University of Toronto
Department of Electrical
and Computer Engineering

ECE411S Real-Time Computer Control

Spring 2004 - Course Notes



Chapter 1

Analysis of Discrete Time Linear
Systems

1.1 Introduction

There are 3 common ways to describe discrete time linear systems: difference equation models, transfer
function models, and state space models. We shall study how to use each of these models for analysis,
and show how you can move readily from one description to another. In most of our work, we shall study
only single-input single-output systems, although many of the results generalize to multivariable systems
as well.

1.2 Difference Equations

Consider the following difference equation with constant coefficients:

y(k) + ary(k — 1) + -+ + any(k — n) = bou(k) + bru(k — 1) + - - + bpu(k —m) (1.1)

Here u is the given input, and y is the output to be determined. We can, in principle, solve this
equation by recursion, starting with known initial conditions y(—1), y(—=2), ..., y(—n), and u(—1), u(—-2),
.., u(—m). To do this, simply re-write the equation as

y(k) = —a1y(k — 1) — - —apy(k —n) + bou(k) + byu(k — 1) + -+ + bu(k —m)

It is clear that the output y(k) can be determined from the past inputs and outputs and the current input
u(k). However, we often would like to determine the analytical solution for y for a given w. Similar to the
case of differential equations with constant coefficients, the general solution of (1.1) can be written as

y(k) = yn(k) + yp(k)
where y;, is the solution to the homogeneous equation
y(k) +ay(k—1)+ -+ ayy(k —n) =0 (1.2)

and y, is a particular solution to (1.1). If we take p* to be a trial solution to (1.2), we see that p must
satisfy the auxiliary equation

pn+a1pn_1 +...+an :0 (1.3)



Each distinct root of the auxiliary equation gives rise to a distinct solution of the homogeneous equation.
Suppose there are n distinct roots py, p2, -+ ,pp to (1.3). The general solution to (1.2) is then given by

yn(k) = onpf + aoph + -+ + anpl; (1.4)
The particular solution y,(k) can often be determined by guessing the form of the solution and matching
coefficients. The procedure is so close to that of solving higher-order inhomogeneous differential equations

that we shall simply illustrate with an example.
Example 1.

Consider the following simple difference equation:

y(k) =2y(k =) =k  y(=1) =1 (1.5)

Rewriting it in the form

we see easily that the general solution is given by
y(k) = 28 + yp(k)
For the particular solution y,, try
yp(k) = Ak + B
Substituting in (1.5), we obtain
Ak+ B —-2[A(k—-1)+ B] =k
This gives, on matching coefficients,
2A-B =0
and

—-Ak =k

= A=-1 B=-2
The particular solution is therefore given by
yp(k) = —(k +2)
The general solution is then
y(k) =20 — (k+2)

On putting k£ = 0, we get



Substituting into the general solution, we find

a=y(0)+2=2(y_,+1) =4

The complete solution is given by

y(k)

While it is possible to give a more general treatment of solutions of linear higher-order difference
equations, including the variation of parameters formula for inhomogeneous equations, the above approach
often gives an effective method of solution. We refer you to F.B. Hildebrand, Finite Difference Equations

and Simulations for further details.

1.3 Z-transforms

The z-transform is the analogue of the Laplace transform for analyzing discrete time signals. Assume that

the discrete time sequence xj, satisfies

4x 28— (k+2)
2Ky +1) — (k+2)

|zk| < cr]g

i.e. zj is exponentially (geometrically) bounded. Then for all r > ry

Define z-transform of x; as

We see that X (z) converges in |z| > rg

Sz |r "




X(z) is then an analytic function in the region of convergence. For convenience, we often use the
symbol Z to denote the z-transform operator.

