
Chapter 3

RECURSIVE ESTIMATION AND

KALMAN FILTERING

3.1 The Discrete Time Kalman Filter

Consider the following estimation problem. Given the stochastic system

xk+1 = Axk + Gwk (3.1)

yk = Cxk + Hvk (3.2)

with

x(k0) = x0

find the linear least squares estimate of xk based on past observations yk0, ..., yk−1. We denote this by
either Ê{xk|Yk−1} where Yk−1 = {yk0, ..., yk−1}, or by x̂k|k−1, or by x̂(k|k − 1). We also use yk for Yk.

In general, the problem of estimating xk based on Yj is called the prediction problem, the filtering
problem, and the smoothing or interpolation problem, for j < k, j = k, and j > k, respectively. Since
there is a one-step delay in the information available for computing x̂k|k−1, we often call x̂k|k−1 the one-step
ahead predictor.

We make the following assumptions concerning the system (3.1) and (3.2), which will be in force
throughout the rest of this chapter.

(i) wk is an uncorrelated sequence of zero mean random vectors, with EwkwT
k = Q.

(ii) vk is an uncorrelated sequence of zero mean random vectors, with Evkv
T
k = R.

(iii) The initial random vector x0 has mean m0 and covariance P0.

(iv) wk, vj and x0 are mutually uncorrelated for all k and j, except Ewkv
T
k = T

(v) The matrix HRHT is assumed to be nonsingular, hence positive definite.

Although we have assumed constant matrices for simplicity, all derivations and results, with the ex-
ception of those on asymptotic behaviour, remain unchanged for systems with time-varying matrices as
well.

Let us analyze the estimation problem. Obviously, x̂k0|k0−1 = m0 because Yk0−1 has no observations

and hence no new information. If we define the error covariance Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)
T },

we also have Pk0|k0−1 = P0. Now assume that yk0, ..., yk−1 have been observed, giving rise to the estimate
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x̂k|k−1 and the error covariance Pk|k−1. The new measurement yk improves our estimate and according to
the results of Section 1.7,

x̂k|k = x̂k|k−1 + Pk|k−1C
T (CPk|k−1C

T + HRHT )−1(yk − Ckx̂k|k−1) (3.3)

Similarly,
Pk|k = Pk|k−1 − Pk|k−1C

T (CPk|k−1C
T + R)−1CPk|k−1 (3.4)

These results follow because by our assumptions, vk is orthogonal to xk and to Yk−1.
To continue the process by induction, we need to find x̂k+1|k in terms of x̂k|k. But x̂k+1|k is given by

Ê{xk+1/Yk} = Ê{Axk + Gwk/Yk}
= Akx̂k|k + Gŵk|k

Since wk is orthogonal to Yk−1,
ŵk|k = E(wk ỹT

k )E(ỹkỹ
T
k )−1ỹk

where ỹk = yk − Cx̂k|k−1. Now

E(wkỹ
T
k ) = E(wkv

T
k HT )

so that
x̂k+1|k = Ax̂k|k + GTHT (CPk|k−1C

T + HRHT )−1ỹk (3.5)

Substituting (3.3) into (3.5), we obtain

x̂k+1|k = Ax̂k|k−1 + (APk|k−1C
T + GTHT )(CPk|k−1C

T + HRHT )−1(yk − Cx̂k|k−1)

To obtain a difference equation for the error covariance Pk|k−1, let Kk denote the Kalman gain

Kk = (APk|k−1C
T + GTHT )(CPk|k−1C

T + HRHT )−1

and x̃k|k−1 denote the estimation error

x̃k|k−1 = xk − x̂k|k−1

The estimation error satisfies the equation

x̃k+1|k = (A − KkC)x̃k|k−1 + Gwk − KkHvk (3.6)

Since Pk|k−1 = E(x̃k|k−1x̃
T
k|k−1), we obtain the following difference equation for Pk|k−1:

Pk+1|k = (A − KkC)Pk|k−1(A − KkC)T + GQGT

− GTHT KT
k − KkHT T GT + KkHRHT KT

k

= APk|k−1A
T + GQGT

− (APk|k−1C
T + GTHT )(CPk|k−1C

T + HRHT )−1(CPk|k−1A
T + HT TGT )

Combining the above results, we obtain the discrete time Kalman filter in the one-step ahead prediction
form.

