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Chapter 1Analysis of Dis
rete Time LinearSystems1.1 Introdu
tionThere are 3 
ommon ways to des
ribe dis
rete time linear systems: di�eren
e equation models, transferfun
tion models, and state spa
e models. We shall study how to use ea
h of these models for analysis,and show how you 
an move readily from one des
ription to another. In most of our work, we shall studyonly single-input single-output systems, although many of the results generalize to multivariable systemsas well.1.2 Di�eren
e EquationsConsider the following di�eren
e equation with 
onstant 
oeÆ
ients:y(k) + a1y(k � 1) + � � �+ any(k � n) = b0u(k) + b1u(k � 1) + � � � + bmu(k �m) (1.1)Here u is the given input, and y is the output to be determined. We 
an, in prin
iple, solve thisequation by re
ursion, starting with known initial 
onditions y(�1), y(�2), : : : , y(�n), and u(�1), u(�2),: : : , u(�m). To do this, simply re-write the equation asy(k) = �a1y(k � 1)� � � � � any(k � n) + b0u(k) + b1u(k � 1) + � � �+ bmu(k �m)It is 
lear that the output y(k) 
an be determined from the past inputs and outputs and the 
urrent inputu(k). However, we often would like to determine the analyti
al solution for y for a given u. Similar to the
ase of di�erential equations with 
onstant 
oeÆ
ients, the general solution of (1.1) 
an be written asy(k) = yh(k) + yp(k)where yh is the solution to the homogeneous equationy(k) + a1y(k � 1) + � � �+ any(k � n) = 0 (1.2)and yp is a parti
ular solution to (1.1). If we take pk to be a trial solution to (1.2), we see that p mustsatisfy the auxiliary equation pn + a1pn�1 + � � �+ an = 0 (1.3)2



Ea
h distin
t root of the auxiliary equation gives rise to a distin
t solution of the homogeneous equation.Suppose there are n distin
t roots p1; p2; � � � ; pn to (1.3). The general solution to (1.2) is then given byyh(k) = �1pk1 + �2pk2 + � � � + �npkn (1.4)The parti
ular solution yp(k) 
an often be determined by guessing the form of the solution and mat
hing
oeÆ
ients. The pro
edure is so 
lose to that of solving higher-order inhomogeneous di�erential equationsthat we shall simply illustrate with an example.Example 1.Consider the following simple di�eren
e equation:y(k)� 2y(k � 1) = k y(�1) = 1 (1.5)Rewriting it in the form y(k) = 2y(k � 1) + kwe see easily that the general solution is given byy(k) = 2k�+ yp(k)For the parti
ular solution yp, try yp(k) = Ak +BSubstituting in (1.5), we obtain Ak +B � 2[A(k � 1) +B℄ = kThis gives, on mat
hing 
oeÆ
ients, 2A�B = 0and �Ak = k) A = �1 B = �2The parti
ular solution is therefore given byyp(k) = �(k + 2)The general solution is then y(k) = 2k�� (k + 2)On putting k = 0, we get y(0) = 2y(�1) = 23



Substituting into the general solution, we �nd� = y(0) + 2 = 2(y�1 + 1) = 4The 
omplete solution is given by y(k) = 4� 2k � (k + 2)= 2k+1(y�1 + 1)� (k + 2)While it is possible to give a more general treatment of solutions of linear higher-order di�eren
eequations, in
luding the variation of parameters formula for inhomogeneous equations, the above approa
hoften gives an e�e
tive method of solution. We refer you to F.B. Hildebrand, Finite Di�eren
e Equationsand Simulations for further details.1.3 Z-transformsThe z-transform is the analogue of the Lapla
e transform for analyzing dis
rete time signals. Assume thatthe dis
rete time sequen
e xk satis�es jxkj � 
rk0i.e. xk is exponentially (geometri
ally) bounded. Then for all r > r0�jxkjr�k� 
��r0r �k <1De�ne z-transform of xk as X(z) = 1Xk=0 xkz�kWe see that X(z) 
onverges in jzj > r0
r0

