
Chapter 2

ANALYSIS OF LINEAR STOCHASTIC

SYSTEMS

2.1 Discrete Time Stochastic Processes

We shall deal only with processes which evolve at discrete instances of time. Typically, the time index can
be k0, k0 + 1, . . . , N , with k0 and N both finite, or it can be the nonnegative integers Z+ = 0, 1, . . ., or it
can be all the integers Z. Let T be such an index set, which can be finite or countably infinite. Assume
also that there is an underlying probability space (Ω,S, P ) with respect to which all random variables are
defined. A discrete time stochastic process is just a family of random variables wk, k ∈ T . This means
that for each fixed k, wk is a random variable on the sample space Ω, and that the family wk, k ∈ T is
jointly defined on Ω. We also use the notation w(k), k ∈ T to denote the stochastic process.

The stochastic process w is thus a function of 2 variables, k denoting the evolution of time, and
ω denoting the point in the sample space that the random variables are to be evaluated. If we fix ω,
wk(ω) is a function of k only. These are called the sample paths or realizations of the stochastic process.
If we take arbitrary, but finite collections of points in T , i1, i2, . . . , in, the family of joint distributions
Fwi1

,wi2
,··· ,win

(w1, w2, · · · , wn) is called the finite dimensional distributions of w. It can be shown that given
a family of distributions which satisfy certain consistency properties, there exists a stochastic process w
which has the given family of distributions as its finite dimensional distributions.

Example 1: A Gaussian process w is one whose finite dimensional distributions are multidimensional
Gaussian distributions, i.e., wi1 , wi2 , · · · , win are jointly Gaussian random variables.

Example 2: Let wk be an independent identically distributed sequence of random variables satisfying

P (wk = 1) = p

P (wk = −1) = 1 − p = q

where 0 < p < 1. Now consider the process xn satisfying the equation

xk+1 = xk + wk, k ≥ 0 (2.1)

where x0 = α for some given integer α ≥ 0. The process xn is called the simple random walk. It can be
interpreted as the fortune of a gambler who gambles by flipping a coin with P (Head) = p. He wins $1 if
the outcome of the coin flip is Head, and loses $1 if the outcome is Tail. The value of xk corresponds to
the gambler’s fortune at time k if he starts with an initial fortune of α at time 0.
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Although for any fixed N , a stochastic process defined on [0 N ] can be interpreted as a random vector,
we shall often be interested in the behaviour of the process over an unbounded interval, e.g., the nonnegative
integers. This requires us to consider a possibly infinite collection of random variables, jointly distributed
on the same probability space. This situation is fundamentally different from that of a finite collection of
random vectors.

2.2 Stochastic Difference Equations

We shall now concentrate on the case when T = Z+. Suppose we are given a random variable x0, a
stochastic process wk, k ∈ Z+, and a fixed deterministic time sequence uk, k ∈ Z+. In general, x0 is
n-dimensional, uk is m-dimensional, and wk is l-dimensional. Consider the difference equation

xk+1 = fk(xk, uk, wk) k = 0, 1, . . . (2.2)

Here fk are given functions, and x0 serves as the initial condition to the difference equation. We can
recursively calculate the solution sequence as

x1 = f0(x0, u0, w0)

x2 = f1(x1, u1, w1) = f1(f0(x0, u0, w0), u1, w1)

and so on. Notice that for fixed u, x1 is a function of the random variables x0 and w0, and hence itself
random. Similiarly, x2 is a function of the random variables x0, w0, and w1. If we use the notation wk1

k0
,

or wk0:k1, to denote the sequence wk0 , wk0+1, . . . , wk1 , we see that for k ≥ 1, xk depends on x0 and wk−1
0 .

Thus the underlying basic random variable x0 and stochastic process w generate a solution process x which
is itself a stochastic process.

Example: The simple random walk xk satisfies a stochastic difference equation.

Example: A popular inventory model is the following:

Let xk be the store inventory at the beginning of day k. uk is inventory ordered and delivered at the
beginning of day k, assumed to be deterministic. wk is the (random) amount of inventory sold during day
k. Then the equation describing the amount of inventory at the beginning of day k + 1 is given by

xk+1 = xk + uk − wk

If inventory is assumed to be nonnegative, the equation then becomes

xk+1 = max(xk + uk − wk, 0)

So far, we have not made any assumptions about the properties of x0 and w. One reasonable assumption
that is often made is the following:

Assumption M: The process w is an independent sequence (i.e. wk and wj are independent for all
k 6= j), and is independent of x0.

Many physical systems perturbed by totally unpredictable disturbances satisfy this assumption. Let us
explore the implications of this assumption. For simplicity, we shall consider equations with no input uk.

xk+1 = fk(xk, wk)
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We then have

P (xk+1 ≤ x|xk
0) = P [fk(xk, wk) ≤ x|xk

0]

= P [fk(xk, wk) ≤ x|xk]

since conditioned on xk, fk(xk, wk) is a function of wk only, which is independent of xk−1
0 , by Assumption

M. Hence
P (xk+1 ≤ x|xk

0) = P (xk+1 ≤ x|xk) (2.3)

We call a stochastic process xk satisfying (2.3) a Markov process and the property expressed by (2.3) the
Markov property. Note that if uk is a known deterministic input, it can be incorporated into the time
dependence of the function fk. We therefore conclude that a process generated by the first order stochastic
difference equation (2.2) satisfying Assumption M with a known input is a Markov process.