Theorem 3.1: The linear least squares estimator of xk given Yk−1 is generated by the following recursive
relations:

x̂k+1|k = Ax̂k|k−1 + (APk|k−1C
T + GTHT )(CPk|k−1C

T + HRHT )−1(yk − Cx̂k|k−1) (3.7)

Pk+1|k = APk|k−1A
T + GQGT

− (APk|k−1C
T + GTHT )(CPk|k−1C

T + HRHT )−1(CPk|k−1A
T + HT TGT ) (3.8)
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with

x̂k0|k0−1 = m0

Pk0|k0−1 = P0

The above theorem was first given by Kalman in his famous paper, “A new approach to linear filtering
and prediction problem”, J. Basic Engineering, ASME, 82 (March 1960), 34-45.

Equation (3.8) is especially important in control and estimation theory and is referred to as the discrete

time Riccati difference equation. The ”filtered” estimate and error covariance can be obtained using (3.3)
and (3.4). For simplicity, we shall refer to all these equations as Kalman filter equations.

If we make the stronger assumptions that wk, vj and x0 are Gaussian random vectors, then Ê(xk/Yk−1)
is in fact the conditional expectation E(xk/Yk−1). Thus in this case, the process x̂k|k−1 is the minimum
mean square error estimator for xk. In addition, since xk and yk are jointly Gaussian, the conditional error
covariance

E{[xk − x̂k|k−1][xk − x̂k|k−1]/Yk−1}
does not depend on the observations Yk−1 and hence is equal to Pk|k−1. So the Kalman filter completely
characterizes the conditional probability distribution in this case.

Equation (3.7) may be written as

x̂k+1|k = Ax̂k|k−1 + Kk(yk − Cx̂k|k−1)

where
Kk = (APk|k−1C

T + GTHT )[CPk|k−1C
T + HRHT ]−1

is the Kalman gain. This shows that the Kalman filter uses the same dynamics as the system state equation,
with the new information contained in ỹk fed back into the system through the Kalman gain. The block
diagram description of the Kalman filter is given in the following figure.

+

+ +yk

z−1

A

Kk
C

−

x̂k|k−1

A very important feature of the Kalman filter is that the error covariance does not depend on the
observations. Hence Pk|k−1 can be pre-computed and the accuracy of the filter assessed before the observa-
tions are made. In particular, we may investigate the asymptotic behaviour of the filter by analyzing the
discrete time Riccati equation. This we shall do in a later section.

Example 3.1.1:

Consider the following scalar value process

xk+1 = xk

yk = xk + vk
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This corresponds to a constant random variable observed in noise. The Riccati difference equation is given
by (we denote pk|k−1 by pk for simplicity)

pk+1 = pk −
p2

k

pk + r
=

pkr

pk + r
(3.9)

To solve this nonlinear difference equation, observe that if we write the equation for 1
pk

, we get

1

pk+1
=

1

pk
+

1

r

This is now a linear equation, which can be solved immediately to give

1

pk
=

1

p0
+

k

r

Inverting, we obtain the solution to (3.9)

pk =
p0r

r + p0 k
(3.10)

The Kalman filter equation for this system can be readily written down

x̂k+1|k = x̂k|k−1 +
pk

pk + r
(yk − x̂k|k−1) (3.11)

Substituting (3.10) into (3.11), we obtain

x̂k+1|k = x̂k|k−1 +

p0r
r+p0 k

p0r
r+p0 k + r

(yk − x̂k|k−1)

= x̂k|k−1 +
p0

r + p0(k + 1)
(yk − x̂k|k−1)

=
r + p0 k

r + p0(k + 1)
x̂k|k−1 +

p0

r + p0(k + 1)
yk (3.12)

Equation (3.12) is a linear time-varying difference equation which can be readily solved. First observe that
the transition function associated with r+p0 k

r+p0(k+1) is given by

Φ(k; j) =
r + p0(k − 1)

r + p0 k

r + p0(k − 2)

r + p0(k − 1)
· · · r + p0j

r + p0(j + 1)
=

r + p0j

r + p0 k
(3.13)