4



X(z) is then an analyti
 fun
tion in the region of 
onvergen
e. For 
onvenien
e, we often use thesymbol Z to denote the z-transform operator.Example: xk = ak k � 0X(z) = 1Xk=0(az�1)k = 11� az�1 jzj > jajFor notational 
onvenien
e, we indi
ate ak and 11�az�1 are z-transform pairs by writing Z(ak) = 11�az�1 ,or Z�1[ 11�az�1 ℄ = ak.Next we examine some basi
 properties and results in 
onne
tion with z-transforms.Inversion integral: xk = 12�j I X(z)zk�1dz (1.6)with the 
ir
ular path of the 
ontour integral inside region of 
onvergen
e. The validity of this formula 
anbe seen from 12�j I �xnz�nzk�1dz= 12�j�I xnz�(n�k)dzz(
onvergen
e uniform to permit integration term by term)= xk= � residues of X(z)zk�1 inside CExample: X(z) = 11� az�1 jzj > jajxk = 12�j I zk�11� az�1dz= 12�j I zkz � adz = ak k � 0Note the importan
e of knowing the region of 
onvergen
e. If the 
ontour had been 
hosen in jzj < jaj, theintegral would be 0.We 
an also do an in�nite series expansion to get11� az�1 = �akz�kfrom whi
h we 
an re
ognize that ak is the time sequen
e.Sin
e a dis
rete-time signal in 
omputer 
ontrol is usually de�ned for k � 0, it invariably gives rise to az-transform with a region of 
onvergen
e being the exterior of a 
ir
le with a suÆ
iently large radius. For5



this reason, the region of 
onvergen
e for a transform X(z) is often omitted with the understanding thatit will en
lose all the poles of X(z).Using the inversion integral, one 
an show thatZ�1[ z(z � p)i+1 ℄ = k!i!(k � i)!pk�i for all i � 0 (1.7)This is a very useful formula whi
h, as we shall see, will help us to invert many z-transforms qui
kly. Two
ases of parti
ular interest are: i = 0 : Z�1[ zz � p ℄ = Z�1[ 11� pz�1 ℄ = pki = 1 : Z�1[ z(z � p)2 ℄ = kpk�1Beyond the basi
 de�nition of z-transforms and the inversion integral, there are a number of useful prop-erties of z-transforms whi
h we qui
kly survey.Convolution of (
ausal) time sequen
es:wk = kXl=0 xlyk�lW (z) = 1Xk=0 kXl=0 xlyk�lz�k= 1Xl=0 1Xk=l xlyk�lz�(k�l)z�l= 1Xl=0 1Xj=0 xlyjz�jz�l = X(z)Y (z)We often des
ribe this result as 
onvolution in the time domain 
orresponds to multipli
ation in the z-transform domain.Multipli
ation of time sequen
es: wk = xkykwhere X(z) has region of 
onvergen
e jzj > R0 and Y (z) has region of 
onvergen
e jzj > R1.W (z) = Xk xkykz�k =Xxkz�k 12�j I Y (�)�k�1d�= 12�j I Xxk �z��k Y (�)d�� = 12�j I X �z��Y (�)d��where the 
ontour integral is over a 
ir
le j�j > R1. Sin
e we require����z� ���� > R0; j�j > R1 ) jzj > R0R1 is the region of 
onvergen
e6



It 
an also be expressed as W (z) = 12�j I X(�)Y �z�� d��where the 
ontour integral is over a 
ir
le j�j > R0. This result is the dual of the previous one. We oftenrefer to it as multipl
ation in the time domain 
orresponds to 
onvolution in the z-transform domain.Multipli
ation by ak: Zfakxkg = X �za�sin
e X akxkz�k =X xk �za��kThe region of 
onvergen
e 
an be readily determined as follows: Ifjxkj � 
rk0) jakxkj � 
[jajr0℄kHen
e jzj > jajr0 is the region of 
onvergen
e for X( za ).From the point of view of solving di�eren
e equations, the most important property of z-transforms is thefollowing.Translation:Ba
kward shift: 1Xk=0 xk�mz�k = m�1Xk=0 xk�mz�k + 1Xk=mxk�mz�(k�m)z�m= m�1Xk=0 xk�mz�k + z�mX(z)= z�mX(z) + x�m + z�1x�m+1 + : : :+ x�1z�m+1Forward shift: 1Xk=0 xk+mz�k = 1Xk=0 xk+mz�(k+m)zm= 1Xl=mxlz�lzm = zmX(z) � m�1Xl=0 xlz�lzm= zmX(z)� fzmx0 + zm�1x1 + : : :+ zxm�1gTwo additional properties whi
h we do not use very often are in
luded for 
ompleteness.Initial Value Theorem: The initial value of a sequen
e xk with z-transform X(z) is given byx0 = limz!1X(z)7