Example: The simple random walk is a Markov process, since wk is an independent sequence. However,
it is instructive to show this explicitly. First note that for any k,m ≥ 0, the solution to (2.1) for xk is
given by

xk+m = xm +
k+m−1
∑

l=m

wl

Hence

P (xk+m = j|xm, xm−1, · · · , x0) = P (

k+m−1
∑

l=m

wl = j − xm|xm, xm−1, · · · , x0)

Since for m ≤ l ≤ k + m − 1, wl is independent of x0, · · · , xm, we obtain

P (xk+m = j|xm, xm−1, · · · , x0) = P (
k+m−1
∑

l=m

wl = j − xm|xm) = P (xk+m = j|xm)

which shows that xk is Markov.
For the simple random walk, owing to its relatively simple structure, it is possible to derive various

results concerning its sample path behaviour. For example, if we take the gambling interpretation of the
simple random walk, we can ask what is the probability that the gambler will lose all his fortune. This is
called the gambler’s ruin problem. We now describe its solution.

Let pk be the probability of ruin if the gambler starts with fortune k. Then pk satisfies the equation

pk = ppk+1 + qpk−1 (2.4)

with the boundary conditions p0 = 1, pN = 0. Putting θk as the trial solution to (2.4) gives the equation

θ = pθ2 + q

There are 2 distinct roots 1, q
p if p 6= 1

2 . In this case, the general solution to (2.4) is given by

pk = A1 + A2(
q

p
)k

Applying the boundary conditions yield the equations

A1 + A2 = 1

A1 + A2(
q

p
)N = 0
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Solving, we obtain

A2 =
1

1 − ( q
p)N

and

A1 =
−( q

p)N

1 − ( q
p)N

so that

pk =
( q

p)k − ( q
p)N

1 − ( q
p)N

If p = q = 1
2 , the roots coincide, and the general solution for pk is then given by

pk = A1 + A2k

Applying the boundary conditions gives A1 = 1 and A2 = − 1
N , resulting in

pk = 1 − k

N

For more information about the gambler’s ruin problem, see the classic probability text, W. Feller, An

Introduction to Probability Theory and Its Applications, Vol. I, 3rd Ed.

Properties about the sample path behaviour of stochastic processes are usually quite difficult to estab-
lish. If we are only interested in the average behaviour, we need only to determine the moments. This
problem becomes relatively straightforward in the case of linear systems. The rest of Chapter 2 focuses
on the moment properties of linear stochastic systems. We in fact do not need and will not make the

Assumption M for the rest of Chapter 2.

2.3 Linear Stochastic Systems

At the degree of generality of (2.2), there is not much more one can say about the properties of the process
xk based on those of x0 and w. For the rest of this chapter, we shall concentrate on second order analysis
of linear stochastic systems. We shall see that quite a lot of concrete results can be obtained in this case.

A linear stochastic system is described by the equation

xk+1 = Akxk + Bkuk + Gkwk k = 0, 1, . . . (2.5)

where for each k, Ak, Bk, and Gk are given matrices of dimensions n × n, n × m, and n × l, respectively.
It is readily verified that the solution of (2.5) is given by the following formula:

xk = Φ(k; 0)x0 +

k−1
∑

j=0

Φ(k; j + 1)(Bjuj + Gjwj) (2.6)

where

Φ(k; j) = Ak−1Ak−2 · · ·Aj for k > j (2.7)

Φ(j; j) = I

This explicit solution allows us to obtain various additional properties of the solution process x.
Assumption I: The process w has zero mean, i.e. Ewk = 0 for all k.
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Let mk denote Exk with m0 = Ex0 given. Then by taking expectation on both sides of (2.6), we obtain
the following formula for mk:

mk = Φ(k; 0)m0 +

k−1
∑

j=0

Φ(k; j + 1)Bjuj (2.8)

Equivalently, we can consider mk as satisfying the difference equation

mk+1 = Akmk + Bkuk

for which the solution is given by (2.8). Note that if we assume we know Ewk, the assumption that it is
zero for all k is without loss of generality. A nonzero Ewk will just result in an additional term on the
right hand side of the mk equation.

To analyze the second order properties of xk, we make the following additional assumptions:
Assumption II: wk satisfies the property EwkwT

j = Qkδkj, where δkj is the Kronecker delta function:
δkj = 1 when k = j, δkj = 0 when k 6= j.

Assumption II can be relaxed by adding dynamics to the system.
The process w satisfying the above assumption is often referred to as (wide-sense) white noise. We

make one further assumption:
Assumption III: Ex0w

T
k = 0 for all k.

Assumption III is a reasonable assumption as there is usually no reason to expect that the system noise
is correlated with the initial condition.

Assumptions II and III will allow us to develop equations for the covariance matrix of xk. To that end,
let x̃k = xk − mk. It is easily verified that x̃k satisfies the equation

x̃k+1 = Akx̃k + Gkwk (2.9)

Solving, we obtain

x̃k = Φ(k; 0)x̃0 +

k−1
∑

j=0

Φ(k; j + 1)Gjwj (2.10)

Let Σk denote the covariance matrix of xk, i.e. Σk = Ex̃kx̃
T
k . Direct substitution into (2.10) gives

Σk = Φ(k; 0)Σ0Φ(k; 0)T +

k−1
∑

j=0

k−1
∑

l=0

Φ(k; j + 1)GjE(wjw
T
l )GT

l Φ(k; l + 1)T

where we have used Assumption III. On using Assumption II and simplifying, we get

Σk = Φ(k; 0)Σ0Φ(k; 0)T +

k−1
∑

j=0

Φ(k; j + 1)GjQjG
T
j Φ(k; j + 1)T (2.11)

(2.11) gives the explicit solution for the covariance matrix Σk. Σk can also be shown to satisfy a
difference equation. First we make the observation that

Ex̃kw
T
k = 0 for all k (2.12)

This comes from the fact that x̃k depends linearly on x̃0 and wk−1
0 , as can be seen from (2.10). By

Assumption II, Ex̃kw
T
k = 0. Now compute Ex̃k+1x̃

T
k+1 using (2.9), and use the observation (2.12). We

find that
Σk+1 = AkΣkA

T
k + GkQkG

T
k (2.13)

Naturally, the solution to (2.13) is given by (2.11).
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2.4 Sampling a Continuous Time Linear Stochastic System

Discrete time processes often arise from sampling of continuous time processes. Although we focus on
discrete time processes in this course, we briefly discuss how sampling of a linear stochastic differential
equation driven by white noise give rise to a discrete time linear stochastic system.