Example:

zp=0ad" k>0

o
X(z)= az"Hk = z| > |a
()= (@ o= > a
k=0
For notational convenience, we indicate a* and # are z-transform pairs by writing Z(a*) = le,l,
or Z’l[l_alz,l] = ak.
Next we examine some basic properties and results in connection with z-transforms.
Inversion integral:
1
Ty = — ¢ X(2)2F Ldz (1.6)
27y

with the circular path of the contour integral inside region of convergence. The validity of this formula can
be seen from

1

— ¢ Yz, "2
2mg

21y z
(convergence uniform to permit integration term by term)
= ‘/Ek‘
= ¥ residues of X (z)z*~! inside C

Example:
X(2) = 1
(2) = 1 as 2| > al
1 k—1
2 | 1 —az!
1 k
= L dz=d" k>0

215 ) 2 —a

Note the importance of knowing the region of convergence. If the contour had been chosen in |z| < |al, the
integral would be 0.

We can also do an infinite series expansion to get
1
— — =%dF

1—az"!

from which we can recognize that a¥ is the time sequence.

Since a discrete-time signal in computer control is usually defined for £ > 0, it invariably gives rise to a
z-transform with a region of convergence being the exterior of a circle with a sufficiently large radius. For



this reason, the region of convergence for a transform X(z) is often omitted with the understanding that
it will enclose all the poles of X (z).

Using the inversion integral, one can show that

z k! i ,
e _p)i-l-l] = * foralli >0 (1.7)

Ak — P
This is a very useful formula which, as we shall see, will help us to invert many z-transforms quickly. Two
cases of particular interest are:

z7

Beyond the basic definition of z-transforms and the inversion integral, there are a number of useful prop-
erties of z-transforms which we quickly survey.

Convolution of (causal) time sequences:

k
wy = Z T1Yk—1
1=0

© k
W(z) = szzyk—w*k

k=0 (=0
oo o0
= 2> owerz
=0 k=l
= Z Z a2 02 = X (2)Y (2)
1=0 j=0

We often describe this result as convolution in the time domain corresponds to multiplication in the z-
transform domain.

Multiplication of time sequences:

Wk = TkYk

where X (z) has region of convergence |z| > Ry and Y (z) has region of convergence |z| > R;.

W) = Yot o P YO0 g
- MZ (3) v =g fx (;)rof

where the contour integral is over a circle |(| > R;. Since we require

z . .
—‘ > Ry, || > Ry = |z| > RyR; is the region of convergence

:



It can also be expressed as

v fxor ()%

where the contour integral is over a circle |¢| > Ry. This result is the dual of the previous one. We often
refer to it as multiplcation in the time domain corresponds to convolution in the z-transform domain.

Multiplication by a:

Z{atz,) = X (Z)

since

k. o~k _ Z ) -+
St = Yo
The region of convergence can be readily determined as follows: If

lzn] < erk
= |a*zi| < cf|alro]F
Hence [z| > |a|ro is the region of convergence for X (Z).

From the point of view of solving difference equations, the most important property of z-transforms is the
following.

Translation:
Backward shift:

00 m—1 00
E Tp gz k= Th mz F 4+ E Tp gz k) Hmm
k=0 k=0 k=m

-1

Forward shift:

0
-k —(k+m) ,m
E Lk+m~ = E $k+mz( )Z
k=0

0 m—1
= Z z127 2™ = 2" X (2) — Z xpz 2™
l=m =0
= 2"X(2) = {zMxo+ 2" oy 4+ 2y, )
Two additional properties which we do not use very often are included for completeness.
Initial Value Theorem: The initial value of a sequence ) with z-transform X(z) is given by

zo = lim X(2)

Z—00



Final Value Theorem: Assume fkkjoA < 00. Then

lim (z—1)F(z)=A
z—1
z>1, real

Solving difference equations: Counsider the difference equation
Yk + a1yp—1+ -+ apYp—n = boug + -+ + bpug_p with up =0,k <0.

Putting ag = 1, we can write the above equation as
n m
DAYk = 3 byuk—

Suppose |uy| < Brk for some 8> 0, 7, > 0. Almost all inputs in practice will satisfy some such geometric
bound. Then the solution y; will satisfy also a geometric bound and hence z-transformable. Taking
z-transform of the left hand side gives

o0 n
Z Zajyk_jz*k = Y(2) +az 'Y(2) +...
k=0 j=0
n j—1
=AY )+ a7t
j=1k=0
where
n
Az = Zajzfj, with ap =1
j=0

z Zi]'
LY () = Ag)l) + iézlg U(2) (1.8)

where I(z) is a polynomial depending on the initial condition. Let

I(z
and
51
(o) = S Ue)

In terms of the terminology of Section 1.2, Y;j(z) is the transform of a homogeneous solution, and Y,(z)
is the transform of a particular solution. The solution y; can then be obtained by taking the inverse
z-transform.