Final Value Theorem: Assume fk �!k!1A <1. Thenlimz!1z>1; real(z � 1)F (z) = ASolving di�eren
e equations: Consider the di�eren
e equationyk + a1yk�1 + � � �+ anyk�n = b0uk + � � � + bmuk�m with uk = 0; k < 0:Putting a0 = 1, we 
an write the above equation asnXj=0 ajyk�j = mXj=0 bjuk�jSuppose jukj � �rku for some � � 0, ru > 0. Almost all inputs in pra
ti
e will satisfy some su
h geometri
bound. Then the solution yk will satisfy also a geometri
 bound and hen
e z-transformable. Takingz-transform of the left hand side gives1Xk=0 nXj=0 ajyk�jz�k = Y (z) + a1z�1Y (z) + : : := A(z�1)Y (z) + nXj=1 j�1Xk=0 ajyk�jz�kwhere A(z�1) = nXj=0 ajz�j ; with a0 = 1) Y (z) = I(z)A(z�1) + B(z�1)A(z�1)U(z) (1.8)where I(z) is a polynomial depending on the initial 
ondition. LetYi(z) = I(z)A(z�1)and Ye(z) = B(z�1)A(z�1)U(z)In terms of the terminology of Se
tion 1.2, Yi(z) is the transform of a homogeneous solution, and Ye(z)is the transform of a parti
ular solution. The solution yk 
an then be obtained by taking the inversez-transform.As an example, we solve the di�eren
e equation (1.5) using z-transforms. First note that in terms of ourpolynomial notation, A(z�1) = 1� 2z�18



B(z�1) = 1Sin
e U(z) = 1Xk=0 kz�k = �z ddz 1Xk=0 z�k= �z ddz 11� z�1 = �z ddz � zz � 1�= �z (z � 1)� z(z � 1)2 = z(z � 1)2we 
an write (1.5) in the form Y (z)� 2z�1Y (z)� 2y�1 = z(z � 1)2Y (z) = 2y�11� 2z�1 + z(z � 1)2(1� 2z�1)In the terminology of (1.8), Yi(z) = I(z)A(z�1) = 2y�11� 2z�1 = 21� 2z�1and Ye(z) = B(z�1)A(z�1) U(z) = z(z � 1)2(1� 2z�1)Inverting Yi(z) readily gives yi(k) = 2� 2kTo invert Ye(z), we shall make use of (1.7). We �rst perform a partial-fra
tion expansion of Ye(z)z :Ye(z)z = z(z � 1)2(z � 2)= 2z � 2 + �z + �(z � 1)2= 2(z � 1)2 + �z2 + (� � 2�)z � 2�(z � 1)2(z � 2)= 2(z2 � 2z + 1) + �z2 + (� � 2�)z � 2�(z � 1)2(z � 2)On mat
hing 
oeÆ
ients, we have � = �2 � = 19



Putting everything together, we obtainYe(z)z = 2z � 2 + �2z(z � 1)2 + 1(z � 1)2= 2z � 2 � 2(z � 1) + 2(z � 1)2 + 1(z � 1)2= 2z � 2 � 2z � 1 � 1(z � 1)2Hen
e Ye(z) = 2zz � 2 � 2zz � 1 � z(z � 1)2Now ea
h term of Ye(z) 
an be inverted using (1.7) to giveye(k) = 2� 2k � (k + 2)) y(k) = yi(k) + ye(k) = 4� 2k � (k + 2)whi
h is the same result as before.The solution via z-transform often involves expansion the z-transform into partial fra
tions. A 
onvenientway to 
ompute partial fra
tions, when there are repeated poles, say of order m at the point p, is to expandY (z)z = 
1z � p + 
2(z � p)2 + :::+ 
m(z � p)m + g(z)where g(z) is analyti
 at p and 
m = �(z � p)mY (z)z �����z=p
m�1 = ddz �(z � p)mY (z)z �����z=p...
1 = 1(m� 1)! dm�1dzm�1 �(z � p)mY (z)z �����z=pFrom this expansion, we 
an writeY (z) = 
1 zz � p + 
2 z(z � p)2 + :::+ 
m z(z � p)m + zg(z)so that the �rst m terms in the expansion of Y (z) (i.e. not in
luding zg(z)), 
orresponding to the 
ontri-bution of the poles at p to y(k), 
an be writtne down with the help of (1.7).1.4 State Spa
e Analysis of Linear SystemsThe third method for analysing linear time-invariant dis
rete-time systems that we shall study is statespa
e analysis. Here the analysis of the system response is via the state equation, whi
h we shall examine�rst. 10



