
Chapter 1

ESTIMATION THEORY

1.1 Estimation of Random Variables

Suppose X,Y1, Y2, ..., Yn are random variables defined on the same probability space (Ω,S, P ). We consider
Y1, ..., Yn to be the observed random variables and X to be the random variable to be estimated. An estima-

tor of X in terms of Y1, ..., Yn is a random variable which is a function of Y1, ..., Yn, say g(Y1, Y2, ..., Yn). If the
observed values of Y1, ..., Yn are y1, y2, ..., yn respectively, then an estimate of X is given by g(y1, y2, ..., yn).

In order to decide how good an estimator is compared to another, we need some criterion which measures
the closeness of an estimator to the true random variable X. The criterion we shall use is the mean square
error criterion, formulated as follows.

Let εg = X−g(Y1, Y2, ..., Yn). εg is the estimation error and is itself a random variable. Thus Eε2
g is the

mean square error and is a number which depends on the choice of the estimator g. The minimum mean

square error estimator g0, or least squares estimator for short, is that estimator satisfying the property

Eε2
g0

≤ Eε2
g

for any estimator g. The least squares estimator is also called the optimal estimator in the least squares
sense, or simply the optimal estimator if the estimation criterion is understood to be least squares. Note
that the least squares criterion is meaningful only in cases where the random variables involved have finite
second moments. We shall always make that implicit assumption.

Theorem 1.1.1: The least squares estimator of X in terms of Y1, ..., Yn is given by E{X|Y1, Y2, ..., Yn}, the
conditional expectation of X given Y1, Y2, ..., Yn.

Proof: For convenience, write X̂g = g(Y1, Y2, ..., Yn). Then

Eε2
g = E{X − X̂g + X̂g0 − X̂g0}2

where
X̂g0 = E{X|Y1, Y2, ..., Yn}

Expanding the square, we get

Eε2
g = E(X − X̂g0)

2 + 2E{(X − X̂g0)(X̂g0 − X̂g)} + E(X̂g0 − X̂g)
2

Now

E{(X − X̂g0)(X̂g0 − X̂g)} = E{E[(X − X̂g0)(X̂g0 − X̂g)|Y1, ..., Yn]}
= E{(X̂g0 − X̂g)E[(X − X̂g0)|Y1, Y2, ..., Yn]} = 0

1
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Thus

Eε2
g = E(X − X̂g0)

2 + E(X̂g0 − X̂g)
2 ≥ E(X − X̂g0)

2

which proves the theorem.

Example 1.1.1

Consider 2 random variables X, Y with a joint density function given by

fX,Y (x, y) = λ2e−λx 0 ≤ y ≤ x

= 0 otherwise

To find E(X|Y ), we proceed as follows.

(a) Find the marginal density function of Y :

fY (y) =

∫ ∞

y
λ2e−λxdx

= −λe−λx
∣

∣

∣

∞

y

= λe−λy 0 ≤ y < ∞

(b) Find the conditional density function of X given Y :

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
= λe−λ(x−y) 0 ≤ y ≤ x

(c) Determine E(X|Y = y) using

E(X|Y = y) =

∫

xfX|Y (x|y)dx

=

∫ ∞

y
xλe−λ(x−y)dx

= eλy

∫ ∞

y
xλe−λxdx

= eλy[−xe−λx
∣

∣

∣

∞

y
+

∫ ∞

y
e−λxdx]

= eλy[ye−λy + (− 1

λ
e−λx)

∣

∣

∣

∣

∞

y

]

= y +
1

λ

(d) Finally, write down E(X|Y ) by replacing the variable y in the expression for
E(X|Y = y) with the random variable Y :

E(X|Y ) = Y +
1

λ
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The above example has a conditional expectation E(X|Y ) which is an affine (linear plus constant) function
of Y . In general, the conditional expectation can be any nonlinear function of Y . Here are some further
examples.

Example 1.1.2

Consider 2 random variables X, Y with a joint density function

fX,Y (x, y) = xe−x(y+1) x, y ≥ 0

We would like to determine E(X|Y ). Calculations involving integration of exponential functions can often
be easily carried out using the following function

g(λ) =

∫ ∞

0
e−λxdx =

1

λ

Note that

− d

dλ
g(λ) =

∫ ∞

0
xe−λxdx =

1

λ2

Also,
d2

dλ2
g(λ) =

∫ ∞

0
x2e−λxdx =

2

λ3

Using these results, we obtain

fY (y) =
1

(y + 1)2

Hence

fX|Y (x|y) = (y + 1)2xe−x(y+1) x, y ≥ 0

This gives

E(X|Y = y) =

∫ ∞

0
(y + 1)2x2e−x(y+1)dx =

2

y + 1

Finally

E(X|Y ) =
2

Y + 1

Example 1.1.3:

