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Chapter 1Analysis of Disrete Time LinearSystems1.1 IntrodutionThere are 3 ommon ways to desribe disrete time linear systems: di�erene equation models, transferfuntion models, and state spae models. We shall study how to use eah of these models for analysis,and show how you an move readily from one desription to another. In most of our work, we shall studyonly single-input single-output systems, although many of the results generalize to multivariable systemsas well.1.2 Di�erene EquationsConsider the following di�erene equation with onstant oeÆients:y(k) + a1y(k � 1) + � � �+ any(k � n) = b0u(k) + b1u(k � 1) + � � � + bmu(k �m) (1.1)Here u is the given input, and y is the output to be determined. We an, in priniple, solve thisequation by reursion, starting with known initial onditions y(�1), y(�2), : : : , y(�n), and u(�1), u(�2),: : : , u(�m). To do this, simply re-write the equation asy(k) = �a1y(k � 1)� � � � � any(k � n) + b0u(k) + b1u(k � 1) + � � �+ bmu(k �m)It is lear that the output y(k) an be determined from the past inputs and outputs and the urrent inputu(k). However, we often would like to determine the analytial solution for y for a given u. Similar to thease of di�erential equations with onstant oeÆients, the general solution of (1.1) an be written asy(k) = yh(k) + yp(k)where yh is the solution to the homogeneous equationy(k) + a1y(k � 1) + � � �+ any(k � n) = 0 (1.2)and yp is a partiular solution to (1.1). If we take pk to be a trial solution to (1.2), we see that p mustsatisfy the auxiliary equation pn + a1pn�1 + � � �+ an = 0 (1.3)2



Eah distint root of the auxiliary equation gives rise to a distint solution of the homogeneous equation.Suppose there are n distint roots p1; p2; � � � ; pn to (1.3). The general solution to (1.2) is then given byyh(k) = �1pk1 + �2pk2 + � � � + �npkn (1.4)The partiular solution yp(k) an often be determined by guessing the form of the solution and mathingoeÆients. The proedure is so lose to that of solving higher-order inhomogeneous di�erential equationsthat we shall simply illustrate with an example.Example 1.Consider the following simple di�erene equation:y(k)� 2y(k � 1) = k y(�1) = 1 (1.5)Rewriting it in the form y(k) = 2y(k � 1) + kwe see easily that the general solution is given byy(k) = 2k�+ yp(k)For the partiular solution yp, try yp(k) = Ak +BSubstituting in (1.5), we obtain Ak +B � 2[A(k � 1) +B℄ = kThis gives, on mathing oeÆients, 2A�B = 0and �Ak = k) A = �1 B = �2The partiular solution is therefore given byyp(k) = �(k + 2)The general solution is then y(k) = 2k�� (k + 2)On putting k = 0, we get y(0) = 2y(�1) = 23



Substituting into the general solution, we �nd� = y(0) + 2 = 2(y�1 + 1) = 4The omplete solution is given by y(k) = 4� 2k � (k + 2)= 2k+1(y�1 + 1)� (k + 2)While it is possible to give a more general treatment of solutions of linear higher-order di�ereneequations, inluding the variation of parameters formula for inhomogeneous equations, the above approahoften gives an e�etive method of solution. We refer you to F.B. Hildebrand, Finite Di�erene Equationsand Simulations for further details.1.3 Z-transformsThe z-transform is the analogue of the Laplae transform for analyzing disrete time signals. Assume thatthe disrete time sequene xk satis�es jxkj � rk0i.e. xk is exponentially (geometrially) bounded. Then for all r > r0�jxkjr�k� ��r0r �k <1De�ne z-transform of xk as X(z) = 1Xk=0 xkz�kWe see that X(z) onverges in jzj > r0
r0
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X(z) is then an analyti funtion in the region of onvergene. For onveniene, we often use thesymbol Z to denote the z-transform operator.Example: xk = ak k � 0X(z) = 1Xk=0(az�1)k = 11� az�1 jzj > jajFor notational onveniene, we indiate ak and 11�az�1 are z-transform pairs by writing Z(ak) = 11�az�1 ,or Z�1[ 11�az�1 ℄ = ak.Next we examine some basi properties and results in onnetion with z-transforms.Inversion integral: xk = 12�j I X(z)zk�1dz (1.6)with the irular path of the ontour integral inside region of onvergene. The validity of this formula anbe seen from 12�j I �xnz�nzk�1dz= 12�j�I xnz�(n�k)dzz(onvergene uniform to permit integration term by term)= xk= � residues of X(z)zk�1 inside CExample: X(z) = 11� az�1 jzj > jajxk = 12�j I zk�11� az�1dz= 12�j I zkz � adz = ak k � 0Note the importane of knowing the region of onvergene. If the ontour had been hosen in jzj < jaj, theintegral would be 0.We an also do an in�nite series expansion to get11� az�1 = �akz�kfrom whih we an reognize that ak is the time sequene.Sine a disrete-time signal in omputer ontrol is usually de�ned for k � 0, it invariably gives rise to az-transform with a region of onvergene being the exterior of a irle with a suÆiently large radius. For5