The state equation for a linear time-invariant dis
rete-time system is given byx(k + 1) = Ax(k) +Bu(k) (1.9)y(k) = Cx(k) +Du(k) (1.10)By re
ursive substitution, we �nd that the solution is given byx(k) = Ak�k0x(k0) + k�1Xj=k0Ak�j�1Bu(j) (1.11)y(k) = CAk�k0x(k0) + k�1Xj=koCAk�j�1Bu(j) +Du(k) (1.12)It is 
lear that the solution for x(k) depends on Ak, whi
h we 
onsider next.1.5 Computing AkWe examine 2 methods: diagonalization and z-transform.I. DiagonalizationAssume that the matrix A 
an be diagonalized (for example, when A has n distin
t eigenvalues or issymmetri
). Then there exists a nonsingular matrix T su
h thatT�1AT = �where � is the diagonal matrix 
onsisting of the eigenvalues of A. Raising � to the kth power gives�k = T�1AkT = 266664 �k1 0 � � � 00 �k2 0 ...... . . . 00 � � � 0 �kn
377775so that Ak = T 266664 �k1 0 � � � 00 �k2 0 ...... . . . 00 � � � 0 �kn

377775T�1 (1.13)Example 1. A = � 0 1�2 �3 �
11



det(zI �A) = det � z �12 z + 3 �= z2 + 3z + 2 = (z + 2)(z + 1)Sin
e A has distin
t eigenvalues, the matrix T 
onsisting of the linearly independent eigenve
tors of Aas its 
olumns will diagonalize A. We next determine the eigenve
tors.� 0 1�2 �3 � � v1v2 � = �2 � v1v2 �Solving for v1 and v2 yields � 0 1�2 �3 � � �24 � = �2 � �24 �Similarly, � 0 1�2 �3 � � �11 � = �1 � �11 �We 
an verify that T = � �1 �21 4 �does diagonalize A: � �1 �21 4 ��1 � 0 1�2 �3 � � �1 �21 4 �
= �12 � 4 2�1 �1 � � 0 1�2 �3 � � �1 �21 4 �

= �12 � 4 2�1 �1 � � 1 4�1 �8 � = �12 � 2 00 4 �
= � �1 00 �2 �Using (1.13), we obtainAk = �12 � �1 �21 4 � � (�1)k 00 (�2)k � � 4 2�1 �1 �

= �12 � �1 �21 4 � � 4(�1)k 2(�1)k�(�2)k �(�2)k �12



= �12 24 �4(�1)k + 2(�2)k �2(1)k + 2(�2)k4(�1)k � 4(�2)k 2(1)k � 4(�2)k 3524 2(�1)k � (�2)k (�1)k � (�2)k�2(�1)k + 2(�2)k �(�1)k + 2(�2)k 35II. Solution by z-transformThe se
ond method for solving state equations is by use of z-transforms. A state equation is a �rst-orderve
tor-valued di�eren
e equation. Solving it using z-transforms is a natural pro
edure. Taking z-transformsof both sides of (1.9), we obtainzX(z) � zx0 = AX(z) +BU(z) (1.14)X(z) = (zI �A)�1zx0 + (zI �A)�1BU(z) (1.15)= (I � z�1A)�1x0 + z�1(I � z�1A)�1BU(z) (1.16)Comparing this with (1.11), and using Z�1 to denote the inverse z-transform operation, we see thatAk = Z�1(I � z�1A)�1It is of interest to note that X(z) has a power series expansion in z�1 of the formX(z) =XAkz�kx0 + 1Xl=0 Alz�(l+1)B 1Xj=0 ujz�jRe-arranging, we get X(z) = 1Xk=0Akz�kx0 + 1Xk=1 k�1Xj=0Ak�j�1Bu(j)z�k) x(k) = Akx0 + k�1Xj=0Ak�j�1Bu(j) k � 1whi
h is the same as (1.11) (for k0 = 0).Example 2.Let us determine Ak for the matrix A in Example 1 using the z-transform method.Z(Ak) = (I � z�1A)�1 = � 1 �z�12z�1 1 + 3z�1 ��1= � 1 + 3z�1 z�12z�1 1 �1 + 3z�1 + 2z�2 = � 1� 3z�1 z�1�2z�1 1 �(1 + z�1)(1 + 2z�1)13