Let X be a random variable uniformly distributed on [0 1]. The density function of X is given by

fX(x) = 1, 0 ≤ x ≤ 1

Let V be an exponential distributed random variable with parameter 1, i.e., its density function is given
by

fV (v) = e−v, v ≥ 0

Assume X and V are independent. Let the observed random variable Y be given by

Y = log
1

X
+ V

We would like to find E(X|Y ).
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First, we need to find the joint density of (X,Y ), starting from the joint density of (X,V ). By
independence, we have

fX,V (x, v) = e−v, 0 ≤ x ≤ 1, v ≥ 0

Define the one-to-one transformation T mapping (X,V ) to (X,Y ) by

(X,Y ) = T (X,V ) = (X, log
1

X
+ V )

Clearly, the inverse of T is given by

(X,V ) = T−1(X,Y ) = (X,Y − log
1

X
) = (X,Y + log X)

The Jacobian matrix is given by
∂(x, v)

∂(x, y)
=

[

1 0
1
x 1

]

Hence, the absolute value of the determinant of the Jacobian matrix is 1. We therefore get

fX,Y (x, y) = fX,V (x, y + log(x)) = e−(y+log x) =
1

x
e−y, 0 ≤ x ≤ 1, y ≥ − log x

The constraints on the values of x and y can be combined to give

fX,Y (x, y) =
1

x
e−y, e−y ≤ x ≤ 1, y ≥ 0

= 0, otherwise

From here, we can get the marginal density of Y :

fY (y) =

∫ 1

e−y

1

x
e−ydx

= ye−y, y ≥ 0

Hence the conditional density of X given Y is given by

fX|Y (x|y) =
1
xe−y

ye−y
=

1

xy
, e−y ≤ x ≤ 1, y ≥ 0

The conditional expectation is then given by

E(X|Y = y) =

∫ 1

e−y

xfX|Y (x|y)dx =

∫ 1

e−y

1

y
dx =

1 − e−y

y

Finally, we obtain

E(X|Y ) =
1 − e−Y

Y

In principle, then, the problem of optimal estimation in the least squares sense is solved. All we need
to do is to compute the conditional expectation E{X|Y1, Y2, ..., Yn}. There are, however, a number of
difficulties:

(i) The calculation of E{X|Y1, Y2, ..., Yn} requires the knowledge of the joint distribution function of
X,Y1, Y2, ..., Yn. This may not be available as a priori knowledge.
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(ii) Even if the joint distribution is known, the conditional expectation is in general a complicated
nonlinear function of the observations Y1, ..., Yn and may have no analytical formula.

Example 1.1.4:

Let X be a Gaussian random variable with mean m and variance σ2. Let N be a uniformly distributed
random variable with density function

fN (n) =
1

2b
− b ≤ n ≤ b

Furthermore X and N are independent. Set Y = X + N . We want to determine E(X|Y ). We find

fY (y) =

∫ ∞

−∞

1√
2πσ2

e−
(x−m)2

2σ2 fN(y − x)dx

=
1

2b

∫ y+b

y−b

1√
2πσ2

e−
(x−m)2

2σ2 dx

We know from mathematical tables that the integral

Φ(y) =

∫ y

−∞

1√
2π

e−
x
2

2 dx

is the normalized Gaussian distribution function and does not have a closed form expression. Hence there
is no closed form expression for E(X|Y ) as well.

Other estimators can be considered. For example, the maximum aposteriori estimate, or map estimate
for short, is the value of x which maximizes the conditional density fX|Y (x|y).

x̂map = arg max
x

fX|Y (x|y)

The motivation for the map estimate is that it is the most likely value associated with the conditional
density. Since the value of x̂map varies as a function of y, this gives rise to a function of the form x̂map = η(y).
The map estimator is then defined to be

X̂map = η(Y )

In practice, when the maximium occurs in the interior of an interval, the maximization is often carried out
by finding the roots of the equation

∂ log fX|Y (x|y)

∂x
= 0

For example 1.1.3, the maximum of the conditional density fX|Y (x|y) occurs at the boundary, when
x = e−y. Hence the map estimator is given by

X̂map = e−Y

Note that the map estimator is also generally a nonlinear function of Y and has similar drawbacks to the
conditional mean. In the map estimator case, it also requires determination of the conditional density. As
well, the solution of the maximization problem may not result in an analytical expression for x̂map.

It is therefore of interest to find estimators which do not require as much prior knowledge about the
random variables, which are easy and simple to implement, and which are still good (though not optimal)
in some way. This leads us to the study of linear least squares estimators.
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1.2 Linear Least Squares Estimation

Let us assume E|X|2 < ∞, E|Yi|2 < ∞, all i, and that we know or can calculate the mean and covariances
of X,Y1, ..., Yn. There is then no loss of generality in assuming that EX = EYi = 0 for all i, and we shall
do so in this section. The general formula for nonzero random vectors is given in Section 1.6.