Using the results of Chapter 2, we can immediately write down

x̂k|k−1 =
r

r + p0 k
m0 +

k−1
∑

j=0

r + p0(j + 1)

r + p0 k

p0

r + p0(j + 1)
yj

=
r

r + p0 k
m0 +

1

k

k−1
∑

j=0

1

1 + r
p0 k

yj (3.14)

Example 3.1.2:

Consider the scalar process

xk+1 = axk + wk (3.15)

yk = xk (3.16)
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It is immediately seen that the solution of the Riccati difference equation is given by

pk|k−1 = q for k ≥ 1

The Kalman one-step ahead predictor equation is given by

x̂k+1|k = ax̂k|k−1 +
aq

q
(yk − x̂)

= ayk

(3.17)

To get the filtered estimate, we have

x̂k|k = x̂k|k−1 + (yk − x̂k|k−1)

= yk = xk

Finally, the error covariance for the filtered estimate is given by

Pk|k = q − q2

q
= 0

These results make good physical sense. For, since xk is perfectly observed at time k, we expect that the
filtered estimate will be a perfect estimate of xk. The filtered error covariance should therefore be 0. On
the other hand, the one-step ahead predictor should give

x̂k+1|k = ax̂k|k = ayk

which is exactly what the one-step predictor equation provides.

3.2 The Innovations Process

The process νk = yk − Ckx̂k|k−1 is called the innovations process. It represents the new information
contained in yk for the estimation of xk. The following is an important property of the innovations.

Theorem 3.2: νk and νj are orthogonal for k 6= j and

cov(νk) = CPk|k−1C
T + HRHT

Proof: Suppose j < k. We may write the innovations process in 2 ways:

νk = Cx̃k|k−1 + Hvk

νj = yj − Cx̂j|j−1

where
x̃j|j−1 = xj − x̂j|j−1

is the estimation error.
Since x̂j|j−1 is a linear function of the observations y(s), k0 ≤ s ≤ j − 1, νj is a linear function of y(s),

k0 ≤ s ≤ j. By the Projection Theorem, x̃k|k−1 is orthogonal to y(σ), k0 ≤ σ ≤ k − 1. Since vk is also
orthogonal to Yk−1, we find that νk is orthogonal to νj

cov(νk) = E{(Cx̃k|k−1 + Hvk)(Cx̃k|k−1 + Hvk)
T }

= CPk|k−1C
T + HRHT

by the orthogonality between x̃k|k−1 and vk.
Recall that an uncorrelated sequence is called white noise. The above result shows that the innovations

process is a white noise with covariance which depends on the estimation error covariance.
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3.3 The Discrete Time Riccati Equation

Further analysis of the Kalman filter hinges on the analysis of the discrete time Riccati difference equation

Pk+1|k = APk|k−1A
T + GQGT

− (APk|k−1C
T + GTHT )(CPk|k−1C

T + HRHT )−1(CPk|k−1A
T + HT TGT ) (3.18)

and, in the time-invariant case, the algebraic Riccati equation

P = APAT − (APCT + GTHT )(CPCT + HRHT )−1(HT T GT + CPAT ) + GQGT (3.19)

The full details are rather complex and we shall not go into them. We shall only state the most useful
results.

Definition: A pair of matrices (A,B) with A, n × n and B n × m is called stabilizable if there exists a
m × n matrix L such that A − BL is stable, i.e. that |λ(A − BL)| < 1.

Definition: A pair of matrices (A,C) with A n×n and C p×n is called detectable if there exists a n× p
matrix K such that A − KC is stable.

Since a matrix M is stable if and only if MT is stable, the detectability definition is equivalent to
requiring the existence of KT such that AT −CTKT is stable. This is the definition of (AT , CT ) stabilizable.
We conclude that (C,A) is detectable if and only if (AT , CT ) is stabilizable.

Algebraic tests for stabilizability and detectability are as follows:

(A,B) is stabilizable if and only if Rank[A− λI B] = n for all λ which is an unstable eigenvalue of A.