A continuous time zero mean white noise process is formally defined as a zero mean stochastic process
v(t) having a covariance function Ev(t)vT (s) = V δ(t − s). Here, δ(t) is the Dirac delta function having
the properties

(i) δ(t) = 0, t 6= 0

(ii)
∫∞
−∞ δ(t)dt = 1

(iii)
∫∞
−∞ g(t)δ(t)dt = g(0)

While a such process v(t) cannot exist in a physical sense as Ev(t)vT (t) has an infinite value due to
the delta function, it turns out to be very useful when used as an input to linear systems. For simplicity,
we discuss only linear time-invariant continuous time systems.

Consider the stochastic differential equation

ẋ(t) = Ax(t) + Bv(t) (2.14)

where v is a zero mean continuous time white noise process having a covariance function Ev(t)vT (s) =
V δ(t − s). While (2.14) is a formal description, it can be made rigorous using the ”differential” version

dx(t) = Ax(t)dt + Bdw(t)

where w(t) is a Wiener process (See, e.g., M.H.A. Davis, Linear Estimation and Stochastic Control).
From standard results on linear differential equations, the solution of (2.14) is given by

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)Bv(s)ds (2.15)

Suppose we sample the x(t) process at the sampling times kT , for integers k ≥ 0. Using (2.15), we can
write

x(kT + T ) = eAT x(kT ) +

∫ kT+T

kT
eA(kT+T−s)Bv(s)ds (2.16)

We can write (2.16) as
zk+1 = Fzk + wk (2.17)

where z(k) = x(kT ), F = eAT , and wk denotes the 2nd term on the R.H.S. of (2.16). We will now show
that wk is a zero mean discrete time white noise process with Ewkw

T
j = Qδkj, for some Q.

It is clear that since Ev(t) = 0 that Ewk = 0 also. For j 6= k,

Ewkw
T
j = E

∫ kT+T

kT
eA(kT+T−s)Bv(s)ds[

∫ jT+T

jT
eA(jT+T−τ)Bv(τ)dτ ]T

=

∫ kT+T

kT

∫ jT+T

jT
eA(kT+T−s)BV BT eAT (jT+T−τ)δ(s − τ)dsdτ (2.18)

Note that since the intervals of integration in (2.18) do no overlap, there are no values of s and τ for which
s − τ = 0. Hence for j 6= k,

Ewkw
T
j = 0
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For j = k, we obtain from (2.18), that

Ewkw
T
k =

∫ kT+T

kT

∫ kT+T

kT
eA(kT+T−s)BV BT eAT (kT+T−τ)δ(s − τ)dsdτ

=

∫ kT+T

kT
eA(kT+T−s)BV BT eAT (kT+T−s)ds

=

∫ T

0
eAτBV BT eAT τdτ (2.19)

Hence wk is a discrete time zero mean white noise process with a covariance Q =
∫ T
0 eAτBV BT eAT τdτ

These results show that sampling a stochastic differential equation driven by white noise results in a
standard discrete time state model for the sampled process.

2.5 Analysis of Linear Time-Invariant Stochastic Systems

More complete results can be obtained if we assume that the matrices A, B, G, and Q are constant. In
this case, the solution to (2.5) takes the form

xk = Akx0 +

k−1
∑

j=0

Ak−j−1(Buj + Gwj) (2.20)

The mean value sequence mk now satisfy

mk+1 = Amk + Buk

with explicit solution given by

mk = Akm0 +

k−1
∑

j=0

Ak−j−1Buj (2.21)

The covariance equation is now given by

Σk+1 = AΣkA
T + GQGT (2.22)

with explicit solution

Σk = AkΣ0(A
T )k +

k−1
∑

j=0

Ak−j−1GQGT (AT )k−j−1 (2.23)

The explicit solutions involve evaluation of Ak, which we shall briefly discuss. There are generally 2
methods: diagonalization and inverse z-transform.

Diagonalization:

Suppose A can be diagonalized by a nonsingular, possibly complex, matrix V . That is,

V −1AV = Λ =

















λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . . · · · 0

... · · · · · · . . .
...

0 · · · · · · 0 λn
















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Direct calculation shows

Ak = (V ΛV −1)k

= V ΛkV −1

= V

















λk
1 0 0 · · · 0
0 λk

2 0 · · · 0

0 0
. . . · · · 0

... · · · · · · . . .
...

0 · · · · · · 0 λk
n

















V −1 (2.24)

It is known from linear algebra that if A has distinct eigenvalues, or if A is symmetric, then A has n linearly
independent eigenvectors {v1, v2, . . . , vn}. The diagonalizing matrix V is then given by

V = [v1 v2 · · · vn]

The above results show that in these diagonalizable cases, determining Ak amounts to solving the eigenvalue
problem associated with the A matrix.

Example 2.4.1:

A =

[

0 1
−2 −3

]

det(zI − A) = det

[

z −1
2 z + 3

]

= z2 + 3z + 2 = (z + 2)(z + 1)

Since A has distinct eigenvalues, the matrix V consisting of the linearly independent eigenvectors of A
as its columns will diagonalize A. We next determine the eigenvectors.

