C)
ξl1

ξl2

Pπ(ξ)ξl2

Fig. 2. Illustration of Assumption 2 in the case m = 1, r = 2.

(i) the flow t 7→ Φ
τ i
k

t (x) is defined on {t ∈ R : Hr(x) +
teiri−k+1 ∈ C}, and

(ii) the vector fields {τ ik}(i,k)∈Ir
commute, i.e., [τ ik, τ

j
l ] = 0

for all (i, k), (j, l) ∈ Ir,

then there exists a diffeomorphism T : U → Z̃ ×C giving the

normal form (1) with state (z, ξ) ∈ Z̃ × C after the feedback

transformation (4). Moreover, if the diffeomorphism T : U →
Z̃ × C exists, it can be chosen as T : x 7→ (z, ξ) = (σ ◦
p(x),Hr(x)), with p : X → Z defined as

p(x) := Φτ̄r
−λ̄r(x)

◦ · · · ◦ Φτ̄1
−λ̄1(x)

(x), (10)

where

λ̄j := L
kj−1
f hij ,

τ̄j := τ
ij
rij−kj+1 = (−1)rij−kjad

rij−kj

f̂
ĝij ,

(11)

with j ∈ 1:r.

The proof of the theorem is found in Appendix II.

Remark 7: The commutativity property (ii) in Theorem 6 is

not needed for a global normal form to exist. In other words,

the existence of δ1, δ
i
2 ∈ ∆, i ∈ 1 :m, inducing property (i)

is sufficient for the existence of a global normal form (this

will be evident in the proof, where commutativity is not used

in the construction of the diffeomorphism). However, if there

exist vector fields δ1, δ
i
2 inducing property (i), then these can

always be chosen to induce property (ii). △
Remark 8: A special case of Theorem 6 is when the set

C in Assumption 2 is the entire R
r, in which case the

diffeomorphism T is a map X → Z̃ ×R
r and we get a global

normal form. The result in this case is a small generalization

of Theorem 2 in that the conditions for existence of a global

normal form are both necessary and sufficient. The necessary

and sufficient conditions in this special case are a uniform

vector relative degree and the existence of smooth vector fields

δ1, δ
i
2, i ∈ 1:m, such that the vector fields adk−1

f̂
ĝi, (i, k) ∈ Ir

are complete, where f̂ = f̃ + δ1 and ĝi = gi + δi2. Theorem 2

corresponds to the choice δ1, δ
i
2 = 0. The completeness

requirement just mentioned is quite strong and restrictive, and

this is the reflection of the fact that the existence of a global

normal form is rather exceptional. This observation further

highlights the importance of Theorem 6 in seeking regional,

as opposed to global, normal forms. △
Remark 9: Recall from part (iii) of Theorem 1 that for each

x ∈ X , ∆(x) ⊕ G(x) = TxX . Property (ii) in Theorem 6

implies that there exists a nonsingular involutive distribution

G′ : X → TX such that ∆(x)⊕G′(x) = TxX . This distribu-

tion is spanned by the vector fields adk−1

f̂
ĝi, (i, k) ∈ Ir, and

its maximal integral manifolds are the connected components

of the level sets of the smooth retraction p : X → Z . This

observation is linked to the discussion in Remark 5. △
Example 10: We illustrate the theorem with an elementary

example. Later, in Section VII, we investigate a nontrivial

example. The single integrator system with X = R,

ẋ = u

y = arctan(x)

has uniform relative degree 1 and trivial ZDM Z = {0}.

However, the control system does not admit a global normal

form because the image of the output function is the open

interval (−π/2, π/2) and therefore the map T in Theorem 2

cannot be a diffeomorphism onto {0}×R. This observation is

confirmed by the fact that the assumption of Theorem 2 does

not hold. Indeed, the feedback transformation u = (1 + x2)v
gives ẏ = v and f̃(x) = 0, g̃(x) = (1+ x2) ∂

∂x . The flow of g̃
is

Φg̃
t (x) = tan(arctan(x) + t),

and we see that there are finite escape times when t =
− arctan(x) ± π/2 so this vector field is not complete, and

Theorem 2 is not applicable.

There does however exist a regional normal form. For this,

we use Theorem 6 with U = R and C = h(U) = (−π/2, π/2).
The set C satisfies Assumption 2 with π the trivial permutation.

We check the necessary and sufficient condition of Theorem 6.

In light of Remark 7, we only need to check condition (i) in

the theorem statement.

For each x ∈ R, the flow of τ11 = g̃ is defined on {t ∈
R : arctan(x) + t ∈ (−π/2, π/2)}. Is it true that for all t
in this interval, Hr(x) + t is contained in C? Yes, because if

t ∈ (− arctan(x)− π/2,− arctan(x) + π/2) then Hr(x) +
t ∈ (−π/2, π/2) = C.

We construct the diffeomorphism T . First, the map p : R →
Z is

p(x) = Φg̃
−h(x)(x) = tan(arctan(x)− arctan(x))

= tan(0) = 0.

This is natural, as Z is the point {0} so p above is the

only possible retraction U → Z . Now Theorem 6 states that

the map T : R → {0} × (−π/2, π/2) given by T (x) :=
(0, arctan(x)) is a diffeomorphism and it gives the normal

form

ξ̇ = v, y = ξ,

with state space C = (−π/2, π/2). △
Remark 11: We conclude this section by pointing out that

the existence of a global normal form imposes strong topolog-

ical and geometric properties on Z and X . Specifically, it is

easy to show that the following are necessary conditions for

the existence of a global normal form:

(a) X and Z are homotopy equivalent.