Similarly, (C,A) is detectable if and only if Rank

[

A − λI
C

]

= n for all λ which is an unstable eigenvalue

of A. These tests are referred to as the PBH tests for stabilizability and detectability.

Let

Ǎ = A − GTHT (HRHT )−1C

Ǧ = G(Q − THT (HRHT )−1HT T )
1
2

K = (APCT + GTHT )(CPCT + HRHT )−1

We have the following important result.

Theorem 3.3: Suppose (Ǎ, Ǧ) is stabilizable and (C,A) detectable. Then the algebraic Riccati equation
(3.19) has a unique solution P in the class of positive semidefinite matrices. The matrix A − (APCT +
GTHT )(CPCT + HRHT )−1C is stable. Furthermore, for any P0 ≥ 0, Pk|k−1 −→ P as k −→ ∞.

There are many proofs of this result. See, e.g. M.H.A. Davis and R.B. Vinter, Stochastic Modelling and

Control.

Remark 1: The matrices Ǎ and Ǧ arise in the following manner. When T 6= 0, wk and Hvk are not
orthogonal. However, we can create a process w̃k which is orthogonal to Hvk by setting

w̃k = wk − THT (HRHT )−1Hvk

It is easy to verify that Ew̃kv
T
k HT = 0. Write

wk = w̃k + THT (HRHT )−1Hvk = w̃k + THT (HRHT )−1(yk − Cxk)
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Putting this into the system equation (3.1), we obtain

xk+1 = Ǎxk + Gw̃k + THT (HRHT )−1yk

Observe that
Ew̃kw̃

T
k = Q − THT (HRHT )−1HT T

so that EGw̃kw̃T
k GT = ǦǦT . If we let ξk be a zero mean white noise process with cov(ξk) = I, we can

write Gw̃k = Ǧξk without changing the second order properties of the equations. This yields

xk+1 = Ǎxk + Ǧξk + THT (HRHT )−1yk

which explains how the condition of stabilizability of (Ǎ, Ǧ) arises.

Remark 2: Any Ǧ satisfying ǦǦT = G(Q − THT (HRHT )−1HT T )GT can also be used in the stabiliz-
ability test. In fact, (Ǎ, Ǧ) is stabilizable if and only if (Ǎ, ǦǦT ) Note also that if T = 0 so that wk and

vj are uncorrelated for all k, j, then Ǎ = A and Ǧ = GQ
1
2 . Checking the stabilizability condition is much

simplified in this case.

Remark 3: The assumptions made in Theorem 3.3 are sufficient conditions. When they are not satisfied,
the solution of the algebraic Riccati equation can be quite complicated. We observe that (C,A) detectable
is clearly necessary for stability of A − KC, hence it is also a necessary condition for the existence of a
stabilizing solution, i.e., a solution P whose corresponding K results in A − KC stable. Delving into the
detailed structure of all solutions to the algebraic Riccati equation without requiring stabilizability and
detectability is beyond the scope of this course.

Let us discuss the meaning of Theorem 3.3. The algebraic Riccati equation (3.19) is a quadratic matrix
equation in P . In general, there can be many solutions to such an equation. Theorem 3.3 asserts that
if stabilizability and detectability holds, there is a unique positive semidefinite one. If we compare (3.19)
with (3.18), we see that (3.19) is the “steady state” version of (3.18). Theorem 3.3 also shows, by the
convergence of Pk|k−1 to P , that P is indeed the steady state error covariance.

If we put in this steady state version in (3.7) in place of Pk|k−1, we would get

x̂s(k + 1|k) = Ax̂s(k|k − 1) + (APCT + GTHT )(CPCT + HRHT )−1(yk − Cx̂s(k|k − 1)) (3.20)

= [A − (APCT + GTHT )(CPCT + HRHT )−1C]x̂s(k|k − 1)

+(APCT + GTHT )(CPCT + HRHT )−1yk (3.21)

Theorem 3.3 says that (3.21) is a stable system driven by the observations yk. The estimation error process
satisfies

x̃s(k + 1|k) = [A − (APCT + GTHT )(CPCT + HRHT )−1C]x̃s(k|k − 1)