A linear estimator is simply one which is linear in Y1, Y2, ..., Yn, i.e.

g(Y1, Y2, ..., Yn) =

n
∑

i=1

αiYi

for some scalars {αi}n
i=1. The estimation error εℓ is now given by

εℓ = X −
n
∑

i=1

αiYi

The linear least squares estimator is defined to be that linear estimator such that Eε2
ℓ is minimized.

Let us introduce some notation. The subspace spanned by Y1, Y2, ..., Yn, denoted by L(Y1, Y2, ..., Yn),
is defined by

L(Y1, Y2, ..., Yn) =

{

n
∑

i=1

βiYi|βi ∈ R, i = 1, 2, ..., n

}

A linear estimator is then an element of L(Y1, Y2, ..., Yn). A linear least squares estimator is an element of
L(Y1, Y2, ..., Yn) which minimizes Eε2

ℓ over all elements in L(Y1, Y2, ..., Yn).

We can now characterize linear least squares estimators.

Theorem 1.2.1: Let X̂ ∈ L(Y1, Y2, ..., Yn). Then X̂ is a linear least squares estimator of X if and only if

E(X − X̂)Yi = 0 for i = 1, 2, ..., n (1.2.1)

(or equivalently, E(X − X̂)Z = 0 for Z ∈ L(Y1, Y2, ..., Yn)).

Proof: Suppose (1.2.1) is satisfied. Let Z be any other linear estimator. Then E(X − Z)2 = E(X − X̂ +
X̂ − Z)2. Since Z ∈ L(Y1, Y2, ..., Yn), X̂ − Z is also. Thus

E(X − X̂ + X̂ − Z)2 = E(X − X̂)2 + E(X̂ − Z)2 ≥ E(X − X̂)2

so that X̂ is a linear least squares estimator.

Conversely, suppose X̂ is a linear least squares estimator. We need to show that (1.2.1) holds. We
proceed by contradiction. Suppose for some i, (1.2.1) is not satisfied. Set

Z = X̂ +
E(X − X̂)Yi

EY 2
i

Yi

Since X̂ is linear least squares estimator,

E(X − Z)2 ≥ E(X − X̂)2
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But by direct computation,

E(X − Z)2 = E

(

X − X̂ − E(X − X̂)Yi

EY 2
i

Yi

)2

= E(X − X̂)2 − [E(X − X̂)Yi]
2

EY 2
i

< E(X − X̂)2, a contradiction.

This shows that (1.2.1) must be satisfied.

1.3 Geometric Interpretation of Linear Least Squares Estimators

The characterization of the linear least squares estimators in Theorem 1.2.1 can be given a geometric
interpretation.

Consider the class of random variables X defined on the probability space (Ω,S, P ) such that EX = 0,
EX2 < ∞. This class of random variables are called second order. It is easily verified (Ex.) that the
space of second order random variables is a vector space. We endow this vector space, denoted H̃, with
the following inner product:

〈X,Y 〉H̃ = EXY

The inner product induces a notion of length and distance in H̃. We define the norm of X ∈ H̃ by

‖X‖H̃ = [〈X,X〉H̃]1/2

and the distance between two elements X and Y by

d(X,Y ) = ‖X − Y ‖H̃
In this language, the problem of finding a linear least squares estimator boils down to finding an element
X̂ ∈ L(Y1, ..., Yn), which is a subspace of H̃, such that among the elements of L(Y1, ..., Yn), X̂ is closest to
X in terms of the distance defined on H̃. Theorem 1.2.1 then tells us that a linear least squares estimator
is characterized by

(i) X̂ belongs to L(Y1, Y2, ..., Yn).

(ii) X − X̂ is orthogonal to L(Y1, ..., Yn) in the sense that 〈X − X̂, Z〉H̃ = 0 for Z ∈ L(Y1, ..., Yn).

Any X̂ satisfying (i) and (ii) is called the orthogonal projection of X onto L(Y1, Y2, ..., Yn).
Pictorially, we can visualize the situation as follows (taking n = 1)

X − X̂

L(Y1)

X

X̂

We obtain X̂ by dropping the perpendicular from X onto L(Y1). Hence the name orthogonal projection.
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1.4 The Normal Equation

To determine the linear least squares estimator explicitly, we apply Theorem 1.2.1 as follows:

Let αT = [α1...αn], Y T = [Y1...Yn]. Then X̂ = αT Y . Equation (1.2.1) can now be written as

E(X − αT Y )Y T = 0 (1.4.1)

Equation (1.4.1) is referred to as the normal equation.