(b) X can be given the structure of a trivial smooth vector

bundle over Z .
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In the (z, ξ) coordinates of the normal form, the homotopy

equivalence in part (a) is established by the strong deformation

retract H : X × [0, 1] → X defined as

H(x, λ) = T−1
(

prz(T (x)), (1− λ) prξ(T (x))
)

,

where prz and prz denote the projections (z, ξ) 7→ z and

(z, ξ) 7→ ξ. One can see that H is smooth, that for every x ∈
X , H(x, 0) = x and H(x, 1) ∈ Z . Moreover, H(x, λ) = x for

all x ∈ Z and all λ ∈ [0, 1]. We will use this remark to rule

out the existence of a normal form in the unicycle example of

Section VII. △

VI. STABILIZATION OF THE ZDM

In this section we investigate the problem of asymptotic

stabilization of the ZDM for systems with well-defined vector

relative degree, by which is meant the design of a smooth feed-

back controller rendering the ZDM an asymptotically stable set

(see, e.g., [18] for definitions of set stability). We assume that

X is a connected geodesically complete Riemannian manifold

so that, by the Hopf-Rinow theorem [20], it is endowed with a

distance function ‖ · ‖ : X → R, and we can define the point-

to-set distance ‖x‖Z := infy∈Z(‖x − y‖). The next result

concerns the local asymptotic stabilization of the ZDM.

Proposition 12: Suppose system (2) satisfies Assumption 1

and the ZDM Z is compact.

Consider the coordinate transformation T : V → Z̃ × W ,

x 7→ (z, ξ) = (σ ◦ p(x),Hr(x)) arising from Theorem 3,

where W ⊂ R
r is a neighbourhood of the origin in R

r, and

the resulting normal form (1) valid on Z̃ × W . If v = v̄(ξ)
is a smooth feedback controller asymptotically stabilizing the

origin of the ξ-subsystem in (1), then the controller given

by the feedback transformation (4) with v = v̄ ◦ Hr(x)
asymptotically stabilizes the ZDM.

Proof: Since Z = H−1
r

(0), the function ‖Hr(·)‖ :
X → R is continuous and positive definite with respect to

Z . Since Z is compact, there exist two class-K functions

α1, α2 : [0, a) → R such that

α1(‖x‖Z) ≤ ‖Hr(x)‖ ≤ α2(‖x‖Z), (12)

for every x ∈ {x ∈ X : ‖x‖Z < a}. Consider the

normal form (1) with feedback v = v̄(ξ). Since ξ = 0 is

asymptotically stable, there exists a neighbourhood Bε1(0) :=
{ξ ∈ R

r : ‖ξ‖ < ε1} contained in W such that for each ξ(0) ∈
Bε1(0), the solution ξ(t) is contained in W ∩Bα1(a/2)(0) and

converges to 0. In particular, it is bounded. We may assume

that ε1 is in the image of α2.

For each (z(0), ξ(0)) ∈ Z̃ × W , the solution (z(t), ξ(t))
is bounded because ξ(t) is bounded and z(t) ∈ Z̃ , this

latter a compact set since Z is compact by assumption.

Since the solution (z(t), ξ(t)) is bounded, it is defined for

all t ≥ 0. Moreover, x(t) := T−1(z(t), ξ(t)) is the solution

of the closed-loop system (2) with the controller given by the

feedback transformation (4) with v = v̄ ◦ Hr(x) and initial

condition x(0) = T−1(z(0), ξ(0)).
For each initial condition x(0) ∈ {x ∈ X : ‖x‖Z <

α−1
2 (ε1)} we have ‖Hr(x(0)‖ ≤ α2(‖x(0)‖Z) < ε1, implying

that the signal Hr(x(t))) converges to zero and is contained in

W ∩Bα1(a/2)(0), which implies by (12) that x(t) ∈ {x ∈ X :
‖x‖Z < a}. Since α1(‖x(t)‖Z) ≤ ‖Hr(x(t))‖, ‖x(t)‖Z → 0.

This proves that Z is attractive.

For stability, let ε2 ∈ (0, a) be arbitrary. Since the origin

ξ = 0 is stable, there exists δ1 > 0 such that for each

ξ(0) ∈ Bδ1(0), the solution ξ(t) is contained in W and ξ(t) ∈
Bα1(ε2)(0). Let δ2 := α−1

2 (δ1). For each ‖x(0)‖Z < δ2, we

have ‖Hr(x(0))‖ < α2(‖x(0)‖Z) < δ1. Thus, ‖Hr(x(t))‖ <
α1(ε2) for all t ≥ 0, implying by (12) that ‖x(t)‖Z < ε2 for

all t ≥ 0. This proves stability of Z .

Next, we turn to the asymptotic stabilization of the ZDM

with a guaranteed basin of attraction. A special case is the

global asymptotic stabilization of the ZDM.

Proposition 13: Suppose there exists a diffeomorphism T :
U → Z̃ × C transforming system (2) to the the normal

form (1) after the feedback transformation (4), where Z̃ is

diffeomorphic to Z and Z is compact. Let v = v̄(ξ) be

a smooth feedback controller for (1) meeting the following

specifications:

(i) The set C ⊂ R
r is positively invariant for the ξ-

subsystem.

(ii) The origin ξ = 0 is asymptotically stable with basin of

attraction containing C.

Then the feedback controller given by the feedback transfor-

mation (4) with v = v̄ ◦ Hr(x) asymptotically stabilizes the

ZDM with basin of attraction containing U .

Proof: The ZDM Z is asymptotically stable by Propo-

sition 12. We only need to show that U is contained in

the basin of attraction of Z . Let x(0) ∈ U be arbitrary,

and let (z(0), ξ(0)) := T (x(0)). The corresponding solution

(z(t), ξ(t)) of the normal form (1) with feedback v = v̄(ξ)
is contained in Z̃ × C by assumption (i), and therefore the

solution of system (2) with controller given by the feedback

transformation (4) with v = v̄ ◦ Hr(x) is given by x(t) =
T−1(z(t), ξ(t)). By assumption (ii), ξ(t) → 0, implying also

that ξ(t) is bounded. Since Z̃ is compact, z(t) is also bounded.

This implies that (z(t), ξ(t)), and therefore x(t), is defined

for all t ≥ 0. Consider the class-K functions αi : [0, a) → R

defined in the proof of Proposition 12, and for each ε ∈ (0, a),
let t1 ≥ 0 be such that ‖ξ(t)‖ < α1(ε) for all t ≥ t1. For each

t ≥ t1, we have

α1(‖x(t)‖Z) ≤ ‖Hr(x(t))‖ = ‖ξ(t)‖ < α1(ε),

from which it follows that ‖x(t)‖Z < ε. This proves that x(0)
is contained in the basin of attraction of Z .