[

0 1
−2 −3

] [

v1

v2

]

= −2

[

v1

v2

]

Solving for v1 and v2 yields

[

0 1
−2 −3

] [

−2
4

]

= −2

[

−2
4

]

Similarly,
[

0 1
−2 −3

] [

−1
1

]

= −1

[

−1
1

]

We can verify that

V =

[

−1 −2
1 4

]

does diagonalize A:
[

−1 −2
1 4

]−1 [
0 1

−2 −3

] [

−1 −2
1 4

]

= −1

2

[

4 2
−1 −1

] [

0 1
−2 −3

] [

−1 −2
1 4

]



2.5. ANALYSIS OF LINEAR TIME-INVARIANT STOCHASTIC SYSTEMS 27

= −1

2

[

4 2
−1 −1

] [

1 4
−1 −8

]

= −1

2

[

2 0
0 4

]

=

[

−1 0
0 −2

]

Using (2.24), we obtain

Ak = −1

2

[

−1 −2
1 4

] [

(−1)k 0
0 (−2)k

] [

4 2
−1 −1

]

= −1

2

[

−1 −2
1 4

] [

4(−1)k 2(−1)k

−(−2)k −(−2)k

]

= −1

2





−4(−1)k + 2(−2)k −2(1)k + 2(−2)k

4(−1)k − 4(−2)k 2(1)k − 4(−2)k









2(−1)k − (−2)k (−1)k − (−2)k

−2(−1)k + 2(−2)k −(−1)k + 2(−2)k





Inverse Z-Transform

The z-transform of a sequence xk on Z+ is defined by

X(z) =

∞
∑

k=0

xkz
−k

If we denote the z-tranform operator by Z, the z-transform of the time-shifted sequence xk+1 is given by

Z(xk+1) = z
∞
∑

k=0

xk+1z
−(k+1)

= z(X(z) − x0)

Now Ak can be interpreted as the solution of the difference equation

Gk+1 = AGk

G0 = I

Taking transforms of both sides gives

z[G(z) − I] = AG(z)

Solving for G(z) gives

G(z) = (I − z−1A)−1 = z(zI − A)−1

Thus Ak is given by

Ak = Z−1(I − z−1A)−1 = Z−1(z(zI − A)−1)

Example 2.4.2:
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Let us determine Ak for the matrix A in Example 2.4.1 using the z-transform method.

Ak = (I − z−1A)−1 =

[

1 −z−1

2z−1 1 + 3z−1

]−1

=

[

1 + 3z−1 z−1

2z−1 1

]

1 + 3z−1 + 2z−2
=

[

1 − 3z−1 z−1

−2z−1 1

]

(1 + z−1)(1 + 2z−1)

=





2
1+z−1 + −1

1+2z−1
1

1+z−1 + −1
1+2z−1

−2
1+z−1 + 2

1+2z−1
−1

1+z−1 + 2
1+2z−1





Now we know from z-transform tables that the following inversion formula holds

Z−1[
z

(z − p)i+1
] =

k!

i!(k − i)!
pk−i for all i ≥ 0 (2.25)

Applying the formula gives

=

[

2(−1)k + (−1)(−2)k (−1)k − (−2)k

−2(−1)k + 2(−2)k −(−1)k + 2(−2)k

]

which is the same result as before.

We now consider the behaviour of mk and Σk as k → ∞. For simplicity, we assume that uk = 0. We
also assume that A is stable, i.e. all its eigenvalues lie inside the unit disk {z : |z| < 1}. For stable A, it is
known that there exist positive constants α and ρ such that ‖Ak‖ ≤ αρk where α > 0 and 0 < ρ < 1.

From the explicit solution of mk (2.21), we immediately see that mk → 0 as k → ∞. The interpretation
is that the effects of the mean of the random initial condition x0 should vanish as k → ∞. Since the random
disturbance wk has zero mean, xk should itself have zero mean in the steady state.

By making a change of variable l = k − j − 1, the solution for Σk from (2.23) can be written as

Σk = AkΣ0(A
T )k +

k−1
∑

l=0

AlGQGT (AT )l (2.26)

The first term in (2.26) tends to 0. The second term in (2.26) is nondecreasing as k increases. Since
‖AlGQGT (AT )l‖ ≤ βρ2l, the second term is bounded by β 1

1−ρ2 for all k. Hence we conclude that the
second term has a limit as k tends to ∞, so that

lim
k→∞

Σk = Σ∞ =

∞
∑

l=0

AlGQGT (AT )l (2.27)

Now that we know that Σ∞ exists, we can also determine it by taking the limit on both sides of (2.22) to
get

Σ∞ = AΣ∞AT + GQGT (2.28)

Equation (2.28) is called the discrete-time Lyapunov equation. It is a linear algebraic equation in
Σ∞. We have already shown in (2.27), that when A is stable, there exists a solution to (2.28) given by
∑∞

l=0 AlGQGT (AT )l. We now show that the solution is unique. Suppose there exist 2 solutions, Σ1 and
Σ2, to (2.28). Let ∆ = Σ1 − Σ2. Then ∆ satisfies the equation

∆ = A∆AT
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Iterating yields

∆ = Ak∆(Ak)T for all k

Letting k → ∞ and using the stability of A, we see that ∆ = 0, proving uniqueness.
Combining these results, we can state the following important result on the discrete-time Lyapunov

equation.

Theorem 2.1. Assume that A is stable. The discrete-time Lyapunov equation (2.28) has a unique solution
given by

∑∞
l=0 AlGQGT (AT )l.

In practice, we rarely use (2.27) to determine Σ∞. We would determine Σ∞ by directly solving the
linear equation (2.28).

We can now draw the following conclusion:
If A is stable, and we allow the system to settle down to its steady state behaviour, the system will then

have zero mean and a constant covariance for all k. This can be seen by noting that if m0 = 0, mk = 0
for all k ≥ 0. Also if the initial covariance Σ0 = Σ∞ for (2.22), the solution can readily be verified to be
Σk = Σ∞, for all k ≥ 0.

Outputs:

We often have an output equation of the form

yk = Cxk + Hvk (2.29)

In order to analyze the properties of y, we add the following assumptions.