+ Gwk − (APCT + GTHT )(CPCT + HRHT )−1Hvk (3.22)

This is a stable linear system driven by white noise. If we compute the error covariance associated with
x̂s(k + 1|k), we get

Ps(k + 1|k) = (A−KC)Ps(k|k − 1)(A−KC)T + GQGT −GTHT KT −KHT TGT + KHRHTKT (3.23)

Since, by Theorem 3.3, (A − KC) is stable, Ps(k + 1|k) converges to a unique steady state solution as
k −→ ∞. It is easily verified that P , the unique solution defined by the algebraic Riccati equation, is a
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steady state solution of (3.23). By uniqueness, we see that Ps(k+1|k) −→ P as k −→ ∞. This means that
the “steady state” filter is stable in the sense that its error covariance is bounded. But since the “steady
state” filter is only suboptimal, this implies that the optimal filter defined by (3.7) must be stable also.

The stability property of the Kalman filter is one of the most important theoretical results. Filters
which are not stable would have little engineering significance. This shows also the importance of system-
theoretic properties like stabilizability and detectability. In this connection, we describe here 2 related
important properties.

Definition: A pair of matrices (A,B) with A, n × n and B n × m is called controllable if Rank
[B AB · · ·An−1B] = n.

The matrix CAB = [B AB · · ·An−1B] is called the controllability matrix.

Definition: A pair of matrices (C,A) is observable if

N











C
CA
...

CAn−1











= {0}

where N (Q) denotes the nullspace of the matrix Q. From linear algebra, we know that this is equivalent
to [CT AT CT (AT )2CT · · · (AT )n−1CT ] has rank n. The matrix

OCA =











C
CA
...

CAn−1











is called the observability matrix. The above observation says that N (OCA) = {0} if and only if
Rank(CAT CT ) = n. From this, we deduce the

Theorem on Duality between Controllability and Observability:

(A,B) is controllable if and only if (BT , AT ) is observable.

A very important theorem in linear systems theory which relies on the notion of controllability is the
Pole Assignment Theorem. To state it, we first define a symmetric set of complex numbers.

Definition:

A set of complex numbers is called symmetric if for any complex number belonging to the set, its complex
conjugate also belongs to the set.

Note that eigenvalues of real matrices form a symmetric set of complex numbers. The roots of a
polynomial with real coefficients also form a symmetric set.

We can now state

The Pole Assignment Theorem:

There exists a matrix L such that the eigenvalues of the matrix A − BL coincide with any given set of
symmetric numbers if and only if (A,B) is controllable.

By the Pole Assignment Theorem, we see that controllability allows the choice of a matrix L such that
A − BL is stable, since we can pick the symmetric set of complex numbers to be stable. Hence, it is clear
that stabilizability is implied by controllability. Dually, we see that detectability is implied by observability.
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Since there are algebraic tests for controllability and observability, these give verifiable sufficient conditions
for the stability of the Kalman filter.

Example 3.3.1:

Let

A =

[

1 1
0 0.5

]

B =

[

1
0

]

The pair (A,B) is not controllable but is stabilizable. We can readily check that the only unstable eigenvalue
is 1, and that

Rank(A − I B) = Rank

[

0 1 1
0 −0.5 0

]

= 2

Example 3.3.2:

Let

A =

[

1 1
0 0.5

]

B =

[

0
1

]

The pair (A,B) is controllable and hence stabilizable.

In practice, the steady state filter (3.22) is often used instead of the optimal filter (3.7). This is because
for many systems, Pk|k−1 converges to P reasonably fast, so that (3.22) is almost optimal. The steady
state filter does not require the computation of Pk|k−1 at every stage, and is therefore a lot simpler to
implement.

If we write the solution to (3.8) as P (k; k0) to indicate explicitly the dependence on the initial time,
we see that by the time-invariance of the system, P (k; k0) actually depends only on (k − k0). From this
we also obtain that P (k; k0) −→

k0→−∞
P . We may interpret this as saying that if we had started the filter

in the infinitely remote past, then we would have reached the steady state and that the steady state filter
(3.21) would be optimal.