this reason, the region of onvergene for a transform X(z) is often omitted with the understanding thatit will enlose all the poles of X(z).Using the inversion integral, one an show thatZ�1[ z(z � p)i+1 ℄ = k!i!(k � i)!pk�i for all i � 0 (1.7)This is a very useful formula whih, as we shall see, will help us to invert many z-transforms quikly. Twoases of partiular interest are: i = 0 : Z�1[ zz � p ℄ = Z�1[ 11� pz�1 ℄ = pki = 1 : Z�1[ z(z � p)2 ℄ = kpk�1Beyond the basi de�nition of z-transforms and the inversion integral, there are a number of useful prop-erties of z-transforms whih we quikly survey.Convolution of (ausal) time sequenes:wk = kXl=0 xlyk�lW (z) = 1Xk=0 kXl=0 xlyk�lz�k= 1Xl=0 1Xk=l xlyk�lz�(k�l)z�l= 1Xl=0 1Xj=0 xlyjz�jz�l = X(z)Y (z)We often desribe this result as onvolution in the time domain orresponds to multipliation in the z-transform domain.Multipliation of time sequenes: wk = xkykwhere X(z) has region of onvergene jzj > R0 and Y (z) has region of onvergene jzj > R1.W (z) = Xk xkykz�k =Xxkz�k 12�j I Y (�)�k�1d�= 12�j I Xxk �z��k Y (�)d�� = 12�j I X �z��Y (�)d��where the ontour integral is over a irle j�j > R1. Sine we require����z� ���� > R0; j�j > R1 ) jzj > R0R1 is the region of onvergene6



It an also be expressed as W (z) = 12�j I X(�)Y �z�� d��where the ontour integral is over a irle j�j > R0. This result is the dual of the previous one. We oftenrefer to it as multiplation in the time domain orresponds to onvolution in the z-transform domain.Multipliation by ak: Zfakxkg = X �za�sine X akxkz�k =X xk �za��kThe region of onvergene an be readily determined as follows: Ifjxkj � rk0) jakxkj � [jajr0℄kHene jzj > jajr0 is the region of onvergene for X( za ).From the point of view of solving di�erene equations, the most important property of z-transforms is thefollowing.Translation:Bakward shift: 1Xk=0 xk�mz�k = m�1Xk=0 xk�mz�k + 1Xk=mxk�mz�(k�m)z�m= m�1Xk=0 xk�mz�k + z�mX(z)= z�mX(z) + x�m + z�1x�m+1 + : : :+ x�1z�m+1Forward shift: 1Xk=0 xk+mz�k = 1Xk=0 xk+mz�(k+m)zm= 1Xl=mxlz�lzm = zmX(z) � m�1Xl=0 xlz�lzm= zmX(z)� fzmx0 + zm�1x1 + : : :+ zxm�1gTwo additional properties whih we do not use very often are inluded for ompleteness.Initial Value Theorem: The initial value of a sequene xk with z-transform X(z) is given byx0 = limz!1X(z)7