If E(Y Y T ) > 0, we get

αT = E(XY T )E(Y Y T )−1

= cov(X,Y )cov(Y )−1

The l.l.s. estimate is thus given by

X̂ = cov(X,Y )cov(Y )−1Y .

It can be shown that the normal equation

αT E(Y Y T ) = EXY T

always has a solution even if E(Y Y T ) is not positive definite.

1.5 Estimation of One Random Vector in Terms of Another

We shall now generalize that situation to one of estimating one random vector in terms of another, not
necessarily of the same dimension. Let X be an n-dimensional random vector, the one to be estimated,
and Y be an m-dimensional random vector, the one observed. We wish to construct a linear estimator X̂
such that

E‖X − X̂‖2 = E

{

n
∑

i=1

(Xi − X̂i)
2

}

is minimized. It is easy to see that this problem is really that of n sub-problems of estimating the various
components Xi in terms of Y . We have seen that the solutions of these sub-problems are given by the
Projection Theorem. We now explicitly characterize the linear estimator X̂.

We shall assume, as before, that EX = EY = 0 and E‖X‖2 < ∞, E‖Y ‖2 < ∞. Then we can write

X̂i =

m
∑

j=1

aijYj

By the projection theorem, we must have

E(Xi − X̂i)Yj = 0 j = 1, ...,m

Using the inner product introduced in Section 1.3 and dropping the subscript H̃ for convenience, we get

〈Xi, Yj〉 =

m
∑

k=1

aik〈Yk, Yj〉 j = 1, ...,m
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This gives

[〈Xi, Y1〉〈Xi, Y2〉, ..., 〈Xi, Ym〉] = [ai1, ai2, ..., aim]













〈Y1, Y1〉 〈Y1, Y2〉 . . . 〈Y1, Ym〉
〈Y2, Y1〉

...
...

...
...

...
〈Ym, Y1〉 . . . . . . 〈Ym, Ym〉













= [ai1, ..., aim]E(Y Y T )

If we now write the equations in matrix form for the various values of i, we have






〈X1, Y1〉 . . . 〈X1, Ym〉
...

...
〈Xn, Y1〉 . . . 〈Xn, Ym〉






=





a11 . . . a1m

· · · · · ·
an1 . . . anm



E(Y Y T )

or
AE(Y Y T ) = E(XY T )

If we assume that E(Y Y T ) is invertible, then the unique A is given by

A = E(XY T )E(Y Y T )−1

Since
X̂ = AY

we get
X̂ = E(XY T )E(Y Y T )−1Y (1.5.1)

1.6 Extensions

(i) If the random variables involved are not of zero mean, we can add the trivial random variable Y0 = 1.
Applying the Projection Theorem with Y0 included, we find

X̂ = mX + cov(X,Y )cov(Y )−1(Y − mY ) (1.6.1)

where by cov(X,Y ) we mean E{(X−mX )(Y −mY )T }. Although X̂ is an affine (linear plus constant)
function of Y , we still call it the linear least squares estimator.

(ii) If X and Y are jointly Gaussian, the minimum mean square error estimator of X in terms of Y is
in fact linear in Y . Since (1.6.1) gives the best linear estimator, in the Gaussian case, it is also the
minimum mean square error estimator.

(iii) The linear least squares (l.l.s.) estimate also has the following property:

If X̂ is the l.l.s. estimator of X, then TX̂ is the l.l.s. estimator of TX. To prove this, assume for
simplicity that EX=0, EY=0. Suppose KY is the l.l.s. estimator of TX. By the application of the
Projection Theorem, we obtain

E(TX − KY )Y T = 0

∴ K = TE(XY T )E(Y Y T )−1

so that
KY = TX̂ .

(Exercise: Extend this to the nonzero mean case)



10 CHAPTER 1. ESTIMATION THEORY

Example 1.6.1:

Suppose X and Y are jointly Gaussian, each with zero mean and variance 1, and EXY = ρ. The l.l.s.
estimate of X in terms of Y is then given by

X̂ = ρY

which is the same as the conditional mean E(X|Y ).

Example 1.6.2:

Consider 2 random variable X, Y with a joint density function

fX,Y (x, y) = λ2e−λx 0 ≤ y ≤ x

In Example 1.1.1, we computed E(X|Y ). Here, we determine the l.l.s. estimate of X based on Y .

(a) Determine mX :

fX(x) =

∫ x

0
λ2e−λxdy = λ2xe−λx

Thus,

mX =

∫ ∞

0
λ2x2e−λxdx

= λ2 2

λ3
=

2

λ

(b) Determine mY : We know from Example 1.1.1 that

fY (y) = λe−λy 0 ≤ y < ∞

Hence mY = 1
λ .