Example 3.3.3:

Consider the scalar system

xk+1 = axk + wk

yk = xk + vk

where wk and vj are assumed to be uncorrelated for all k, j. The algebraic Riccati equation is given by

p = a2p − a2p2

p + r
+ q =

a2r

p + r
p + q

The solution for p is determined by solving the quadratic equation

p2 + (r − a2r − q)p − rq = 0

which has the following unique positive solution

p =
(a2 − 1)r + q +

√

[(a2 − 1)r + q]2 + 4rq

2

The steady state Kalman filter has as its system matrix

a − ap

p + r
=

ar

p + r
=

2ar

(a2 + 1)r + q +
√

[(a2 − 1)r + q]2 + 4rq
< 1
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Example 3.3.4:

Consider the 2nd order system

xk+1 = Axk + Gwk

yk = Cxk + vk

where

A =

[

1 1
0 1

]

G =

[

0
1

]

C =
[

0.5 1
]

Assume also that wk and vj are uncorrelated for all k, j, with Q = 1, R = 1. It is easily verified that (A,G)
is controllable, hence stabilizable, and that (C,A) is observable, hence detectable. There exists therefore
a unique positive semidefinite solution to the algebraic Riccati equation. The solution is computed using
the Matlab command dlqe to give

P =

[

1.2557 0.4825
0.4825 1.6023

]

The eigenvalues of (A − KC) are given by 0.5115 ± 0.1805i which are inside the unit circle.
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3.4 Exercises

1. In discrete time estimation problems, certain matrix identities are very useful. We examine some of
them in this problem.

(i) Verify the identity (In + AB)−1 = In − A(Im + BA)−1B where A is n × m, B is m × n and Ip

is the p × p identity matrix.

(ii) Using (i), prove that

(a) (A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1 whenever A−1 and C−1 exists. This,
together with (i), are often referred to as the matrix inversion lemma.

(b) If P−1
2 = P−1

1 + CT R−1C, then P2 = P1 − P1C
T (CP1C

T + R)−1CP1. (C here is in general
rectangular so that C−1 may not exist.)

(c) If P2 = P1 − P1C
T (CP1C

T + R)−1CP1 then P2C
TR−1 = P1C

T (CP1C
T + R)−1.

2. In this problem, we analyze further the asymptotic behaviour of the scalar discrete Riccati equation

p(k + 1) = a2p(k) − a2p(k)2

p(k)+r + q

p(0) = p0

(ex2.1)

and its relation to the algebraic Riccati equation

p = a2p − a2p2

p + r
+ q (ex2.2)

We have considered the cases (i) r > 0, q > 0, (ii) a = 1, r > 0, q = 0, and (iii) r = 0 in the notes.
In this problem, you are asked to examine the other cases.

(i) Assume r > 0, q = 0, |a| 6= 1. Solve (ex2.1) explicitly. Show that for all nonzero p0, p(t)
converges for |a| < 1 and |a| > 1, and determine the limiting values. (Note that for |a| > 1, the
system is not stabilizable.) Do these limiting values correspond to positive semidefinite solutions
of (ex2.2)?

(ii) The system associated with (ex2.1) and (ex2.2) when q = 0 is given by

xk+1 = axk

yk = xk + vk

The time-varying Kalman filter is given by

x̂k+1|k =

[

a − ap(k)

p(k) + r

]

x̂k|k−1 +
ap(k)

p(k) + r
yk

In each of the cases examined in (i) above, what value does a − ap(k)
p(k)+r converge to? Is the

resulting time-invariant filter stable? What conclusions can you draw from the case |a| > 1?

3. We have derived the covariance propagation equation for Pk|k−1 = cov(x̃k|k−1). One can also obtain
an equation for the propagation of Pk|k = cov(x̃k|k). It is most common to do this in two steps:

(i) Express Pk|k in terms of Pk|k−1. This has already been done in class.

(ii) Then express Pk+1|k in terms of Pk|k.
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Carry out the derivation for (ii) for the case Ewkv
T
k = T using the following steps.