Assumption IV: Evk = 0, and Evjv
T
k = Rδjk

Assumption V: Ewjv
T
k = 0 for all j < k, and Ex0v

T
k = 0 for all k.

Under Assumption V, it is readily seen that vk is uncorrelated with xk. A direct calculation then gives

Eyk = Cmk (2.30)

and

cov(yk) = CΣkC
T + HRHT (2.31)

Again, if A is stable, cov(yk)−→k→∞
CΣ∞CT + HRHT .

2.6 ARMAX Models

So far, we have concentrated on state space models of linear stochastic systems. In this section, we discuss
difference equation models of linear stochastic systems. For simplicity, we shall limit our discussion to
scalar-valued processes, although much of the analysis goes through for vector-valued processes as well.

Consider the following difference equation in the process y:

yk + a1yk−1 + · · · + anyk−n = b1uk−1 + b2uk−2 + · · · + bnuk−n + c0wk + c1wk−1 + · · · + cnwk−n (2.32)

Here, uk is taken to be a known deterministic sequence, wk is a zero mean uncorrelated sequence with
variance σ2

w. The above description, with uk and wk as inputs and yk as the output, is called an ARMAX
process. AR stands for autoregressive and describes the linear combination of yk and the past values yk−j.
MA stands for moving average and describes the linear combination of wk and the past values wk−j. The
“X” part stands for exogenous inputs, which describes the linear combination of uk−1 and the past values
of u. Note that we assume that there is a one-step delay between the input u and the output y. This
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corresponds to having no direct feedthrough from u to y, which is often the case. The extension to the case
with a b0uk term included is not difficult but increases the notational complexity. If there is no exogenous
input uk, (2.32) reduces to

yk + a1yk−1 + · · · + anyk−n = c0wk + c1wk−1 + · · · + cnwk−n (2.33)

This is referred to as an ARMA model and is very popular in time series modelling and analysis.

Define the backward shift operator z−1 as follows:

z−1yk = yk−1

Define also the polynomials

A(z−1) =

n
∑

j=0

ajz
−j with a0 = 1

B(z−1) =
n
∑

j=1

bjz
−j

C(z−1) =

n
∑

j=0

cjz
−j

Equation (2.32) can then be written as

A(z−1)yk = B(z−1)uk + C(z−1)wk (2.34)

Note that there is no loss of generality in assuming that the degrees of the polynomials A(z−1), B(z−1),
and C(z−1) are as given, since they can always be made the same by padding with zeros.

To solve the equation for the yk process, we need either to provide initial conditions for the dif-
ference equation, or to solve the equation using the infinite past. Providing initial conditions for the
equation amounts to providing information about the quantities y−1, y−2, · · · , y−n, u−1, u−2, · · · , u−n, and
w−1, w−2, · · · , w−n. If the initial conditions are assumed known, the ARMAX equation can then be solved
forward in time by recursion so that the output process yk can be written as

yk = φ(k, uk−1
0 , wk

0)

where we have used the notation wk
0 to denote wj , 0 ≤ j ≤ k, and φ(k, uk−1

0 , wk
0) is some linear function of

uk−1
0 , wk

0 . Explicit determination of the solution for yk amounts to solving an nth order difference equation.
This is usually more conveniently done using a state space representation of the ARMAX equation, as we
shall see later on.

To interpret the solution of the ARMAX equation using the infinite past, we first need to introduce
processes which are defined on the set of all integers. We shall focus primarily on the class of (wide-sense)
stationary processes, which we shall now define and discuss.

A process yk is said to be second-order if Ey2
k < ∞ for all k. A second-order process yk is said to be

(wide-sense) stationary if Eyk = m, a constant, and the correlation Eyn+kyn is a function of k only. This
implies that the second moment Ey2

k is also a constant, which, to avoid triviality, is assumed to be strictly
positive. Hence a stationary process has second-order probabilistic properties which are invariant with
respect to time shift. Such a process is therefore assumed to be defined on the set of all integers (negative
as well as positive) Z. For a stationary process y, we denote the correlation Eyn+kyn as a function of k
by Ry(k). We refer to Ry(k) as the correlation function.



2.6. ARMAX MODELS 31

Now consider the following simple first order AR system

yk+1 − ayk = wk+1 (2.35)

If we solve this equation starting at time k0, the solution, for k > k0, is given by

yk = ak−k0yk0 +

k−1
∑

j=k0

ak−j−1wj+1 = ak−k0yk0 +

k−k0−1
∑

m=0

amwk−m

Let η(k; k0) =
∑k−k0−1

m=0 amwk−m. Note that yk0 is uncorrelated with η(k; k0) since η(k; k0) involves linear
combination of wj , j > k0. Letting k0 → −∞, we see that formally we would expect the second term in
the solution to have the limit

lim
k0→−∞

η(k; k0) =

∞
∑

m=0

amwk−m

provided that the infinite sum converges. Fix k and denote the Nth partial sum SN by

SN =
N
∑

m=0

amwk−m

We can then ask under what conditions will SN converge and what type of convergence it will be, as SN

is a random sequence. The type of convergence we shall use, which particularly fits the assumption of the
processes being stationary, is that of mean square convergence.

Let X and Xn, n = 1, 2, · · · be random variables with finite second moments.

Definition: The random sequence Xn is said to converge to X in mean square if limn→∞ E|Xn −X|2 = 0.

Note that E|Xn −X|2 is a nonnegative number for each n. Mean square convergence is based therefore
on whether this sequence of nonnegative numbers converges or not.

Given a random sequence Xn, one may ask whether or not it converges to some random variable X in
mean square. Since we generally do not know to which random variable X the sequence may converge, we
cannot directly apply the definition to check convergence. There is, however, an effective criterion to test
convergence, called Cauchy’s criterion.