(c) Determine cov(Y ) = EY 2 − m2
Y :

EY 2 =

∫ ∞

0
λy2e−λydy =

2

λ2

Hence

cov(Y ) =
1

λ2

(d) Determine cov(X,Y ) = EXY − mXmY :

EXY =

∫ ∞

0

∫ x

0
λ2xye−λxdxdy

=

∫ ∞

0
λ2 x3

2
e−λxdx

=
3

λ2

Hence

cov(X,Y ) =
3

λ2
− 2

λ2
=

1

λ2
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(e) Finally,

X̂ =
2

λ
+

1

λ2
(

1

λ2
)−1(Y − 1

λ
) = Y +

1

λ

We see that the l.l.s. estimator is the same as E(X|Y ), which is to be expected since E(X|Y ) was seen to
be an affine function of Y .

1.7 Adding One Observation to Improve Estimation

The previous sections study the problem of estimating one random vector X in terms of another random
vector Y . Both X and Y do not change. In this section, we re-examine the estimation problem from a dif-
ferent point of view. We consider the information available for estimation as increasing, with Y1, Y2, · · · , Yn,
the components of Y , being observed sequentially. We shall show that this viewpoint leads naturally to
recursive updates of the estimate of X.

We first consider the following simple situation: Assume all random variables are zero mean, and
we make two observations, Y1, and Y2, about the random variable X. By the previous results, the l.l.s.
estimator is given by

X̂ = a1Y1 + a2Y2

where a1 and a2 satisfy the equations

[

〈X,Y1〉
〈X,Y2〉

]

=

[

〈Y1, Y1〉 〈Y2, Y1〉
〈Y1, Y2〉 〈Y2, Y2〉

] [

a1

a2

]

(1.7.1)

The solution of (1.7.1) would be trivial if Y1 and Y2 were uncorrelated or orthogonal. For then 〈Y1, Y2〉 = 0
and

a1 =
〈X,Y1〉
〈Y1, Y1〉

a2 =
〈X,Y2〉
〈Y2, Y2〉

Recalling the interpretation that X̂ is simply an element in L(Y1, Y2), this suggests that we seek Ỹ1 and Ỹ2

such that L(Y1, Y2) = L(Ỹ1, Ỹ2) and that Ỹ1⊥Ỹ2. Geometrically, this corresponds to two coordinate axes
which are orthogonal.

Y2

Y1

Ỹ2

One way of doing this is the following: we take Ỹ1 = Y1. Now the orthogonal projection of Y2 onto Y1

is given by
〈Y2, Y1〉
〈Y1, Y1〉

Y1

and we know from the Projection Theorem that

Y2 −
〈Y2, Y1〉
〈Y1, Y1〉

Y1
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is orthogonal to Y1. Now clearly if we define

Ỹ2 = Y2 −
〈Y2, Y1〉
〈Y1, Y1〉

Y1

then L(Y1, Y2) = L(Y1, Ỹ2) and Y1⊥Ỹ2. We may therefore seek

X̂ = b1Y1 + b2Ỹ2

By the Projection Theorem

[

〈X,Y1〉
〈X, Ỹ2〉

]

=

[

〈Y1, Y1〉 〈Ỹ2, Y1〉
〈Y1, Ỹ2〉 〈Ỹ2, Ỹ2〉

] [

b1

b2

]

=

[

〈Y1, Y1〉 0

0 〈Ỹ2, Ỹ2〉

] [

b1

b2

]

by orthogonality

So

b1 =
〈X,Y1〉
〈Y1, Y1〉

b2 =
〈X, Ỹ2〉
〈Ỹ2, Ỹ2〉

An alternative characterization of X̂ is then given by

X̂ =
〈X,Y1〉
〈Y1, Y1〉

Y1 +
〈X, Ỹ2〉
〈Ỹ2, Ỹ2〉

Ỹ2 (1.7.2)

The first term on the right hand side of (1.7.2) is recognized as the orthogonal projection of X onto Y1

alone. We can thus interpret the above result as follows: If we first make the observation Y1, then the best
estimate of X is given by X̂1 = 〈X,Y1〉

〈Y1,Y1〉
Y1. If we add a second observation Y2, the new best estimate is given

as the sum of the old estimate X̂1 and the best estimate of X in terms of Ỹ2 alone. Ỹ2 may therefore be
considered as the new information contained in the additional observation Y2.