(a) Show that
(HRHT )−1(yk − Cx̂k|k) = (CPk|k−1C

T + HRHT )−1ỹk|k−1

(b) Show that
x̃k+1|k = Ǎx̃k|k + Gwk − GTHT (HRHT )−1Hvk

where Ǎ = A − GTHT (HRHT )−1C.

(c) Finally, show that

Pk+1|k = ǍPk|kǍ
T

+ ǦǦ
T

where Ǧ = G(Q − THT (HRHT )−1HT T )
1
2 .

Note that this means the Riccati difference equation can also be written as

Pk+1|k = ǍPk|k−1Ǎ
T − ǍPk|k−1C

T (CPk|k−1C
T + HRHT )−1CPk|k−1Ǎ

T + ǦǦT (ex3.1)

4. Consider the 2nd order system

xk+1 = Axk + Gwk

yk = Cxk + wk

where

A =

[

1 1
0 1

]

G =

[

0
1

]

C =
[

0.5 1
]

with Q = 1, R = 1. Note that this is almost the same system as Example 3.3.4, except that the
observation noise is now wk. Check if the relevant stabilizability and detectability conditions hold.
If they do, determine the unique positive semidefinite solution of the algebraic Riccati equation (you
may find it helpful to express the algebraic Riccati equation in the form suggested by (ex3.1)). Hence
write down the steady state Kalman filter equations for the one-step ahead predictor.

5. Consider the system

xk+1 =

[

1 1
0 1

]

xk + wk

yk = [1 0]xk + vk

wk and vk are independent Gaussian white noise processes with cov(wk) =

[

q1 0
0 q2

]

and cov(vk) =

2. Determine the equations satisfied by the components of the steady state error covariance with q1

and q2 as parameters. Solve the equations for the case q1 = 0, q2 = 1 and verify your answer using
the routine dlqe on Matlab.

6. In this problem, we illustrate the application of Kalman filtering to problems in which processes may
not described in state space form. Let yk, the observed process, be given by

yk = zk + vk

with zk having spectral density Φz(ω) given by

Φz(ω) =
0.36(2 + 2 cos ω)

2.04 + 0.8 cos ω + 2cos 2ω

and vk is zero mean white noise with variance 1. We would like to obtain the steady-state Kalman
filter for the process zk.
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(a) Express Φz(ω) in the form

Φz(ω) = λ
C(eiω)C(e−iω)

A(eiω)A(e−iω)

with λ > 0. Interpret zk as the solution of the ARMA equation

A(q−1)zk = C(q−1)wk

with wk having variance λ. Now obtain a state space description for the process zk.

Hint: The observable representation does not give the most convenient state space equations
for computation. Try writing it in the form

xk+1 = Axk + Gwk

zk = [1 0]xk = Cxk

(b) Determine the steady-state Kalman filter for the estimate ẑk|k. You may use Matlab to solve
the algebraic Riccati equation.

(c) Find the transfer function from yk to ẑk|k. This then is the optimal steady-state filter in the
frequency domain.

7. Recall that estimation problems of the form: estimate xj based on yk are generally classified into 3
categories: for j > k, it is called a prediction problem; for j = k, it is called a filtering problem; for
j < k, it is called a smoothing problem. Smoothing problems are noncausal as far as information flow
is concerned, but they arise in situations where estimates do not have to be generated in real-time.
This problem shows how Kalman filtering equations may be used to solve smoothing problems.

(a) Consider the linear stochastic system

xk+1 = Akxk + wk

yk = Ckxk + vk

where wk and vk are zero mean independent sequences of random vectors with covariances Q
and R > 0, respectively. For j > 0 fixed, determine x̂j|k, the linear least squares estimate of xj

based on observations yt, 0 ≤ t ≤ k for all k > j, and determine the associated error covariance
Pj|k = E{[x(j) − x̂j|k][x(j) − x̂j|k]

T }. This is called the fixed point smoothing problem.
(Hint: Introduce an auxiliary process ξk, k ≥ j by

ξk+1 = ξk

ξj = xj

Now examine the augmented process zk =

[

xk

ξk

]

. What happens if you apply Kalman filtering

to zk?)

(b) Determine the improvement provided by smoothing by finding Pj/j−1 −Pj|k and verify that the
improvement is nondecreasing with k.