Cauchy’s criterion: A random sequence Xn converges to some random variable X in mean square if and
only if limn,m→∞ E|Xn − Xm|2 = 0.

We can now return to the question of convergence of the Nth partial sums SN . By Cauchy’s criterion,
SN converges to some random variable in mean square if and only if limn,m→∞ E|Sn − Sm|2 = 0. It is not

difficult to verify that if |a| < 1, and SN =
∑N

j=0 ajwk−j, that limN,M→∞ E|SN −SM |2 = 0. As is natural,

we shall denote the random variable to which SN converges by
∑∞

j=0 ajwk−j.

Now consider the solution of the simple AR equation (2.35). The above results show that if |a| < 1,
i.e. if the system is stable, the term ak−k0yk0 converges to 0 in mean square as k0 → −∞, and the solution
yk converges in mean square as k0 → −∞ to

∑∞
j=0 ajwk−j. The solution is in the form of the convolution

of the sequence ak with the stochastic sequence wk, and can therefore be interpreted as the response of a
linear system with impulse response sequence ak to the input wk.

Further ties between the ARMAX equation description and the transfer function description of a
stochastic system driven by a stationary process can again be seen using the simple example (2.35). Using
the backward shift operator z−1, we can write

yk =
1

1 − az−1
wk (2.36)
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If we expand 1
1−az−1 as a power series in z−1, we find

1

1 − az−1
=

∞
∑

j=0

ajz−j

Substituting into (2.36) yields

yk =
∞
∑

j=0

ajz−jwk =
∞
∑

j=0

ajwk−j

Observe that 1
1−az−1 is also the transfer function from w to y. Hence we may interpret 1

1−az−1 as either
the transfer function representing the input-output relationship in the z-domain, or as a power series in
the backward shift operator z−1 in the time domain.

In general, the ARMAX equation (2.32) can be written in input-output form as

yk =
B(z−1)

A(z−1)
uk +

C(z−1)

A(z−1)
wk (2.37)

whenever the polynomial A(z−1) is stable (i.e., having all roots lie in {z : |z| < 1}). yk is then expressible as
the sum of the convolution of u with the impulse response sequence corresponding to the transfer function
B(z−1)
A(z−1)

, and the convolution of w with the impulse response sequence corresponding to the transfer function

C(z−1)
A(z−1)

. In the next section, we shall analyze the second order properties of the output yk.

2.7 Analysis of Linear Systems Driven by Stationary Processes

Consider a linear time invariant system described by its impulse response sequence hj , j = 0, 1, · · · . We
assume that hj is bounded-input bounded-output stable in the sense that

∑∞
j=0 |hj | < ∞. If we denote

the transfer function corresponding to hj by H(z−1), it is well-known that bounded-input bounded-output
stability of hj is equivalent to the poles of the rational function H(z−1) all lying in {z : |z| < 1}. Suppose
the input to the linear system is a stationary process wk, with mean mw and correlation function Rw(k).
From the results of the previous section, we can therefore write the output of the linear system yk as

yk =

∞
∑

j=0

hjwk−j

It can be shown that whenever we have processes which are mean square convergent, we can interchange
the summation and expectation operation. Hence, the mean of yk, denoted by my(k), is given by

my(k) = E
∞
∑

j=0

hjwk−j

=

∞
∑

j=0

hjEwk−j

=
∞
∑

j=0

hjmw (2.38)

Note that the right hand side of (2.38) is a constant. This means that whenever the input w has a constant
mean, the output y also has a constant mean, given by (2.38). To determine the correlation function of y,
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we write

Eyn+kyn = E

∞
∑

j=0

hjwn+k−j

∞
∑

l=0

hlwn−l

=
∞
∑

j=0

hj

∞
∑

l=0

hlEwn+k−jwn−l

=

∞
∑

j=0

hj

∞
∑

l=0

hlRw(k + l − j) (2.39)

Since the right hand side of (2.39) is a function of k only, we see that the correlation function Eyn+kyn is
a function of k only. Combining, we conclude that if the input w is a stationary process, the output y is a
stationary process also.

If we examine the expression for the correlation function Ry(k) given by (2.39), we see that it contains
essentially a double convolution. Since convolutions are more readily analyzed in the frequency domain
using transforms, we introduce the concept of spectral density of a stationary process.

Spectral Density: The spectral density Φy(ω) of a stationary process y is the Fourier transform of the
correlation function Ry(k), whenever the Fourier transform exists. We can then write

Φy(ω) =

∞
∑

k=−∞

Ry(k)e−ikω

The properties of Φy(ω) may be summarized as being a real, even, nonnegative function. Since Ry(k) and
Φy(ω) are Fourier transform pairs, we can equivalently determine Φy(ω) from the input-output equation.

Taking the Fourier transform of both sides of (2.39), we obtain

Φy(ω) =

∞
∑

k=−∞

∞
∑

j=0

hj

∞
∑

l=0

hlRw(k + l − j)e−ikω

=

∞
∑

k=−∞

∞
∑

j=0

hj

∞
∑

l=0

hlRw(k + l − j)e−i(k+l−j)ωe−ijωeilω (2.40)

Making the change of variable m = k + l − j and summing over m first in (2.40), we find

Φy(ω) =

∞
∑

j=0

hj

∞
∑

l=0

hle
−ijωeilω

∞
∑

m=−∞

Rw(m)e−imω

=

∞
∑

j=0

hje
−ijω

∞
∑

l=0

hle
ilωΦw(ω)

= H(e−iω)H(eiω)Φw(ω) (2.41)

= |H(e−iω)|2Φw(ω) (2.42)

where we have used H(e−iω) to denote the frequency response corresponding to the impulse response
sequence hj :

H(e−iω) =
∞
∑

j=0

hje
−ijω
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Thus given the input spectral density Φw(ω) and the frequency response of the linear system H(e−iω), we
can determine the output spectral density Φy(ω) very easily using either (2.41) or (2.42).