We now extend these results to zero mean random vectors. The nonzero mean case requires only
minor modifications. If we define, in the case where X, Y1, Y2 are vectors, 〈X,Y 〉 = EXY T , then we can
straightforwardly generalize (1.7.2) to the vector case

X̂ = 〈X,Y1〉〈Y1, Y1〉−1Y1 + 〈X, Ỹ2〉〈Ỹ2, Ỹ2〉−1Ỹ2 (1.7.3)

The change in the error covariance can also be easily evaluated. Writing

X̂ = X̂1 + X̂2 where X̂2 = 〈X, Ỹ2〉〈Ỹ2, Ỹ2〉−1Ỹ2

we have

E(X − X̂)(X − X̂)T = E{(X − X̂1 − X̂2)(X − X̂1 − X̂2)
T }

= E(X − X̂1)(X − X̂1)
T − EXX̂T

2 − EX̂2X
T + EX̂2X̂

T
2

using the orthogonality of X̂1 and X̂2.
Now

E{XX̂T
2 } = E(XỸ T

2 )〈Ỹ2, Ỹ2〉−1E(Ỹ2X
T )

= E{X̂2X
T } = EX̂2X̂

T
2
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So

E(X − X̂)(X − X̂)T = E(X − X̂1)(X − X̂1)
T − E(XỸ T

2 )E(Ỹ2Ỹ
T
2 )−1E(Ỹ2X

T ) (1.7.4)

Let the error covariances associated with X̂ and X̂1 be P and P1 respectively. Then

P1 − P = E(XỸ T
2 )E(Ỹ2Ỹ

T
2 )−1E(Ỹ2X

T ) (1.7.5)

which is a positive semidefinite matrix.

This means that by adding a measurement, we would improve our estimate in the sense that the error
covariance would be reduced. This is of course intuitively reasonable.

We specialize the above results now to the following situation:

Suppose from previous observations, we have formed the estimate X̂1, whose error covariance is given
by P1. The additional measurement Y is related to X in the form

Y = CX + V

where X and V are orthogonal, with V zero mean, EV V T = R > 0 (i.e. R is positive definite), and also
orthogonal to the past observations. To find the updated estimate, we first construct the innovation of Y .
Let the orthogonal projection of Y onto the past observations be given by PY . Then

PY = P(CX + V ) = PCX + PV = CX̂1

Thus the innovation Ỹ is given by

Ỹ = Y − CX̂1

From the previous analysis,

X̂ = X̂1 + E(XỸ T )E(Ỹ Ỹ T )−1Ỹ

But

EXỸ T = E[X(Y − CX̂1)
T ] = E{X[(X − X̂1)

T CT + V T ]}
= P1C

T

E(Ỹ Ỹ T ) = E{C(X − X̂1)(X − X̂1)
T CT + V (X − X̂1)

T CT + C(X − X̂1)V
T + V V T }

By the orthogonality between V and X, and V and past observations, we get, on letting EV V T = R

E(Ỹ Ỹ T ) = CP1C
T + R

Thus the updated estimate X̂ is given by

X̂ = X̂1 + P1C
T (CP1C

T + R)−1(Y − CX̂1) (1.7.6)

From (1.7.5), we also see that the updated error covariance P is given by

P = P1 − P1C
T (CP1C

T + R)−1CP1 (1.7.7)

We shall see in Chapter 3 that by combining the above results with linear system dynamics will give us
the Kalman filter.



14 CHAPTER 1. ESTIMATION THEORY

1.8 Least Squares Parameter Estimation

The Projection Theorem has many applications. It can be used to solve the least squares parameter
estimation problem. The problem can be formulated as follows.

Let Y be a given m-vector, possibly random. Let Φ be an m×n matrix, with possibly random entries.
The columns of Φ are referred to as regression vectors. The least sqaures parameter estimation problem is
to determine a nonrandom n-vector θ, such that the least squares criterion ‖Y −Φθ‖2 = (Y −Φθ)T (Y −Φθ)
is minimized. The problem can be interpreted as finding the best approximation, in the sense of shortest
Euclidean distance, of Y by linear combinations of the columns of Φ (which is Φθ). This optimal parameter
which minimizes the criterion is called the least squares parameter estimate and is denoted by θ̂.

We can use the Projection Theorem to characterize the optimal choice for θ. By the Projection Theorem,
the optimal error Y −Φθ̂ must be orthogonal to the columns of Φ. This implies that the following equation
holds:

ΦT (Y − Φθ̂) = 0

The least squares estimate θ̂ therefores satisfies the normal equation

ΦTΦθ̂ = ΦTY (1.8.1)

If ΦT Φ is invertible, we can solve for θ̂ explicitly to get

θ̂ = (ΦT Φ)−1ΦT Y (1.8.2)

This result does not depend on the way Y is defined. If we assume more knowledge on how Y is
generated, we can get more detailed results on the properties of the least squares estimate. Suppose Y
satisfies

Y = Φθ + V

where V is a zero mean “noise” vector independent of the regressor Φ. Here, the interpretation is that
there is a “true” parameter θ which, together with the additive noise V , gives the observation Y . Assume
that ΦT Φ is invertible. We then have

θ̂ = θ + (ΦT Φ)−1ΦT V

Since V is zero mean and independent of Φ,
Eθ̂ = θ (1.8.3)

Note that the property given in (1.8.3) is true, regardless of what the parameter value for θ is.
A parameter estimator is called unbiased if its expectation is equal to the true value of the parameter.