Remark 14: The compactness hypothesis on Z in Proposi-

tions 12 and 13 was used in two ways: to assert the existence

of class-K functions α1, α2 satisfying the inequalities in (12),

and to rule out finite escape times arising from the z-subsystem

in the normal form. If one assumes these two properties, one

may remove the compactness assumption. Thus the results

in the propositions hold true when Z is unbounded provided

Hr satisfies inequalities (12) for some class-K functions αi,

i ∈ 1 : 2, and provided that solutions of the normal form

are defined for all t ≥ 0. While the first assumption is

relatively mild, the second one must be verified case-by-case

by a dedicated analysis, typically of Lyapunov nature, or by
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dedicated control design, leading to a feedback v̄(z, ξ) which

may depend on z, rather than just ξ. △
Remark 15: If the assumptions of Proposition 13 hold with

U = X , then the feedback in the proposition globally asymp-

totically stabilizes the ZDM even if a global normal form does

not exist. To illustrate, consider the single-integrator system

in Example 10 which does not admit a global normal form,

but can be transformed in normal form via a diffeomorphism

T : X → {0}×(−π/2, π/2). The feedback v = −ξ obviously

meets the requirements of Proposition 13, and therefore it

globally asymptotically stabilizes the ZDM, which in this

example is the origin. In x coordinates, the feedback is u =
−(1 + x2) arctan(x), and one can verify that this feedback

does indeed globally asymptotically stabilize the origin. △

VII. APPLICATION: CIRCULAR PATH FOLLOWING FOR

KINEMATIC UNICYCLE.

In this section we revisit an example investigated in [24],

bringing new light to the problem by means of the construction

in Theorem 6.

Consider a kinematic unicycle with position col(x1, x2) ∈
R

2 and heading angle x3 ∈ S
1:

ẋ1 = cos(x3)

ẋ2 = sin(x3)

ẋ3 = u.

The state space is X = R
2×S

1. The control objective is circu-

lar path following: make the unicycle converge to and traverse

the unit circle in an unspecified direction. A variation of this

problem where the desired direction of traversal is specified a

priori can be solved globally my means of a smooth feedback

(see [8]) without using feedback linearization, but here we

focus on using input-output linearization in the spirit of [23].

We note the work by Samson [28] on unicycle path following

(see also the review in [22]), which proposes to represent the

unicycle dynamics in a Frenet-Serret frame attached to the path

one wants to follow, and use this representation to solve the

path following problem locally for a large class of paths. This

idea has been used extensively in the motion control literature.

We define the output y = h(x) := x2
1 + x2

2 − 1, a smooth

function on X . We will denote by n(x) := col(x1, x2)/(x
2
1 +

x2
2)

1/2 the unit normal vector to the circle with radius (x2
1 +

x2
2)

1/2 centred at 0, and t(x) = col(x2,−x1)/(x
2
1 + x2

2)
1/2

the unit tangent vector to the same circle in the clockwise

direction. We will further denote by h(x) := col(cx3
, sx3

) the

unicycle’s unit heading vector. Letting

µ(x) := x1sx3
− x2cx3

,

we have ÿ = 2−2µ(x)u, and therefore the system has relative

degree r = 2 on the set

U := {x ∈ X : µ(x) 6= 0},

which can be partitioned into sets

U+ = {x ∈ X : µ(x) > 0}
U− = {x ∈ X : µ(x) < 0}.

Noting that µ(x) = 0 if either (x1, x2) = (0, 0) or

〈t(x),h(x)〉 = 0, relative degree fails when either the unicycle

is at the origin or its heading vector is perpendicular to the

target path. We have

Hr(x) =

[

x2
1 + x2

2 − 1
2(x1cx3

+ x2sx3
)

]

,

and Z = (Hr)
−1(0). If x ∈ (Hr)

−1(0), then (x1, x2) 6= (0, 0),
and 〈n(x),h(x)〉 = 0, and this implies that µ(x) 6= 0. Thus

the system has well-defined relative degree on Z , and Z is

the ZDM.

1

0

/4

0.5 1

3 /2

0.5
0

2

0

-0.5
-0.5

-1 -1

Z+

Z−

Fig. 3. The ZDM for unicycle path following. Since x3 ∈ S1, the
endpoints of the two curves are identified.

We note that Hr(x) = 0 when (x1, x2) is on the unit circle

and 〈n(x),h(x)〉 = 0. Geometrically then, Z is the set where

the unicycle is on the unit circle with heading h(x) tangent

to it with either clockwise or counterclockwise orientation.

Accordingly, Z is the union of two disjoint closed curves in

X which we denote Z+ and Z−,

Z = Z+ ⊔ Z−,

with plus indicating counterclockwise orientation and minus

indicating clockwise orientation; see Figure 3. We note that

Z+ ⊂ U+, Z− ⊂ U−.

Since Z is not connected while the state space X is connected,

X and Z are not homotopy equivalent, and therefore by the

discussion in Remark 11, a global normal form does not exist.

Since the curves making up Z are closed, each connected

component of Z is diffeomorphic to S
1. Accordingly, let Z̃

denote the disjoint union of two copies of S1, denoted S
+ and

S
−,

Z̃ := S
+ ⊔ S

−,

and define parametrizations

φ+ : S+ → Z+, z 7→ (cz, sz, z + π/2)

φ− : S− → Z−, z 7→ (cz, sz, z − π/2).

Now let φ : Z̃ → Z be the map defined by φ
∣

∣

S+
:= φ+ and

φ
∣

∣

S−
:= φ−. By [19, Corollary 2.8]), this map is well-defined

and smooth. Moreover, its inverse is the smooth map

σ : Z → Z̃, x 7→ z = ∡ col(x1, x2),

so σ is a diffeomorphism.
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Having determined the ZDM and characterized its geometry,

we turn to checking the hypotheses of Theorem 6. The set

C = Hr(U) is given by

C =
{

ξ ∈ R
2 : ξ1 > (ξ2/2)

2 − 1
}

,

and we claim that C satisfies Assumption 2. For this prob-

lem we have one output with relative degree 2 so Ir =
{(1, 1), (1, 2)}. Consider the permutation π : Ir → Ir,

π(1, 1) = (1, 2), π(1, 2) = (2, 1), and associated indices

l1 = idx(1, 2) = 2 and l2 = idx(1, 1) = 1. The isomorphism

Pπ is given by Pπ(ξ) = col(ξ2, ξ1). It is readily seen that

C is open, convex, and it contains the origin. Moreover, the

condition

ξ ∈ C =⇒ (0, ξl2) ∈ Pπ(C),
is equivalent to

ξ ∈ C =⇒ (ξ1, 0) ∈ C,
and one can see that this latter condition is verified. Thus

Assumption 2 holds with l1 = 2, l2 = 1.