= 24 21+z�1 + �11+2z�1 11+z�1 + �11+2z�1�21+z�1 + 21+2z�1 �11+z�1 + 21+2z�1 35Inversion gives = � 2(�1)k + (�1)(�2)k (�1)k � (�2)k�2(�1)k + 2(�2)k �(�1)k + 2(�2)k �whi
h is the same result as before.Example 3.We 
an also use the analyti
al formula for the solution of the state equation, (1.11), to solve thedi�eren
e equation of Example 1. We �rst re-write it in state equation form:y(k + 1) = 2y(k) + (k + 1)y(k) = 2ky0 + k�1Xj=0 2k�j�1(j + 1)= 2ky0 + k�1Xl=0 2l + 2k�1 k�1Xj=0 j2�j= 2ky0 + (2k�1) + 2k�1 k�1Xj=0 j2�jWe �rst determine k�1Xj=0 j�j = � dd� k�1Xj=0 �j= � dd� �1� �k1� � � = � dd� ��k � 1� � 1 �= � k(� � 1)�k�1 � (�k � 1)(� � 1)2= � k�k � k�k�1 � �k + 1(� � 1)2= � k�k�1(� � 1)� (�k � 1)(� � 1)214



On setting � = 12 , k�1Xj=0 j2�j = 12 k(12 )k�1(�12)� [(12 )k � 1℄14= �k(12)k�1 � 2[(12)k � 1℄) y(k) = 2ky0 + 2k � 1 + 2k�1[�k(12)k�1 � (12)k�1 + 2℄= 2ky0 + 2� 2k � 2� k= 4� 2k � (k + 2)whi
h is the same result as before.Alternatively, we 
an also apply z-transform to solve the equation. Details are similar to the previousz-transform 
al
ulation and are omitted.1.6 State Spa
e to Input-Output and Transfer Fun
tion Des
riptionsLet k0 = 0. Then y(k) = CAkx(0) + k�1Xj=0CAk�j�1Bu(j) +Du(k) (1.17)y(k) = CAkx(0) + kXj=0 h(k � j)u(j)where h(k) = CAk�1B k > 0= D k = 0= 0 k < 0h(k) is 
alled the impulse response or the weighting fun
tion.The z-transform of the output, Y (z), 
an similarly be expressed in terms of x0 and U(z) by using(1.15). Y (z) = CX(z) +DU(z) = C(zI �A)�1zx0 + [C(zI �A)�1B +D℄U(z) (1.18)The transfer fun
tion from u to y is therefore given byG(z) = C(zI �A)�1B +D (1.19)Re
all that a proper (s
alar) rational fun
tion is a ratio of 2 polynomials with the degree of the numeratorpolynomial � the degree of the denominator polynomial. A proper rational fun
tion is stri
tly proper if15



the degree of the numerator polynomial < the degree of the denominator polynomial. In the single-inputsingle-output 
ase, i.e., both u and y are s
alar-valued, we 
an expressC(zI �A)�1B = Cadj(zI �A)Bdet(zI �A)whi
h is a stri
tly proper rational fun
tion, where adj(A) denotes the adjoint of the matrix A. Hen
e thetransfer fun
tion G(z) is proper but not stri
tly proper if and only if D 6= 0.There is a very 
onvenient interpretation of the z variable as a shift operator, namely,(z�1x)(k) = x(k � 1) ba
kward shift(zx)(k) = x(k + 1) forward shiftUsing the shift operator interpretaion, we 
an rewrite the higher order di�eren
e equation (1.1) in the formA(z�1)y(k) = B(z�1)u(k) (1.20)where A(z�1) = nXj=0 ajz�jwith the leading 
oeÆ
ient a0 = 1 and B(z�1) = mXj=0 bjz�jWe 
an then write y(k) = B(z�1)A(z�1)u(k) (1.21)Note also that in terms of z-transforms Y (z) = B(z�1)A(z�1)U(z) (1.22)where now z is a 
omplex variable. These 2 interpretations of B(z�1)A(z�1) allow us to go immediately fromz-transform to di�eren
e equation, and vi
e versa.Example 4:Consider a state spa
e system withA = � 0 1�2 �3 � B = � 01 � C = � 1 2 � D = 0(zI �A)�1 = � z �12 z + 3 ��1= � z + 3 1�2 z �z2 + 3z + 216