As an example, we solve the difference equation (1.5) using z-transforms. First note that in terms of our
polynomial notation,

A(z7H) =1-2271



Since
U(z) = f:szk = —ziisz
d
k=0 k=0
S L
 Tdz1l -zt dz \z -1
(z—=1)—=z z

we can write (1.5) in the form

2y z

R R v el P Ty

In the terminology of (1.8),
o I(x) 2y 2

Yo = o T 1oa T 1o

and
_ B(z™h B z
Yelo) =40 V@ = o oora =2

Inverting Y;(z) readily gives

yi(k) =2 x 2
To invert Ye(z), we shall make use of (1.7). We first perform a partial-fraction expansion of @:
Ye(z) _ z
z  (z—1)2(z-2)
2 az+ [

_z—2+(z—1)2

_2(z-1)2+az?+ (B-2w)z—28
12— 9)

222 =22+ 1)+ 4+ (B - 2a)z — 28

B (z—1)*(z = 2)

On matching coefficients, we have



Putting everything together, we obtain

Ye(2) 2 -2z 1
= + +
z z—=2 (z=1)2 (2-1)2
_ 2 2e-D+2 1
22 (z —1)? (z —1)2
2 2 1

Hence

Now each term of Y,(z) can be inverted using (1.7) to give

ye(k) =2 x 28 — (k+2)

L y(k) = yi(k) + ye(k) =4 x 28 — (k +2)

which is the same result as before.
The solution via z-transform often involves expansion the z-transform into partial fractions. A convenient
way to compute partial fractions, when there are repeated poles, say of order m at the point p, is to expand

Y(2) c1 c Cm

R A e A EEr L
where g(z) is analytic at p and
in = |z-pmEE)
z=p
Cm-1 = diz [(Z—P)myiz ] )
B 1 dmt mY ()
“ (m — 1)l dzm—1 [(Z p) z ] i—p

From this expansion, we can write

z
Y(z)=c +c
=) ep Pz -p)

z

so that the first m terms in the expansion of Y (z) (i.e. not including zg(z)), corresponding to the contri-
bution of the poles at p to y(k), can be writtne down with the help of (1.7).

1.4 State Space Analysis of Linear Systems

The third method for analysing linear time-invariant discrete-time systems that we shall study is state
space analysis. Here the analysis of the system response is via the state equation, which we shall examine
first.

10



The state equation for a linear time-invariant discrete-time system is given by

z(k+ 1) = Az (k) + Bu(k) (1.9)

y(k) = Cz(k) + Du(k) (1.10)

By recursive substitution, we find that the solution is given by

k—1
(k) = A" Fox(ko) + Y A¥ 1 Bug) (1.11)
Jj=ko
k—1 '
y(k) = CAF Mg (ko) + > CAM 7' Bu(j) + Du(k) (1.12)
J=ko

It is clear that the solution for z(k) depends on A*, which we consider next.

1.5 Computing A*
We examine 2 methods: diagonalization and z-transform.

I. Diagonalization
Assume that the matrix A can be diagonalized (for example, when A has n distinct eigenvalues or is
symmetric). Then there exists a nonsingular matrix 7" such that

T AT = A

where A is the diagonal matrix consisting of the eigenvalues of A. Raising A to the kth power gives

Moo -0
. S
0 0 Ak
so that
Moo o0
k
A= | O A0 T! (1.13)
0
0 0 M
Example 1.
0 1
1= 5]

11



z -1
det(zI—A)—det[2 Z+3]

=22 4+32+2=(2+2)(z+1)

Since A has distinct eigenvalues, the matrix 7" consisting of the linearly independent eigenvectors of A
as its columns will diagonalize A. We next determine the eigenvectors.