Next, we check the assumptions of Theorem 6. The feed-

back transformation

u = (2µ(x))−1(2− v) (13)

gives ÿ = v and

f̃ = cx3

∂

∂x1
+ sx3

∂

∂x2
+

1

µ(x)

∂

∂x3

g̃ =
−1

2µ(x)

∂

∂x3

adf̃ g̃ =
−1

2µ(x)

(

sx3

∂

∂x1
− cx3

∂

∂x2

)

.

We won’t need to use vector fields δ1, δ2 in this example, so

we set τ11 = g̃ and τ12 = −adf̃ g̃.

We compute the retraction p in (10),

p(x) = Φτ̄2
−λ̄2(x)

◦Φτ̄1
−λ̄1(x)

(x) = Φ
τ1
2

−h(x) ◦Φ
τ1
1

−Lfh(x)
(x). (14)

To find the flow of τ11 , we use separation of variables to

integrate the associated differential equation and employ basic

trigonometric identities. By so doing, we get

Φ
τ1
1

t (x) =









x1

x2

∡n(x)± cos−1

(

(t/2)+x1cx3
+x2sx3√

x2
1
+x2

2

)









,

with plus sign if x ∈ U+, and minus sign if x ∈ U−. We note

that this flow is well-defined for all x ∈ U and all t ∈ R such

that the argument of the function cos−1(·) is in the interval

(−1, 1), or using the expressions for h and Lfh,

t ∈
(

−Lfh(x)− 2
√

h(x) + 1,−Lfh(x) + 2
√

h(x) + 1
)

.

For x ∈ U and t in the open interval above, we have

Hr(x) + te12 = col(h(x), Lfh(x) + t),

and Lfh(x) + t ∈
(

−2
√

h(x) + 1, 2
√

h(x) + 1
)

. Since x ∈
U , h(x) + 1 > 0, and so

Hr(x) + te12 ∈
{

ξ ∈ R
2 : ξ1 > (ξ2/2)

2 − 1
}

.

This latter set is C and therefore τ11 satisfies condition (i) of

Theorem 6. In light of Remark 7, we do not need to check

condition (ii).

Now we turn to the flow Φ
τ1
2

t (x). We notice that this flow

preserves x3, and therefore its orbits on the (x1, x2) plane are

straight lines with tangent vector col(−sx3
, cx3

). The flow,

therefore, has the form

Φ
τ1
2

t (x) = x+ λ(t, x)





− sx3

cx3

0



 , (15)

where λ is a real-valued function to be determined such that

λ(0, x) = 0. Differentiating the above expression with respect

to t and imposing that the result be equal to τ12 (Φ
τ1
2

t (x)) we

obtain an expression for λ̇,

λ̇ =
1

−2µ(x) + 2λ
.

Using separation of variables and imposing λ|t=0 = 0, we

integrate to get

λ2 − 2µ(x)λ = t. (16)

The flow is defined for all t such that the above polynomial

in the variable λ has real roots, or t > −µ(x)2 which can be

expressed as t > −h(x) − 1 + (Lfh(x))
2/4. Now we check

the flow condition of Theorem 6. Letting x ∈ U , we have

Hr(x) + te11 =

[

h(x) + t
Lfh(x)

]

.

If t > −h(x) − 1 + (Lfh(x))
2/4, then h(x) + t > −1 +

(Lfh(x))
2/4, so the vector Hr(x) + te11 is in the set

{

ξ ∈ R
2 : ξ1 > (ξ2/2)

2 − 1
}

,

which coincides with C. Therefore τ12 satisfies condition (30).

To obtain the flow of τ12 , we solve the polynomial (16),

discarding the root incompatible with the condition λ(0, x) =
0, thus obtaining

λ(t, x) =

{

µ(x)−
√

µ(x)2 + t x ∈ U+

µ(x) +
√

µ(x)2 + t x ∈ U−.
(17)

The flow of τ12 is given by (15) and (17).

Using the flows of τ11 , τ
1
2 , we may now compute the

retraction p : U → Z in (14). Using the fact that Lfh(x) =
2x1cx3

+ 2x3sx3
, we have

Φ
τ1
1

−Lfh(x)
(x) =





x1

x2

∡n(x)± π/2



 ,

with plus sign when x ∈ U+ and minus sign when x ∈ U−.

Further composing with Φ
τ1
2

−h(x) we get

p(x) =

[

n(x)
∡n(x)± π/2

]

.

Note that p projects the position of the unicycle (x1, x2) or-

thogonally on the unit circle, and it projects the heading angle

x3 onto the tangent line to the circle, in the counterclockwise
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n(x)

h(x)p
∣

∣

U+

p
∣

∣

U−

Fig. 4. An illustration of the smooth retraction p : U → Z.

or clockwise direction depending on whether, respectively, x
is in U+ or U−. We note that

p
∣

∣

U+ : U+ → Z+

p
∣

∣

U−

: U− → Z−.

This retraction is illustrated in Figure 4.

Next, we compute σ ◦ p : U → Z̃ as σ ◦ p(x) = ∡n(x). By

Theorem 6, the map T : U → Z̃ × C,

(z, ξ) = (σ ◦ p(x),Hr(x))

=
(

∡n(x), col(x2
1 + x2

2 − 1, 2x1cx3
+ 2x2sx3

)
)

is a diffeomorphism. Note that U is a set of full measure in

X , and therefore we are about to produce an almost global

feedback equivalence to a normal form (recall that a global

normal form does not exist for this problem).