Final Value Theorem: Assume fk �!k!1A <1. Thenlimz!1z>1; real(z � 1)F (z) = ASolving di�erene equations: Consider the di�erene equationyk + a1yk�1 + � � �+ anyk�n = b0uk + � � � + bmuk�m with uk = 0; k < 0:Putting a0 = 1, we an write the above equation asnXj=0 ajyk�j = mXj=0 bjuk�jSuppose jukj � �rku for some � � 0, ru > 0. Almost all inputs in pratie will satisfy some suh geometribound. Then the solution yk will satisfy also a geometri bound and hene z-transformable. Takingz-transform of the left hand side gives1Xk=0 nXj=0 ajyk�jz�k = Y (z) + a1z�1Y (z) + : : := A(z�1)Y (z) + nXj=1 j�1Xk=0 ajyk�jz�kwhere A(z�1) = nXj=0 ajz�j ; with a0 = 1) Y (z) = I(z)A(z�1) + B(z�1)A(z�1)U(z) (1.8)where I(z) is a polynomial depending on the initial ondition. LetYi(z) = I(z)A(z�1)and Ye(z) = B(z�1)A(z�1)U(z)In terms of the terminology of Setion 1.2, Yi(z) is the transform of a homogeneous solution, and Ye(z)is the transform of a partiular solution. The solution yk an then be obtained by taking the inversez-transform.As an example, we solve the di�erene equation (1.5) using z-transforms. First note that in terms of ourpolynomial notation, A(z�1) = 1� 2z�18



B(z�1) = 1Sine U(z) = 1Xk=0 kz�k = �z ddz 1Xk=0 z�k= �z ddz 11� z�1 = �z ddz � zz � 1�= �z (z � 1)� z(z � 1)2 = z(z � 1)2we an write (1.5) in the form Y (z)� 2z�1Y (z)� 2y�1 = z(z � 1)2Y (z) = 2y�11� 2z�1 + z(z � 1)2(1� 2z�1)In the terminology of (1.8), Yi(z) = I(z)A(z�1) = 2y�11� 2z�1 = 21� 2z�1and Ye(z) = B(z�1)A(z�1) U(z) = z(z � 1)2(1� 2z�1)Inverting Yi(z) readily gives yi(k) = 2� 2kTo invert Ye(z), we shall make use of (1.7). We �rst perform a partial-fration expansion of Ye(z)z :Ye(z)z = z(z � 1)2(z � 2)= 2z � 2 + �z + �(z � 1)2= 2(z � 1)2 + �z2 + (� � 2�)z � 2�(z � 1)2(z � 2)= 2(z2 � 2z + 1) + �z2 + (� � 2�)z � 2�(z � 1)2(z � 2)On mathing oeÆients, we have � = �2 � = 19



Putting everything together, we obtainYe(z)z = 2z � 2 + �2z(z � 1)2 + 1(z � 1)2= 2z � 2 � 2(z � 1) + 2(z � 1)2 + 1(z � 1)2= 2z � 2 � 2z � 1 � 1(z � 1)2Hene Ye(z) = 2zz � 2 � 2zz � 1 � z(z � 1)2Now eah term of Ye(z) an be inverted using (1.7) to giveye(k) = 2� 2k � (k + 2)) y(k) = yi(k) + ye(k) = 4� 2k � (k + 2)whih is the same result as before.The solution via z-transform often involves expansion the z-transform into partial frations. A onvenientway to ompute partial frations, when there are repeated poles, say of order m at the point p, is to expandY (z)z = 1z � p + 2(z � p)2 + :::+ m(z � p)m + g(z)where g(z) is analyti at p and m = �(z � p)mY (z)z �����z=pm�1 = ddz �(z � p)mY (z)z �����z=p...1 = 1(m� 1)! dm�1dzm�1 �(z � p)mY (z)z �����z=pFrom this expansion, we an writeY (z) = 1 zz � p + 2 z(z � p)2 + :::+ m z(z � p)m + zg(z)so that the �rst m terms in the expansion of Y (z) (i.e. not inluding zg(z)), orresponding to the ontri-bution of the poles at p to y(k), an be writtne down with the help of (1.7).1.4 State Spae Analysis of Linear SystemsThe third method for analysing linear time-invariant disrete-time systems that we shall study is statespae analysis. Here the analysis of the system response is via the state equation, whih we shall examine�rst. 10