To obtain the correlation function Ry(k) from the spectral density Φy(ω), we use the Fourier inversion
formula

Ry(k) =
1

2π

∫ π

−π
Φy(ω)eikωdω (2.43)

The integral over the real variable ω is usually difficult to evaluate. Instead, we use contour integration
to carry out the inversion. Put z = eiω. Observe that dz = ieiωdω or dz

iz = dω. Expressing the spectral
density as a function of z rather than ω, we can re-write (2.43) as

Ry(k) =
1

2πi

∮

Φy(z)zk−1dz (2.44)

where the contour of integration is counterclockwise over the unit circle C1. By Cauchy’s integral theorem,
we can therefore determine the output correlation function using residue calculus

Ry(k) =
∑

res∈C1

Φy(z)zk−1 (2.45)

where
∑

res∈C1
denotes summation over the residues inside the unit circle.

Example 2.6.1:

As a simple example, again consider the AR system (2.35). If we assume that the input process w is a
zero mean orthogonal sequence (white noise) with variance σ2

w, w has spectral density Φw(ω) = σ2
w. The

output spectral density is given by

Φy(ω) =
1

(1 − ae−iω)(1 − aeiω)
σ2

w

The output correlation function is then given by

Ry(k) =
1

2πi

∮

σ2
w

(1 − az−1)(1 − az)
zk−1dz

=
1

2πi

∮

σ2
w

(z − a)(1 − az)
zkdz (2.46)

For k ≥ 0, the only pole inside the unit circle for the integrand of (2.46) is at a, since |a| < 1. Hence

Ry(k) =
σ2

w

1 − a2
ak for k ≥ 0

For k < 0, there will be additional poles on the right hand side of (2.46) at z = 0. This complication can
be avoided by making the change of variable p = z−1 in (2.46). In terms of the integral with p as the
complex variable, the integrand will no longer have repeated poles at p = 0. Combining, we find

Ry(k) =
σ2

w

1 − a2
a|k| for all k

Example 2.6.2:

A more interesting example is the first order ARMA model for a stationary process yk given by

yk − ayk−1 = wk + cwk−1
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We assume, as usual, that 0 < |a| < 1. For simplicity, we assume that Ew2
k = 1. The spectral density for

y is then given by

Φy(ω) =
(1 + ce−iω)(1 + ceiω)

(1 − ae−iω)(1 − aeiω)

The output correlation function is given by

Ry(k) =
1

2πi

∮

(1 + cz−1)(1 + cz)

(1 − az−1)(1 − az)
zk−1dz

=
1

2πi

∮

(z + c)(1 + cz)

(z − a)(1 − az)
zk−1dz (2.47)

For k = 0, (2.47) becomes

Ry(k) =
1

2πi

∮

(z + c)(1 + cz)

z(z − a)(1 − az)
dz

Evaluating the residues at z = 0 and z = a, we obtain

Ry(0) = Ey2
k

= − c

a
+

(a + c)(1 + ca)

a(1 − a2)

=
a + c + ca2 + c2a − c(1 − a2)

a(1 − a2)

=
1 + 2ac + c2

1 − a2

The values of Ry(k) for k ≥ 1 is straightforward and left as an exercise.

2.8 From State Space to ARMAX

We have seen how we can analyze linear stochastic systems either in state space form or input-output form.
We shall now show how one description can be transformed to the other.

Consider again the linear stochastic system in state space form given by

xk+1 = Axk + Gwk

yk = Cxk + Hwk (2.48)

Note that in (2.48), we have use the same process wk in both the dynamice and the observation equation.
This is because our ARMAX model only has one independent noise process, which will be wk. We have
also taken uk = 0 for simplicity. We can derive the input-output representation from the state space model
as follows. First note that the transfer function from w to y is given by

H(z−1) = C(zI − A)−1G + H (2.49)

Write

(zI − A)−1 =
adj(zI − A)

det(zI − A)

Let

adj(zI − A) = B1z
n−1 + B2z

n−2 + · · · + Bn (2.50)

det(zI − A) = zn + p1z
n−1 + · · · + pn (2.51)
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Combining, we get the equation

yk = (C
B1z

n−1 + B2z
n−2 + · · · + Bn

zn + p1zn−1 + · · · + pn
G + H)wk (2.52)

Multiplying (2.52) throughout by det(zI − A), we get the following ARMA equation

yk + p1yk−1 + · · · + pnyk−n = Hwk + (CB1G + p1H)wk−1 + · · · + (CBnG + pnH)wk−n (2.53)

These results can clearly be extended to the case where there is also an exogenous input uk, resulting in
an ARMAX model.

In deriving the ARMAX model from the state space model, we have focused on the input-output
relationship. If the state space and ARMAX equations are solved starting at 0, we need to consider initial
conditions as well. Of course, if we assume that the initial conditions are 0, the output process yk from
the two models will be the same.

Alternatively, we can consider the processes to be stationary processes defined on Z. Recall that if we
assume, for the state space description (2.48), the matrix A to be stable, mk = 0 and Σk = Σ∞, we will
get a zero mean process with a constant covariance matrix. We now determine the correlation functions.

Write for k > 0,

Exk+nxT
n = E[Akxn +

n+k−1
∑

j=n

An+k−j−1Gwj ]x
T
n (2.54)

Since xn depends only on wj, j ≤ n − 1, we see that (2.54) simplifies to

Exk+nxT
n = AkΣ∞ (2.55)

Hence the correlation function of xk depends only on the time separation

Rx(k) = Exk+nxT
n = AkΣ∞ (2.56)

(2.56) shows that xk is a stationary process. The output correlation function can also be computed.