Using the identities

d

dt
∡n(x) =

x1ẋ2 − x2ẋ1

x2
1 + x2

2

col(x1, x2) = (ξ1 + 1)1/2 col(cz, sz)

µ(x) = (ξ1 + 1)1/2sx3−z

cx3−z =
ξ2

2(ξ1 + 1)1/2
,

and the feedback transformation (13), we arrive at the normal

form

ż = ±
(

4(ξ1 + 1)− ξ22
)1/2

2(ξ1 + 1)

ξ̇1 = ξ2

ξ̇2 = v,

(18)

with plus sign if z ∈ S
+, and minus sign if z ∈ S

−. The state

space of (18) is C = {(z, ξ1, ξ2) ∈ Z̃ : ξ1 > (ξ2/2)
2 − 1}.

Having established an almost global feedback equivalence

between the unicycle model and system (18), we now asymp-

totically stabilize the ZDM. For the double-integrator with

state ξ in (18), we wish to design a smooth feedback v = v̄(ξ)
meeting the control specifications (i) and (ii) listed in Propo-

sition 13. We remark that Z is compact so the proposition is

indeed applicable, and it implies for each feedback v = v̄(ξ)
meeting the aforementioned specifications, the feedback u =
(2µ(x))−1(2− v̄(Hr(x))) will render Z asymptotically stable

with basin of attraction containing the positively invariant

set U . Thus the controller in question will render Z almost

globally asymptotically stable.

Recall that U and Z are unions of two disjoint sets, U =
U+∪U−, and Z = Z+∪Z−, with Z+ ⊂ U+ and Z− ⊂ U−.

Then, Z+ and Z− will each be asymptotically stable with

basin of attraction given by the positively invariant sets U+

and U−, respectively. More concretely, if µ(x(0)) > 0 the

unicycle will stay in U+, converge to the circle and follow it

counterclockwise, while if µ(x(0)) < 0 the unicycle will stay

in U− and follow the circle in the clockwise direction.

Proposition 16: For each Kd > 1, the feedback

v̄(ξ) = −2ξ1 +
ξ22
2

−Kdξ2

meets specifications (i)-(ii) in Proposition 13, therefore induc-

ing almost global circular path following.

Proof: The ξ subsystem with feedback v̄ is

ξ̇1 = ξ2, ξ̇2 = −2ξ1 +
ξ22
2

−Kdξ2. (19)

Letting W (ξ) = (ξ2)
2/4− (ξ1 + 1), the set C can be written

as C = {ξ ∈ R
2 : W (ξ) < 0}. The time derivative of W

along solutions of (19) is Ẇ = −(Kd/2)ξ
2
2 + ξ2W (ξ). Since

Ẇ |W=0 ≤ 0, C is positively invariant for (19) and specification

(i) is met. For specification (ii), we will use the reduction

theorem for asymptotic stability of compact sets in [9]. Let

Γ := {ξ ∈ C : ξ2 ≤ 2/Kd}.

For each initial condition in C, the solution ξ(t) satisfies

W (ξ(t)) < 0 implying that

ξ̇2 = −2ξ1+
ξ22
2
−Kdξ2 = −Kdξ2+2W (ξ)+2 ≤ −Kdξ2+2.

By the comparison lemma (e.g., [18]) we deduce that Γ is

globally asymptotically stable relative to C (i.e., restricting

initial conditions to be contained in C). Now consider solutions

ξ(t) initialized in Γ, for which we have ξ2(t) ≤ 2/Kd. The

derivative of the Lyapunov function V (ξ) = ξ21 + (1/2)ξ22
along solutions of (19) is

V̇ = −ξ22(Kd − ξ2/2) ≤ −ξ22
K2

d − 1

Kd
.

Since Kd > 1, V̇ ≤ 0 and the LaSalle-Krasovskii invariance

principle implies that the origin ξ = 0 is globally asymptoti-

cally stable relative to Γ. Now [9, Corollary 11] implies that

the origin ξ = 0 is globally asymptotically stable relative to

C.

Figure 5 shows simulations results for 20 random initial

conditions. The green curves represent solutions with initial

condition in U+, while red curves represent initial conditions

in U−. As predicted by the theory, green curves approach and

follow the circle in the counterclockwise direction, while red

curves do so in the clockwise direction.

The proposed controller can be enhanced with a hybrid

supervisor yielding global path following in the clockwise

or counterclockwise direction (i.e., global asymptotic stability

of Z+ or Z−). Suppose we want to globally asymptotically

stabilize Z+ for counterclockwise path following. For initial

conditions in U+, the supervisor does nothing. For every other

initial condition, the supervisor applies a constant control
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Fig. 5. Simulation results for unicycle path following. The first figure
shows the behaviour of the controller in Proposition 16 almost globally
stabilizing Z. The second figure shows the results of adding a hybrid
supervisor that globally asymptotically stabilizes Z+. Green arcs repre-
sent states in U+, while red arcs correspond to states in U−.

input u = ū > 0 until the unicycle enters4 U+, at which

point it resumes normal operation with the controller proposed

above. The positive invariance of U+ is a key feature because

it ensures that once the unicycle enters U+ it stays there.

Simulation results for this hybrid supervisor with the same

initial conditions used previously and with ū = 2 are displayed

in Figure 5.

VIII. CONCLUSIONS

For nonlinear control systems with well-defined relative

degree, we have investigated the existence of normal forms

for input-output linearization valid in some neighbourhood of

the ZDM or in a given a priori neighbourhood of it. Finding the

coordinate transformation involves finding a smooth retraction

onto the ZDM. While the work of Byrnes and Isidori [5]

provides a formula for such a retraction, one that we have

relied on in our proof of Theorem 6, its computation requires

flows of vector fields that are generally unavailable in closed

form. It might generally be easier to seek a smooth retraction

yielding the required diffeomorphism. In the unicycle example,

the retraction we arrived at using Byrnes and Isidori’s formula

is the obvious choice. The analysis of the unicycle example

4Setting ū > 0, one has µ̈ = ū − ū2µ, and therefore for any initial
condition, µ(x(t)) is a sinusoidal signal with positive average ū, ensuring
that there exists a time t̄ > 0 such that µ(x(t̄)) > 0, and thus x(t̄) ∈ U+.

might possibly be extended in two directions: the path follow-

ing of arbitrary embedded curves in the plane for the unicycle,

and the extension to other nonholonomic models. Finally, we

mention that the results of this paper can be easily extended

to handle control systems with more inputs than outputs.