so that G(z) = 2z + 1z2 + 3z + 2Interpreted as a di�eren
e equation, with z as the forward shift, we 
an also write the input-output relationas yk+2 + 3yk+1 + 2yk = 2uk+1 + ukor equivalently yk + 3yk�1 + 2yk�2 = 2uk�1 + uk�21.7 Conne
ting the Di�erent ModelsIt is of interest to 
onne
t the 3 di�erent methods of analysis so that one 
an move easily from one des
rip-tion to another. We have already shown the 
onne
tion between di�eren
e equations and z-transforms.Sin
e it is straightforward to obtain the transfer fun
tion from the state equation (see (1.19)), we knowhow to go from state equations to an input-output des
ription. To 
omplete the 
onne
tions, we show herehow one 
an write down a state equation 
orresponding to a higher-order di�eren
e equation.Di�eren
e equation to state modelsSuppose the inputs and outputs are related by the di�eren
e equatioSuppose the inputs and outputsare related by the di�eren
e equationy(k) + a1y(k � 1) + � � �+ any(k � n) = b0u(k) + � � �+ bnu(k � n)We write down the various 
omponents of the state ve
tor x(k):xn�j(k) = � nXi=j+1aiz�(i�j)y(k) + nXi=j+1 biz�(i�j)u(k) (1.23)Using the di�eren
e equation, it is readily seen that the output y(k) is given byy(k) = xn(k) + b0u(k)= [0 � � � 0 1℄x(k) + b0u(k) (1.24)To see the state equation whi
h this de�nition gives rise to, we note thatxn�j(k + 1) = � nXi=j+1aiz�(i�j�1)y(k) + nXi=j+1 biz�(i�j�1)u(k)= �aj+1y(k) + bj+1u(k)� nXi=j+2aiz�(i�(j+1))y(k) + nXi=j+2 biz�(i�(j+1))u(k)= xn�j�1(k)� aj+1y(k) + bj+1u(k)= xn�j�1(k)� aj+1(xn(k) + b0u(k)) + bj+1u(k)17



Putting everything together, we �nally getx(k + 1) = 264 x1(k + 1)...xn(k + 1) 375 = 266664 0 � � � 0 �an1 0 � � � ...... . . . ... ...� � � � � � 1 �a1
377775264 x1(k)...xn(k) 375+ 264 bn � b0an...b1 � b0a1 375u(k) (1.25)If b0 = 0, the equation simpli�es tox(k + 1) = 266664 0 � � � 0 �an1 0 � � � ...... . . . ... ...� � � � � � 1 �a1
377775x(k) + 264 bn...b1 375u(k) (1.26)

y(k) = [0 � � � 0 1℄x(k) (1.27)Sin
e this is a single-input single-output system, the transfer fun
tion is a s
alar rational fun
tion. Thusif we take the transpose of the transfer fun
tion, whi
h does not 
hange the transfer fun
tion, we seeimmediately that the following state equationx(k + 1) = 2666664 0 1 0 0 � � � 00 0 1 0 � � � 0... ... � � � . . . ... ...0 0 0 1�an �an�1 � � � �a2 �a1
3777775x(k) + 26664 0...01 37775u(k) (1.28)

y(k) = [bn � � � b1℄x(k) (1.29)is also a realization of the di�eren
e equation. The state spa
e realization, (1.26), (1.27) is referred to asbeing in observable 
anoni
al form, while the state spa
e realization, (1.28), (1.29) is referred to as beingin 
ontrollable 
anoni
al form. The reasons for these names will be
ome 
lear when we study design of
ontrol systems based on state spa
e methods.
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