The state equation for a linear time-invariant disrete-time system is given byx(k + 1) = Ax(k) +Bu(k) (1.9)y(k) = Cx(k) +Du(k) (1.10)By reursive substitution, we �nd that the solution is given byx(k) = Ak�k0x(k0) + k�1Xj=k0Ak�j�1Bu(j) (1.11)y(k) = CAk�k0x(k0) + k�1Xj=koCAk�j�1Bu(j) +Du(k) (1.12)It is lear that the solution for x(k) depends on Ak, whih we onsider next.1.5 Computing AkWe examine 2 methods: diagonalization and z-transform.I. DiagonalizationAssume that the matrix A an be diagonalized (for example, when A has n distint eigenvalues or issymmetri). Then there exists a nonsingular matrix T suh thatT�1AT = �where � is the diagonal matrix onsisting of the eigenvalues of A. Raising � to the kth power gives�k = T�1AkT = 266664 �k1 0 � � � 00 �k2 0 ...... . . . 00 � � � 0 �kn
377775so that Ak = T 266664 �k1 0 � � � 00 �k2 0 ...... . . . 00 � � � 0 �kn

377775T�1 (1.13)Example 1. A = � 0 1�2 �3 �
11



det(zI �A) = det � z �12 z + 3 �= z2 + 3z + 2 = (z + 2)(z + 1)Sine A has distint eigenvalues, the matrix T onsisting of the linearly independent eigenvetors of Aas its olumns will diagonalize A. We next determine the eigenvetors.� 0 1�2 �3 � � v1v2 � = �2 � v1v2 �Solving for v1 and v2 yields � 0 1�2 �3 � � �24 � = �2 � �24 �Similarly, � 0 1�2 �3 � � �11 � = �1 � �11 �We an verify that T = � �1 �21 4 �does diagonalize A: � �1 �21 4 ��1 � 0 1�2 �3 � � �1 �21 4 �
= �12 � 4 2�1 �1 � � 0 1�2 �3 � � �1 �21 4 �

= �12 � 4 2�1 �1 � � 1 4�1 �8 � = �12 � 2 00 4 �
= � �1 00 �2 �Using (1.13), we obtainAk = �12 � �1 �21 4 � � (�1)k 00 (�2)k � � 4 2�1 �1 �

= �12 � �1 �21 4 � � 4(�1)k 2(�1)k�(�2)k �(�2)k �12



= �12 24 �4(�1)k + 2(�2)k �2(1)k + 2(�2)k4(�1)k � 4(�2)k 2(1)k � 4(�2)k 3524 2(�1)k � (�2)k (�1)k � (�2)k�2(�1)k + 2(�2)k �(�1)k + 2(�2)k 35II. Solution by z-transformThe seond method for solving state equations is by use of z-transforms. A state equation is a �rst-ordervetor-valued di�erene equation. Solving it using z-transforms is a natural proedure. Taking z-transformsof both sides of (1.9), we obtainzX(z) � zx0 = AX(z) +BU(z) (1.14)X(z) = (zI �A)�1zx0 + (zI �A)�1BU(z) (1.15)= (I � z�1A)�1x0 + z�1(I � z�1A)�1BU(z) (1.16)Comparing this with (1.11), and using Z�1 to denote the inverse z-transform operation, we see thatAk = Z�1(I � z�1A)�1It is of interest to note that X(z) has a power series expansion in z�1 of the formX(z) =XAkz�kx0 + 1Xl=0 Alz�(l+1)B 1Xj=0 ujz�jRe-arranging, we get X(z) = 1Xk=0Akz�kx0 + 1Xk=1 k�1Xj=0Ak�j�1Bu(j)z�k) x(k) = Akx0 + k�1Xj=0Ak�j�1Bu(j) k � 1whih is the same as (1.11) (for k0 = 0).Example 2.Let us determine Ak for the matrix A in Example 1 using the z-transform method.Z(Ak) = (I � z�1A)�1 = � 1 �z�12z�1 1 + 3z�1 ��1= � 1 + 3z�1 z�12z�1 1 �1 + 3z�1 + 2z�2 = � 1� 3z�1 z�1�2z�1 1 �(1 + z�1)(1 + 2z�1)13