APPENDIX I

PROOF OF THEOREM 3

Before proving the theorem, we recall that if U ⊂ X is

open, H : U → R
r is a submersion, and Z = H−1(c) is a

nonempty level set of H , then Z is an embedded submanifold

of X of dimension n − r, and for each x ∈ Z , TxZ =
Ker dHx. We also need the Generalized Inverse Function

Theorem.

Theorem 17 ([10]): Let Z be an embedded submanifold of

X , and F : X → Y be a smooth map of manifolds enjoying

the following properties:

(i) For each z ∈ Z , the differential dFz : TzX → TF (z)Y
is an isomorphism.

(ii) The restriction F |Z : Z → F (Z) ⊂ Y is a diffeomor-

phism.

Then, there exists a neighbourhood V ⊂ X of Z such that

F |V : V → F (V ) is a diffeomorphism.

In the above, note that F (V ) is a neighbourhood of F (Z).

Proof of Theorem 3. The theorem is trivially true if r = n, as in

this case Z is a zero dimensional manifold and hence a set of

isolated points {xi}i∈I ⊂ X . Applying Theorem 1 with r = n
at each of these points we obtain diffeomorphisms Ti on open

sets Ui ⊂ X , and we may assume that Ui∩Uj = ∅ for all i 6= j
since the points in {xi}i∈I are isolated. Letting U =

⋃

i∈I
Ui,

there is a unique smooth map T : U → {xi}i∈I × R
r such

that T |Ui
= Ti (see [19, Corollary 2.8]), and this map is a

diffeomorphism onto its image.

Now consider the case r < n. In order to show that the map

x ∈ X 7→ (z, ξ) = (σ ◦ p(x),Hr(x)) is a diffeomorphism of a

neighbourhood of Z onto its image, we use Theorem 17. Fix

x ∈ Z . Regarding property (i) in Theorem 17, we have

dTx : TxX → T(z,ξ)(Z̃ × R
r) ≃ TzZ̃ × R

r,

where (z, ξ) = T (x). Since the domain and codomain of dTx

are vector spaces of equal dimension, to show that dTx is

an isomorphism it suffices to show that Ker dTx = {0}. Let

vx ∈ Ker dTx. Then,

d(σ ◦ p)x(vx) = 0 (20a)

d(Hr)x(vx) = 0. (20b)

By part (i) of Theorem 1, rank d(Hr)x = r for all x ∈
(Hr)

−1(0). Then, since Z = (Hr)
−1(0) we have that TxZ =

Ker d(Hr)x, and identity (20b) implies that

vx ∈ TxZ. (21)

Now consider identity (20a). Since x ∈ Z and p is a retraction

onto Z , we have p(x) = x. Using the chain rule, we get

dσx ◦ dpx(vx) = 0. (22)
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Since σ : Z → Z̃ is a diffeomorphism, the map dσx : TxZ →
TzZ̃ , with z = σ(x), is an isomorphism. Then, noting that

dpx(vx) ∈ TxZ , (22) implies that

dpx(vx) = 0. (23)

By (21), there exists a smooth curve γ : (−ε, ε) → Z such

that γ(0) = x and γ̇(0) = vx. Since p|Z is the identity map,

we have

p(γ(t)) ≡ γ(t).

Differentiating with respect to t, using the chain rule, and

evaluating the result at t = 0 we get

dpx(vx) = vx.

But this, by (23), implies that vx = 0. We have thus proved

that Ker dTx = {0}, and hence dTx is an isomorphism for

any x ∈ Z .

Now we turn to property (ii) of Theorem 17. The restriction

T |Z : Z → X is the map x 7→ (σ ◦ p(x), 0) = (σ(x), 0) ∈
Z̃ × R

r. Since σ : Z → Z̃ is a diffeomorphism, the map

T |Z : Z → Z̃ × {0} is a diffeomorphism as well.

By Theorem 17, there exists a neighbourhood V ⊂ X of

Z such that T |V : V → T (V ) is a diffeomorphism. Since

T (Z) = Z̃ × {0}, T (V ) is a neighbourhood of Z̃ × {0},

and thus it has the form T (V ) = Z̃ × W , with W ⊂ R
r a

neighbourhood of the origin. The rest of the theorem follows

from part (v) of Theorem 1.

APPENDIX II

PROOF OF THEOREM 6

Lemma 18: Let f̃ , g̃i be the vector fields defined in (3), and

let λj
l := Ll−1

f hj , (j, l) ∈ Ir. For any smooth vector fields

δ1, δ
i
2 ∈ ∆, i ∈ 1 :m, letting f̂ := f̃ + δ1, ĝi := g̃i + δi2, the

vector fields τ ik := adk−1

f̂
ĝi satisfy the identity

Lτ i
k
λj
l =

{

1 i = j, k + l = ri + 1

0 otherwise.
(24)

Proof: We claim that

(∀k ∈ N)(∀i ∈ 1:m) [adk
f̃
g̃i,∆] ⊂ ∆. (25)

Identity (25) is true for k = 0 because [g̃i,∆] ⊂ ∆ for all

i ∈ 1 :m by part (iv) of Theorem 1. Using induction, assume

for k ≥ 1 that [adk−1

f̃
g̃i,∆] ⊂ ∆ for all i ∈ 1 :m, and let

δ ∈ ∆ be arbitrary. For each i ∈ 1 : m, using the Jacobi

identity we have

[adk
f̃
g̃i, δ] = −[δ, [f̃ , adk−1

f̃
g̃i]]

= [f̃ , [adk−1

f̃
g̃i, δ]] + [adk−1

f̃
g̃i, [δ, f̃ ]].

We have [adk−1

f̃
g̃i, δ] ∈ ∆ by the induction hypothesis and

[δ, f̃ ] ∈ ∆ by part (iv) of Theorem 1. Thus the inner Lie

brackets in the sum above give vector fields in ∆. Using again

the induction hypothesis and part (iv) of Theorem 1, we have

that [f̃ , [adk−1

f̃
g̃i, δ]] ∈ ∆ and [adk−1

f̃
g̃i, [δ, f̃ ]] ∈ ∆. This

proves that (25) holds.