Thus the least squares parameter estimate, under the assumption of independence of Φ and V , is unbiased.
The least squares estimate can be easily generalized to a weighted least squares criterion. Let Q be a

positive semidefinite matrix. Define the weighted least sqaures criterion to be

J(θ) = (Y − Φθ)T Q(Y − Φθ) (1.8.4)

By factoring Q = Q
1
2 Q

1
2 , (1.8.4) can be expressed as the least squares criterion (Q

1
2 Y − Q

1
2 Φθ)T (Q

1
2 Y −

Q
1
2 Φθ). Using previous results, we find that the θ which minimizes J(θ) is given by the solution of the

normal equation
ΦT QΦθ̂ = ΦTQY (1.8.5)

If ΦT QΦ is nonsingular, then the unique weighted least squares estimate is given by

θ̂ = (ΦT QΦ)−1ΦT QY (1.8.6)
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Example 1.8.1:

Let
yi = b + vi i = 1, · · · , N

where b is a constant, and Evi = 0, all i. Thus, b is the mean of Yi. Put

Y =
[

y1 y2 · · · yN

]T

V =
[

v1 v2 · · · vN

]T

and
Φ =

[

1 1 · · · 1
]T

Then
ΦTΦ = N

ΦT Y =

N
∑

i=1

yi

so that the least squares estimate is given by

b̂ =
1

N

N
∑

i=1

yi

which is the arithmetic mean of the yi’s. We can also express

b̂ = b +
1

N

N
∑

i=1

vi

so that b̂ is unbiased. If we assume further that Evivj = 0 for i 6= j, and Ev2
i = σ2, all i, then

E(b̂ − b)2 =
σ2

N

which converges to 0 as N → ∞.
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Exercises

1. Let X and Y be independent random variables with densities

fX(x) = αe−αx x ≥ 0 α > 0
= 0 x < 0

fY (y) = βe−βy y ≥ 0 β > 0
= 0 y < 0

Let Z = X + Y .

(i) For α 6= β, find the conditional density function fX|Z(x|z) (Hint: Use the transformation of
densities formula to determine first the joint density fX,Z(x, z)). Verify that it is a probability
density function. Determine E(X|Z). Verify that E[E(X|Z)] = E(X).

(ii) Suppose α = β. Repeat the calculations of (i). Verify that the same results can be obtained
from (i) by taking the limit as α → β.

2. Consider the random variables X, Y , and Z as described in problem 1.

(i) For α = 1, β = 2, find the linear least squares (l.l.s.) estimator of X given Z (Remember that
if the random variables are not zero mean, the l.l.s. estimator takes the form aZ + b).

(ii) Suppose α = β. Again find the l.l.s. estimator of X given Z and compare it to E(X/Z)
determined in problem 2. Can you generalize this result for the sum of 2 independent exponen-
tially distributed random variables to the situation involving Z =

∑n
i=1 Xi,Xi’s independent,

identically distributed, but not necessarily exponential?

3. Let X and Y have a joint density

fX,Y (x, y) =
1

x
0 ≤ y ≤ x ≤ 1

Determine the linear least square estimate of X based on Y .

4. Let Y and V be independent zero mean Gaussian random variables with variance 1. Let X = Y 2+V .

(i) Determine the optimal least squares estimator X̂ = E(X|Y ), and find the mean square estima-
tion error E(X − X̂)2.

(ii) Determine the linear least squares estimator X̂l in the form aY + b, and find the mean square
estimation error E(X − X̂l)

2.

(iii) Compare the results of (i) and (ii) and discuss.

5. In Example 1.1.3, we found E(X|Y ) using the probabilistic information provided about (X,V ) and
how Y is related to (X,V ). For the same probabilistic information, find the linear least squares
estimate of X based on Y . Sketch E(X|Y ) and the l.l.s. estimator for large Y , and comment on the
differences in behaviour, if any, between the two estimators.