Ry(k) = E[Cxn+k + Hwn+k][x
T
n CT + wT

n HT ]

= CAkΣ∞CT + CAk−1GQHT for k > 0 (2.57)

For k < 0, we can write

Exn+kx
T
n = E(xnxT

n+k)
T = (A−kΣ∞)T = Σ∞(AT )|k|

Assume that the conditions for stationarity are satisfied for (2.48). Interpreted as stationary processes
on Z, the state space model and the ARMAX model give rise to the same output process yk.

2.9 From ARMAX to State Space

While deriving an ARMAX model from a state space model is straightforward, deriving state space model
from an ARMAX description is nontrivial. It amounts to finding a state space realization of a transfer
function. For simplicity, we shall only study scalar-valued processes. We proceed as follows.

Given an ARMAX model

A(z−1)yk = B(z−1)uk + C(z−1)wk (2.58)
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with

A(z−1) =

n
∑

j=0

ajz
−j with a0 = 1

B(z−1) =

n
∑

j=1

bjz
−j

C(z−1) =
n
∑

j=0

cjz
−j

define the following state variables

xn−j(k) = −
n
∑

i=j+1

aiz
−(i−j)yk +

n
∑

i=j+1

biz
−(i−j)uk +

n
∑

i=j+1

ciz
−(i−j)wk (2.59)

From the ARMAX equation (2.58), we immediately find

xn(k) = yk − c0wk (2.60)

Now

xn−j(k + 1) = −
n
∑

i=j+1

aiz
−(i−j−1)yk +

n
∑

i=j+1

biz
−(i−j−1)uk +

n
∑

i=j+1

ciz
−(i−j−1)wk

= −aj+1yk + bj+1uk + cj+1wk + xn−j−1(k)

= xn−j−1(k) − aj+1xn(k) + bj+1uk + (cj+1 − aj+1c0)wk (2.61)

Combining (2.61) and (2.60), we get the following matrices for the state space description

A =

















0 0 0 0 −an

1 0 · · · 0 −an−1

0
. . . 0 · · · −an−2

... · · · . . . · · · ...
0 · · · · · · 1 −a1

















(2.62)

B =

















bn

bn−1
...
...
b1

















(2.63)

G =

















cn − anc0

cn−1 − an−1c0
...
...

c1 − a1c0

















(2.64)

C =
[

0 0 · · · 0 1
]

(2.65)
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H = c0 (2.66)

Definition: Let A be an n × n matrix, C a p × n matrix. The pair (C,A) is called observable if
Rank[CT AT CT · · · (AT )n−1CT ] = n.

This state space representation of the ARMAX equation (2.58) is called the observable representation,
since the pair (C,A) is always observable. Other representations are possible, but we shall not go into
details.

Example 2.8.1:

Let the process yk be described by the ARMAX equation

yk + 0.7yk−1 + 0.01yk−2 = 2uk−1 + uk−2 + wk + 1.7wk−1 + 0.72wk−2

The corresponding observable state space representation is given by

xk+1 =

[

0 −0.01
1 −0.7

]

xk +

[

1
2

]

uk +

[

0.71
1

]

wk

yk =
[

0 1
]

xk + wk

With the above results, one can go easily from one representation to another, and use whichever
representation is easiest to work with in a specific situation. For systems defined on Z+ with initial
conditions, usually the state space representation is easiest to work with.
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Exercises

1. Consider the following system

xk+1 = Axk + Gwk (ex1.1)

where

A =

[

1 0
0.4 0.5

]

, G =

[

0
1

]

cov(x0) =

[

1 0
0 1

]

and wk is an orthogonal sequence with zero mean and variance 1.

(a). Determine explicitly Σk = cov(xk).

(b). Associated with (ex1.1) is the Lyapunov equation

Σ = AΣAT + GGT (ex1.2)

Determine the solutions of (ex1.2). Is there a unique solution?

(c). Does lim
k→∞

Σk exist? If so, does it correspond to a solution of the Lyapunov equation (ex1.2)?

(d). What is the difference between this problem and the standard results on the Lyapunov equation?

2. Consider the first order ARMA system

yk − ayk−1 = wk + cwk−1

where 0 < |a| < 1, Ewk = 0, and Ew2
k = 1. Write down the observable state space representation

of the system. Solve the resulting Lyapunov equation for the steady state covariance of xk. Hence
determine the steady state mean square value of yk, and verify that the result is the same as the
direct calculation in Section 2.6.

3. Consider the linear stochastic system

xk+1 = Axk + Gwk

yk = Cxk

where

A =

[

0.4 0
−0.6 0.2

]

, G =

[

1
1

]

, C =
[

0 1
]

and wk is a sequence of zero mean orthogonal random variables with Ew2
k = 1, all k. Let the initial

covariance cov(x0) = I, the identity matrix. Find the covariance matrix Σk = E(xk −mk)(xk −mk)
T

and determine its limit as k → ∞. Verify that it is identical to the solution of the Lyapunov equation

Σ = AΣAT + GGT

For the resulting stationary process, determine the output correlation function Ry(k).

4. Consider again the linear stochastic system described in problem 3. Determine the ARMA model
relating w and y. Write down the spectral density of y, and determine Ry(k) using the inversion
formula for the spectral density. Verify that the result is the same as that of problem 3.
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5. Suppose the stationary process yk satisfies the equation

yk + 1.1yk−1 + 0.24yk−2 = wk

where wk is an i.i.d. sequence with zero mean and variance 1.

(i) Represent the process in the observable representation. Determine the covariance matrix of the
resulting state process xk, and use it to find the correlation function of yk.

(ii) In this part, we look at an alternative state space representation of the system. Let xk =
[

yk

yk−1

]

. Write the state equation for xk. Determine the covariance matrix of xk, and find the

correlation function rk = Eyk+lyl. Verify that the result is the same as that in (i).

(iii) Now find the correlation function rk using contour integration, and once again show that it gives
the same result as that obtained in (i) and (ii).