Next, we show that

(∀k ∈ N)(∀i ∈ 1:m) adk
f̂
ĝi − adk

f̃
g̃i ∈ ∆. (26)

The identity is true for k = 0 and all i ∈ 1:m, since ĝi− g̃i =
δi2 ∈ ∆. By induction on k, suppose adk−1

f̂
ĝi − adk−1

f̃
g̃i =

δ ∈ ∆. Then,

adk
f̂
ĝi − adk

f̃
g̃i = [f̂ , adk−1

f̂
ĝi]− [f̃ , adk−1

f̃
g̃i]

= [f̃ , adk−1

f̂
ĝi] + [δ1, ad

k−1

f̂
ĝi]− [f̃ , adk−1

f̃
g̃i]

= [f̃ , adk−1

f̂
ĝi − adk−1

f̃
g̃i] + [δ1, δ + adk−1

f̃
g̃i]

= [f̃ , δ] + [δ1, δ] + [δ1, ad
k−1

f̃
g̃i].

Using (25), the fact that ∆ is involutive, and the fact that

[f̃ ,∆] ⊂ ∆ we conclude that three summands are in ∆, and

thus identity (26) holds.

By identity (26), for each (i, k) ∈ Ir there exists a smooth

vector field δik ∈ ∆ such that

τ ik = (−1)k−1adk−1

f̂
ĝi = (−1)k−1adk−1

f̃
g̃i + δik.

For each (i, k), (j, l) ∈ Ir, we have

Lδi
k
λj
l (x) = d(Ll−1

f hj)xδ
i
k(x) = 0,

since δik(x) ∈ ∆(x) = Ker d(Hr)x ⊂ Ker d(Ll−1
f hj)x. Then,

Lτ i
k
λj
l = (−1)k−1Ladk−1

f̃
g̃iλ

j
l + Lδi

k
λj
l

= (−1)k−1Ladk−1

f̃
g̃iλ

j
l

=

{

1 i = j, k + l = ri + 1

0 otherwise.

The last identity was proved by [5], [12], as discussed in

Section V.

Proof of Theorem 6. (Necessity). Suppose a diffeomorphism

T : U → Z̃ × C exists giving the normal form (1) after the

feedback transformation (4). In (z, ξ) coordinates, and in any

set of local coordinates (z1, . . . , zn−r) for Z , the vector fields

f̃ and g̃i are given by

T∗f̃ =





n−r
∑

j=1

αj(z, ξ)
∂

∂zj



+
∑

(i,k)∈Ir

ξik+1

∂

∂ξik

T∗g̃
i =





n−r
∑

j=1

βi
j(z, ξ)

∂

∂zj



+
∂

∂ξiri
,

where αj , β
i
j are the components of the local coordinate

representation of α, βi in (1). Let δ1 be the pullback via T
of the vector field −∑

j αj(z, ξ)
∂

∂zj
and δi2 be the pullback

of − ∑

j β
i
j(z, ξ)

∂
∂zj

. Note that defining δ1 and δi2 in every

coordinate chart defines them globally on X . Setting f̂ =
f̃ + δ1, ĝi = g̃ + δi2, we get

T∗f̂ =
∑

(i,k)∈Ir

ξik+1

∂

∂ξik
, T∗ĝ

i =
∂

∂ξiri
. (27)

We see that T∗f̂ is linear and T∗ĝ
i is constant. By the natural-

ity of the Lie bracket ([19, Prop.8.30]), we have T∗[f̂ , ĝ
i] =

[T∗f̂ , T∗ĝ
i], using which we get

T∗τ
i
k = (−1)k−1T∗ad

k−1

f̂
ĝi =

∂

∂ξiri−k+1

, (i, k) ∈ Ir. (28)
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The flow of T∗τ
i
k from a point (z, ξ) ∈ C is t 7→ (z, ξ +

teiri−k+1), and it is well defined as long as ξ+ teiri−k+1 ∈ C.

This proves that property (i) holds. Moreover,

0 =

[

∂

∂ξiri−k+1

,
∂

∂ξjrj−l+1

]

= [T∗ad
k−1

f̂
ĝi, T∗ad

l−1

f̂
ĝj ]

= T∗[τ
i
k , τ

j
l ],

proving that property (ii) holds.

(Sufficiency). Claim 1. The map p in (10) is a smooth

retraction U → Z .

Proof of Claim 1. Defining recursively, for j ∈ 2:r,

p1(x) := Φτ̄1
−λ̄1(x)

(x)

pj(x) := Φ
τ̄j
−λ̄j(x)

◦ pj−1(x),
(29)

we have that p(x) = pr(x).
By assumption (i), we have the following property

(∀x ∈ U)Φτ̄j
t (x) is defined on {t ∈ R : Hr(x) + te

ij
kj

∈ C}.
(30)

We begin by using (30) with t = −λ̄1(x) to show that p1
is well-defined. For each x ∈ U , Hr(x) ∈ C, and we have

Pπ

(

Hr(x) + (−λ̄1(x))e
i1
k1

)

= Pπ

(

Hr(x)− Lk1−1
f hi1(x)ei1k1

)

= col(0, Lk2−1
f hi2(x), · · · , Lkr−1

f hir (x)).

Since Hr(x) ∈ C, by Assumption 2 the vector above is in

Pπ(C), implying that Hr(x) + (−λ̄1(x))e
i1
k1

∈ C. By (30),

we conclude that the map p1 is well-defined and smooth on

U . We next show that the image of p1 is a subset of U . By

Lemma 18, the vector fields τ ik satisfy the identity (6) and thus

also identity (7), which we rewrite as:

Ll−1
f hi ◦ Φτ̄j

t (x) =

{

Ll−1
f hi(x) + t i = ij , l = kj

Ll−1
f hi(x) otherwise.

(31)

Applying identity (31) to each of the components of Hr and

using the definition of λ̄1 in (11), we get

Hr ◦ p1(x) = Hr(x)− ei1k1
Lk1−1
f hi1(x),

from which it follows that

Pπ ◦ Hr ◦ p1(x) = col(0, Lk2−1
f hi2(x), . . . , Lkr−1

f hir (x)).