6. Consider the (n + p)-vector Z =

[

X
Y

]

where X and Y are jointly Gaussian random vectors of

dimension n and p respectively. The joint density of X and Y is given by

fX,Y (x, y) =
1

(2π)
n+p

2 |det Σ|1/2
e
−

1

2
(z − m)T Σ−1(z − m)

(ex3.1)
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where m = EZ =

[

mX

mY

]

and Σ = E(Z − m)(Z − m)T =

[

ΣX ΣXY

ΣY X ΣY

]

and z =

[

x
y

]

. The

density of Y is therefore given by

fY (y) =
1

(2π)
p

2 |det ΣY |1/2
e
−

1

2
(y − mY )T Σ−1

Y (y − mY )
(ex3.2)

(i) Write down the conditional density fX|Y (x|y) using (ex3.1) and (ex3.2). Denote the exponent

of fX|Y (x|y) by −1

2
JX|Y .

(ii) Verify that for any invertible matrix P ,

JX/Y = (z − m)T P T (PΣP T )−1P (z − m) − (y − mY )T Σ−1
Y (y − mY )

find P (z − m) and PΣP T when P is chosen to be

[

I −ΣXY Σ−1
Y

0 I

]

(iii) Show from here that fX|Y (x|y) has the form of a Gaussian density. Find E(X|Y ) and the

conditional covariance E{[X − E(X|Y )][X − E(X|Y )]T |Y }. Does the conditional covariance
depend on Y ?

7. (a) You are given 2 random variables, Y1 and Y2, each with zero mean and with second order
statistics EY 2

1 = 1, EY1Y2 = 2, and EY 2
2 = 4. You are asked to find the linear least squares

estimate of a zero mean random variable X with EXY1 = 1 and EXY2 = 5. Explain why this
is not a meaningful problem.

(Hint: Examine the covariance matrix of the random vector Y = [Y1 Y2]
T .)

(b) You are given 2 random variables, Y1 and Y2, each with zero mean and with second order
statistics EY 2

1 = 1, EY1Y2 = 2, and EY 2
2 = 4. You are asked to find the linear least squares

estimate of a zero mean random variable X with EXY1 = 1 and EXY2 = 2. Note that with
Y = [Y1 Y2]

T , E(Y Y T ) is singular, and that the situation is very similar to that of part (a),
except that the present problem is meaningful and consistent.

(i) Even though E(Y Y T ) is singular, it can be shown that a solution to the equation

αT E(Y Y T ) = E(XY T )

always exists. Find the general solution for α for the particular X, Y given above. This
should be a one parameter family of solutions.

(ii) Determine the linear least squares estimate of X in terms of Y . Show that the l.l.s. estimate
X̂ does not depend on the specific value of the free parameter in part (a).

(iii) Now consider determining the l.l.s. estimate X̂ by sequentially processing Y1, and then Y2.
What is X̂1, the l.l.s. estimate of X based on Y1 alone? Update X̂1 to X̂2 by processing Y2

also. Compare X̂2 to X̂1 and to X̂ in part (b). Explain your results.

8. We have developed 2 formulas for the l.l.s. estimator, one using the complete observation vector all
at once, as in Section 1.5, the other one using the observation vector sequentially, as in Section 1.7.
Consider 3 zero mean random variables X, Y1, and Y2. Show explicitly the 2 formulas for computing
the l.l.s of X based on Y1 and Y2 give the same answer.
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9. Consider the signal in noise problem

Yi = X + Vi i = 1, ..., n

with EX = EVi = 0, all i, EX2 = σ2
X , EV 2

i = σ2
V , EXVi = 0, all i, and EViVj = 0, for i 6= j. The

problem is to find the linear least squares estimate of X based on Y = [Y1 · · ·Yn]T . Let the optimal
estimate be given by

X̂ =

n
∑

i=1

αiYi

Determine and solve the normal equation satisfied by α1 · · ·αn. What is the form of X̂ as n → ∞?
(Hint: Examine the form of the normal equation and guess its solution.)

10. In this problem, we establish some additional useful results for the weighted least squares parameter
estimate. Let

J(θ) = (Y − Φθ)TQ(Y − Φθ)

(a) Show that for any θ and θ̂, the following equation holds:

J(θ) − J(θ̂) = 2(θ̂ − θ)T (ΦT QY − ΦT QΦθ̂) + (θ − θ̂)T ΦT QΦ(θ − θ̂) (ex8.1)

From the above equation, we see that if θ satisfies the normal equation, i.e., it corresponds to
the least squares estimate, we obtain

J(θ) − J(θ̂) = (θ − θ̂)T ΦT QΦ(θ − θ̂) ≥ 0, for any θ

(b) Conversely, if θ̂ minimizes J(θ), it must satisfy the normal equation. To prove this directly from
(ex8.1), assume that

ΦT QY − ΦT QΦθ̂ 6= 0

Choose θ in the form
θ̂ − θ = −α(ΦT QY − ΦT QΦθ̂)

Show that for α sufficiently small, we get J(θ) − J(θ̂) < 0, so that θ̂ cannot be optimal.