R

Solving for vy and vy yields

0 1 -2 1 9 [ -2
-2 =3 || 4] 4
Similarly,
0 1 -1 N —1
-2 -3 1 i

We can verify that

does diagonalize A:

SRR R
BRI RS

Using (1.13), we obtain



—2(=1)F +2(=2)F —(=1)k +2(=2)F

II. Solution by z-transform

The second method for solving state equations is by use of z-transforms. A state equation is a first-order
vector-valued difference equation. Solving it using z-transforms is a natural procedure. Taking z-transforms
of both sides of (1.9), we obtain

2X(z) — zzg = AX(2) + BU(2) (1.14)
X(z) = (21 — A)7 L2z + (2 — A)7'BU(2) (1.15)
= -z tA) " zg+ 2T -214)"'BU(2) (1.16)

Comparing this with (1.11), and using Z~! to denote the inverse z-transform operation, we see that
AF =z Y1 —ztA) !t

It is of interest to note that X (z) has a power series expansion in z~! of the form
o0 o0 )
X(z) = Z Afz Ry + Z Alz=(+DpB Z ujz?
1=0 j=0

Re-arranging, we get

00 oo k—1
X(z) = Z ARz F gy + Z Z AR By ()2 F
k=0 k=1j=0
k—1 ‘
w(k) = AFzo+ Y AFTIBu()  k>1
j=0

which is the same as (1.11) (for ky = 0).
Example 2.

Let us determine A* for the matrix A in Example 1 using the z-transform method.

1 1

kY — (7 _ -1 4y-1 _
ZA)=(U-=z"4) [Zz_l 1—|—3z_1_

143271 271 1—-3271 271 ]
2zt 1 -2zt 1]
14327142272 (14+2z1)(142271)

13



2 -1 1 -1
1421 +-1+22*1 1421 +-1+2z*1

1+2 1+2z-1  1+2 1+22-1

Inversion gives

2(-1)F + (=1)(=2)% (—1)F —(=2)F
—2(=DkF £ 2(=2)F  —(=1)F +2(-2)%

which is the same result as before.
Example 3.

We can also use the analytical formula for the solution of the state equation, (1.11), to solve the
difference equation of Example 1. We first re-write it in state equation form:

y(k+1) =2y(k) + (k+1)
k—1

y(k) =2 g0+ 2871 + 1)
7=0

k—1 k—1
=2Fyo + ) 2l 2R 1y "o
1=0 j=0

k—1
= 2yo + (2F71) 4 2571y T2
j=0

We first determine

k—1 _ d k—1
Zjﬁ’ ZB@ZW
j=0 7=0

ood (1=pF\  d (pF-1
_B@(l—ff)_B@(ﬁ—l)

k(B - 1" —(BF -~ 1)
(8—-1)?

=B

kB — kprl — gk 41

=P

kBB 1) - (BF -~ 1)

=5 G- 17

14



On setting § = %,

k—1 lk(l)k—l(_l) _ [(l)k _ 1]
]Z_%.]Z j o 5 2 2i 2
k—1 1 k
= —k(3)" ! = 20(5)" — 1]

_ 1, 1.,
ylk) = 20+ 25 — 14 21 (5) L - () 42

=2kyp+2x2F -2k

=4x2"—(k+2)
which is the same result as before.
Alternatively, we can also apply z-transform to solve the equation. Details are similar to the previous
z-transform calculation and are omitted.

1.6 State Space to Input-Output and Transfer Function Descriptions

Let kp = 0. Then

k—1
y(k) = CAFz(0) + > CA* I 1Bu(j) + Du(k) (1.17)
j=0
k
y(k) = CA*2(0) + > h(k — j)uj)
j=0

where h(k) = CA* !B k>0
= k=0
=0 k<0

h(k) is called the impulse response or the weighting function.
The z-transform of the output, Y (z), can similarly be expressed in terms of zy and U(z) by using
(1.15).