Since Hr(x) ∈ C, using Assumption 2 we deduce from the

identity above that Pπ ◦ Hr ◦ p1(x) ∈ Pπ(C), or equivalently,

Hr ◦ p1(x) ∈ C, which implies that p1(x) ∈ U . This proves

that p1 : U → U is well-defined and smooth.

Now for the induction, suppose that for some j ∈ 2:r − 1,

the map pj−1 : U → U is well-defined and smooth, and that

letting ξ = Hr(x), it holds that

Pπ ◦ Hr ◦ pj−1(x) = col(0, . . . , 0, ξlj , . . . , ξlr ). (32)

We want to show that pj : U → U is well-defined and smooth

and Pπ ◦ Hr ◦ pj(x) = col(0, . . . , 0, ξlj+1
, . . . , ξlr ). Let w :=

pj−1(x) ∈ U , then pj in (29) can be rewritten as

pj(x) = Φ
τ̄j

−L
kj−1

f
hij (x)

(w),

and property (32) implies that

L
kj−1
f hij (w) = ξlj = L

kj−1
f hij (x), (33)

where we used the fact that lj = idx(ij , kj) and that, according

to the notation in Section III, ξlj = ξ
ij
kj

. Using (33), we may

rewrite pj(x) as

pj(x) = Φ
τ̄j

−L
kj−1

f
hij (w)

(w).

Using (30) with t = −L
kj−1
f hij (w), we now show that pj is

well-defined. By (32) and the first identity in (33) we have

Pπ

(

Hr(w)− L
kj−1
f hij (w)e

ij
kj

)

= col(0, . . . , ξlj+1
, . . . , ξlr ),

which is in Pπ(C) by Assumption 2. By (30), the map pj is

well-defined and smooth on U . Now we show that its image

is a subset of U . Indeed, applying again identity (31) to each

component of Hr and using Assumption 2, we get

Pπ ◦ Hr ◦ pj(x) = col(0, . . . , 0, ξlj+1
, . . . , ξlr ) ∈ Pπ(C),

implying that for each x ∈ U , Hr ◦ pj(x) ∈ C or, what is the

same, pj(x) ∈ U . Thus the image of pj is contained in U and

pj : U → U is well-defined and smooth.

By induction, we conclude that p : U → U is smooth. By

the arguments in [5], [12] reviewed in Section V, the image of

p is Z , hence the map p : U → Z is well-defined and smooth.

Finally, for each x ∈ Z we have λ̄j(x) = 0, j ∈ 1:r, implying

that p(x) = x. Thus p : U → Z is a smooth retraction, as

claimed. △
Claim 2. The map T : U → Z̃ × C, x 7→ (σ ◦ p(x),Hr(x))

is a diffeomorphism.

Proof of Claim 2. We will show that the map S : Z̃ × C → U
defined as

S(z, ξ) = Φτ̄1
ξl1

◦ · · · ◦ Φτ̄r
ξlr

◦ σ−1(z)

is the smooth inverse of T . Assume for a moment that S is

well-defined. Then it is straightforward to check that T ◦S =
id

Z̃×C
and S ◦T = idU . Therefore, we only need to show that

S is well-defined and smooth.

For j ∈ 2:r, define recursively

S1(z, ξ) := Φτ̄r
ξlr

◦ σ−1(z)

Sj+1(z, ξ) := Φ
τ̄r−j

ξlr−j
◦ Sj(z, ξ),

(34)

so that S(z, ξ) = Sr(z, ξ).
Since σ−1(z) ∈ Z ⊂ U , Hr(σ

−1(z)) = 0, and property (30)

guarantees that S1(z, ξ) is well-defined for all ξlr such that

ξlre
ir
kr

∈ C. By Assumption 2, for each ξ ∈ C, ξlre
ir
kr

∈ C
as well. Thus by (30) the map S1 is indeed well-defined and

smooth on Z̃ × C. We show that its image is contained in U .

Using (31) r times and the fact that σ−1(z) ∈ Z = (Hr)
−1(0),

we get

Lkr−1
f hir ◦ S1(z, ξ) = ξlr ,

Lk−1
f hi ◦ S1(z, ξ) = 0, (i, k) ∈ Ir, (i, k) 6= (ir, kr).

Therefore, for each (z, ξ) ∈ Z̃ × C we have

S1(z, ξ) ∈ {x ∈ X : Pπ ◦ Hr(x) = col(0, . . . , 0, ξlr )} ⊂ U .
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The last inclusion follows from Assumption 2. Thus S1 : Z̃ ×
C → U is well-defined and smooth.

Now inductively suppose that for some j ∈ 1 : r − 1, the

map Sj : Z̃ ×C → U is well-defined and smooth, and that for

each (z, ξ) ∈ Z̃ × C,

Sj(z, ξ) ∈{x ∈ X : Pπ ◦ Hr(x) =

= col(0, . . . , 0, ξlr−j+1
, . . . , ξlr )}.

(35)

Using (30) with t = ξlr−j
, the map Sj+1 in (34) is well-defined

for all (z, ξ) such that

Hr ◦ Sj(z, ξ) + ξlr−j
e
ir−j

kr−j
∈ C.

Using Assumption 2 and (35), we have

Pπ(Hr ◦ Sj(z, ξ) + ξlr−j
e
ir−j

kr−j
)

= col(0, . . . , 0, ξlr−j
, . . . , ξlr ) ∈ Pπ(C),

and thus property (30) implies that the map Sj+1 is indeed

well-defined and smooth on Z̃ × C.

Using (31) in a manner similar to what we have done for

S1, we get that

Sj+1(z, ξ) ∈{x ∈ X : Pπ ◦ Hr(x)

= col(0, . . . , 0, ξlr−j
, . . . , ξlr )},

and thus by Assumption 2 the image of Sj+1 is contained in

U . By induction, the map S : Z̃ × C → U is well-defined and

smooth. This concludes the proof of Claim 3. △
Since T : U → Z̃ × C is a diffeomorphism, the rest of the

theorem follows from part (v) of Theorem 1.
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