= 24 21+z�1 + �11+2z�1 11+z�1 + �11+2z�1�21+z�1 + 21+2z�1 �11+z�1 + 21+2z�1 35Inversion gives = � 2(�1)k + (�1)(�2)k (�1)k � (�2)k�2(�1)k + 2(�2)k �(�1)k + 2(�2)k �whih is the same result as before.Example 3.We an also use the analytial formula for the solution of the state equation, (1.11), to solve thedi�erene equation of Example 1. We �rst re-write it in state equation form:y(k + 1) = 2y(k) + (k + 1)y(k) = 2ky0 + k�1Xj=0 2k�j�1(j + 1)= 2ky0 + k�1Xl=0 2l + 2k�1 k�1Xj=0 j2�j= 2ky0 + (2k�1) + 2k�1 k�1Xj=0 j2�jWe �rst determine k�1Xj=0 j�j = � dd� k�1Xj=0 �j= � dd� �1� �k1� � � = � dd� ��k � 1� � 1 �= � k(� � 1)�k�1 � (�k � 1)(� � 1)2= � k�k � k�k�1 � �k + 1(� � 1)2= � k�k�1(� � 1)� (�k � 1)(� � 1)214



On setting � = 12 , k�1Xj=0 j2�j = 12 k(12 )k�1(�12)� [(12 )k � 1℄14= �k(12)k�1 � 2[(12)k � 1℄) y(k) = 2ky0 + 2k � 1 + 2k�1[�k(12)k�1 � (12)k�1 + 2℄= 2ky0 + 2� 2k � 2� k= 4� 2k � (k + 2)whih is the same result as before.Alternatively, we an also apply z-transform to solve the equation. Details are similar to the previousz-transform alulation and are omitted.1.6 State Spae to Input-Output and Transfer Funtion DesriptionsLet k0 = 0. Then y(k) = CAkx(0) + k�1Xj=0CAk�j�1Bu(j) +Du(k) (1.17)y(k) = CAkx(0) + kXj=0 h(k � j)u(j)where h(k) = CAk�1B k > 0= D k = 0= 0 k < 0h(k) is alled the impulse response or the weighting funtion.The z-transform of the output, Y (z), an similarly be expressed in terms of x0 and U(z) by using(1.15). Y (z) = CX(z) +DU(z) = C(zI �A)�1zx0 + [C(zI �A)�1B +D℄U(z) (1.18)The transfer funtion from u to y is therefore given byG(z) = C(zI �A)�1B +D (1.19)Reall that a proper (salar) rational funtion is a ratio of 2 polynomials with the degree of the numeratorpolynomial � the degree of the denominator polynomial. A proper rational funtion is stritly proper if15



the degree of the numerator polynomial < the degree of the denominator polynomial. In the single-inputsingle-output ase, i.e., both u and y are salar-valued, we an expressC(zI �A)�1B = Cadj(zI �A)Bdet(zI �A)whih is a stritly proper rational funtion, where adj(A) denotes the adjoint of the matrix A. Hene thetransfer funtion G(z) is proper but not stritly proper if and only if D 6= 0.There is a very onvenient interpretation of the z variable as a shift operator, namely,(z�1x)(k) = x(k � 1) bakward shift(zx)(k) = x(k + 1) forward shiftUsing the shift operator interpretaion, we an rewrite the higher order di�erene equation (1.1) in the formA(z�1)y(k) = B(z�1)u(k) (1.20)where A(z�1) = nXj=0 ajz�jwith the leading oeÆient a0 = 1 and B(z�1) = mXj=0 bjz�jWe an then write y(k) = B(z�1)A(z�1)u(k) (1.21)Note also that in terms of z-transforms Y (z) = B(z�1)A(z�1)U(z) (1.22)where now z is a omplex variable. These 2 interpretations of B(z�1)A(z�1) allow us to go immediately fromz-transform to di�erene equation, and vie versa.Example 4:Consider a state spae system withA = � 0 1�2 �3 � B = � 01 � C = � 1 2 � D = 0(zI �A)�1 = � z �12 z + 3 ��1= � z + 3 1�2 z �z2 + 3z + 216