Y(2) = CX(2) + DU(2) = C(2I — A) " 2z + [C(2I — A)™'B + D]U(2) (1.18)
The transfer function from u to y is therefore given by
G(z) =C(2I —A)'B+D (1.19)

Recall that a proper (scalar) rational function is a ratio of 2 polynomials with the degree of the numerator
polynomial < the degree of the denominator polynomial. A proper rational function is strictly proper if

15



the degree of the numerator polynomial < the degree of the denominator polynomial. In the single-input
single-output case, i.e., both u and y are scalar-valued, we can express

- Cadj(zI — A)B
— 1 —
Clal —A4)'B det(zI — A)

which is a strictly proper rational function, where adj(A) denotes the adjoint of the matrix A. Hence the
transfer function G(z) is proper but not strictly proper if and only if D # 0.
There is a very convenient interpretation of the z variable as a shift operator, namely,

(z z)(k) = x(k — 1) backward shift

(zx)(k) = x(k+1) forward shift
Using the shift operator interpretaion, we can rewrite the higher order difference equation (1.1) in the form
A(=")y(k) = Bz yu(k) (1.20)

where
n .
A(z_l) = E ajz™’

J=0

with the leading coefficient ag = 1 and
m -
B(z_l) = Z bjz™?
J=0

We can then write

41
y(k) = igz 1))u(k) (1.21)
Note also that in terms of z-transforms
B(z 1)
Y(z) = A U(z) (1.22)

-1
where now z is a complex variable. These 2 interpretations of % allow us to go immediately from

z-transform to difference equation, and vice versa.
Example 4:

Counsider a state space system with

A:[_O2 _13] B:[O] C=[12] D=0



so that

2z +1

G = 23,0

Interpreted as a difference equation, with z as the forward shift, we can also write the input-output relation
as

Ykt2 + 3Yk+1 + 2y = 2upq1 + up
or equivalently

Yk + 3Yk—1 + 2Yyk—2 = 2up_1 +Up_2

1.7 Connecting the Different Models

It is of interest to connect the 3 different methods of analysis so that one can move easily from one descrip-
tion to another. We have already shown the connection between difference equations and z-transforms.
Since it is straightforward to obtain the transfer function from the state equation (see (1.19)), we know
how to go from state equations to an input-output description. To complete the connections, we show here
how one can write down a state equation corresponding to a higher-order difference equation.

Difference equation to state models
Suppose the inputs and outputs are related by the difference equatioSuppose the inputs and outputs
are related by the difference equation

y(k) + ary(k —1) + -+ + any(k — n) = bou(k) + - -- + bpu(k — n)
We write down the various components of the state vector z(k):
Tn—j(k) = — Z aiz T y(k) + Z biz (k) (1.23)
i=j+1 i=j+1
Using the difference equation, it is readily seen that the output y(k) is given by

y(k) = (k) + bou(k)
=[0---0 1)z(k) + bou(k) (1.24)

To see the state equation which this definition gives rise to, we note that

Tp—j(k+1 Z aiz I Dy (k) + Z biz~ 0=V (k)

i=j+1 i=j+1
= —aj+1y(k) + bj1u(k)

_ Z a;z~=U+1) Z bz~ =U+1) u(k)

i=j+2 i=j+2
= @p—j-1(k) — aj1y(k) + bjrru(k)
= @n—j-1(k) — aj+1(zn(k) + bou(k)) + bjtru(k)

17



Putting everything together, we finally get

0o -~ 0 —ay
I (k + 1) . .Tl(k) bn — boan
sk +1) = : P St : u(k) (1.25)
.’En(k + 1) : " : : .’En(k) by — boaq
e e 1
If by = 0, the equation simplifies to
0 0 —ay
10 ' o
sk+1)=| ° I 10 U R R0 (1.26)
: - : by
1 —ai
y(k) =1[0---01]z(k) (1.27)

Since this is a single-input single-output system, the transfer function is a scalar rational function. Thus
if we take the transpose of the transfer function, which does not change the transfer function, we see
immediately that the following state equation

0 1 0 0 0
0 1 0 0 _
z(k+1) = : : cel e : z(k)+ | * | u(k) (1.28)
0 0 0 1 0
1
| —O0np —Aap-1 —a2 —ai |
y(k) = [bn -~ bi]z(k) (1.29)

is also a realization of the difference equation. The state space realization, (1.26), (1.27) is referred to as
being in observable canonical form, while the state space realization, (1.28), (1.29) is referred to as being
in controllable canonical form. The reasons for these names will become clear when we study design of
control systems based on state space methods.
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