so that G(z) = 2z + 1z2 + 3z + 2Interpreted as a di�erene equation, with z as the forward shift, we an also write the input-output relationas yk+2 + 3yk+1 + 2yk = 2uk+1 + ukor equivalently yk + 3yk�1 + 2yk�2 = 2uk�1 + uk�21.7 Conneting the Di�erent ModelsIt is of interest to onnet the 3 di�erent methods of analysis so that one an move easily from one desrip-tion to another. We have already shown the onnetion between di�erene equations and z-transforms.Sine it is straightforward to obtain the transfer funtion from the state equation (see (1.19)), we knowhow to go from state equations to an input-output desription. To omplete the onnetions, we show herehow one an write down a state equation orresponding to a higher-order di�erene equation.Di�erene equation to state modelsSuppose the inputs and outputs are related by the di�erene equatioSuppose the inputs and outputsare related by the di�erene equationy(k) + a1y(k � 1) + � � �+ any(k � n) = b0u(k) + � � �+ bnu(k � n)We write down the various omponents of the state vetor x(k):xn�j(k) = � nXi=j+1aiz�(i�j)y(k) + nXi=j+1 biz�(i�j)u(k) (1.23)Using the di�erene equation, it is readily seen that the output y(k) is given byy(k) = xn(k) + b0u(k)= [0 � � � 0 1℄x(k) + b0u(k) (1.24)To see the state equation whih this de�nition gives rise to, we note thatxn�j(k + 1) = � nXi=j+1aiz�(i�j�1)y(k) + nXi=j+1 biz�(i�j�1)u(k)= �aj+1y(k) + bj+1u(k)� nXi=j+2aiz�(i�(j+1))y(k) + nXi=j+2 biz�(i�(j+1))u(k)= xn�j�1(k)� aj+1y(k) + bj+1u(k)= xn�j�1(k)� aj+1(xn(k) + b0u(k)) + bj+1u(k)17



Putting everything together, we �nally getx(k + 1) = 264 x1(k + 1)...xn(k + 1) 375 = 266664 0 � � � 0 �an1 0 � � � ...... . . . ... ...� � � � � � 1 �a1
377775264 x1(k)...xn(k) 375+ 264 bn � b0an...b1 � b0a1 375u(k) (1.25)If b0 = 0, the equation simpli�es tox(k + 1) = 266664 0 � � � 0 �an1 0 � � � ...... . . . ... ...� � � � � � 1 �a1
377775x(k) + 264 bn...b1 375u(k) (1.26)

y(k) = [0 � � � 0 1℄x(k) (1.27)Sine this is a single-input single-output system, the transfer funtion is a salar rational funtion. Thusif we take the transpose of the transfer funtion, whih does not hange the transfer funtion, we seeimmediately that the following state equationx(k + 1) = 2666664 0 1 0 0 � � � 00 0 1 0 � � � 0... ... � � � . . . ... ...0 0 0 1�an �an�1 � � � �a2 �a1
3777775x(k) + 26664 0...01 37775u(k) (1.28)

y(k) = [bn � � � b1℄x(k) (1.29)is also a realization of the di�erene equation. The state spae realization, (1.26), (1.27) is referred to asbeing in observable anonial form, while the state spae realization, (1.28), (1.29) is referred to as beingin ontrollable anonial form. The reasons for these names will beome lear when we study design ofontrol systems based on state spae methods.
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