
Chapter 5

STOCHASTIC CONTROL AND

DYNAMIC PROGRAMMING

5.1 Formulation of the Stochastic Control Problem

Consider the nonlinear stochastic system in state space form

xk+1 = fk(xk, uk, wk)

x(0) = x0 (5.1)

for k = 0, 1, · · · , N , where N < ∞ in this chapter unless otherwise specified. We assume that {wk, k =
0, · · · , N} is an independent sequence of random vectors, with mean zero and covariance Q. The
initial condition x0 is assumed to be independent of wk for all k, with mean m0 and covariance Σ0.
{uk, k = 0, · · · , N} is the control input sequence. We assume that for each k, the past history of the state
xk is available so that admissible control laws are of the form

uk = φk(x
k)

where xk = {xj , j = 0, · · · , k} is the history of state trajectory, also denoted by Xk. Such control laws
are called closed-loop controls. Note that open-loop controls, in which uk is a function of k only, is a
special case of closed-loop controls. It is readily seen (see Exercises) that in general for stochastic systems,
closed-loop control laws out-perform open-loop controls. We may therefore confine attention to closed-loop
control laws of the form Φ = {φ0, φ1, · · · , φN}. Once the control law Φ is chosen, the basic underlying
random processes {x0, wk, k = 0, · · · , N} completely determine the process xk and hence uk through the
closed-loop system equations

xΦ
k+1 = fk(x

Φ
k , φk(XΦ

k ), wk)

x(0) = x0

uΦ
k = φk(XΦ

k )

where xΦ
k denotes the state process that results when the control law Φ is used.

To compare the effectiveness of control, we construct a sequence of real-valued functions Lk(xk, uk, wk)
which is to be interpreted as the cost incurred at stage k in state xk using control uk and with noise
disturbance wk. Lk is thus a function of random variables and its values are random. We define the cost
of control by

J(Φ) = E

N
∑

k=0

Lk(x
Φ
k , u

Φ
k , wk)
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Once the control law Φ is chosen, J(Φ) can be evaluated. Different control laws can therefore be compared
based on their respective costs.

Example 5.1.1:

Consider the linear stochastic system described by

xk+1 = xk + uk + wk

with Ex0 = 0, Ex2
0 = 1, Ewk = 0, Ew2

k = 1. Suppose N = 2, and the per stage costs are given by
Lk(xk, uk, wk) = x2

k. Let Φ = {φ0, φ1} with φ0(x) = −2x, φ1(x) = −3x. The closed-loop system under
this control policy satisfies

xΦ
1 = x0 − 2x0 + w0 = −x0 + w0

xΦ
2 = xΦ

1 − 3xΦ
1 + w1 = −2(−x0 + w0) + w1 = 2x0 − 2w0 + w1

The cost criterion under the policy Φ is given by

J(Φ) = E[x2
0 + (xΦ

1 )2 + (xΦ
2 )2]

= Ex2
0 + E(−x0 + w0)

2 +E(2x0 − 2w0 + w1)
2

= 1 + 2 + 9 = 12

On the other hand, if we choose the policy Ψ = {ψ,ψ}, where ψ(x) = −x, the closed-loop system is given
by

xΨ
k+1 = wk

Hence the cost criterion under the policy Ψ is given by

J(Ψ) = E[x2
0 + (xΨ

1 )2 + (xΨ
2 )2]

= Ex2
0 + Ew2

0 + Ew2
1 = 3

We see that for this example, the policy Ψ is superior to the policy Φ.

We can now formulate the stochastic optimal control problem as follows:

Stochastic Optimal Control Problem:

Find the control law Φ so that for the stochastic system (5.1), the cost J(Φ) incurred is minimized. The
control law Φ which gives the smallest J(Φ) is called the optimal control law.

Let the optimal cost be defined as

J∗ = inf
Φ
J(Φ)

The optimal control Φ∗ is thus the policy satisfying

J(Φ∗) = J∗

Since there are an uncountably infinite number of control laws to choose from, the above stochastic
control problem might appear to be intractable. This fortunately turns out not to be the case. The
rest of this chapter treats the dynamic programming method for solving the stochastic optimal control
problem. Our treatment follows closely that given in Kumar and Varaiya, Stochastic Systems: Estimation,
Identification, and Adaptive Control.
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5.2 Dynamic Programming

The main tool in stochastic control is the method of dynamic programming. This method enables us to
obtain feedback control laws naturally, and converts the problem of searching for optimal policies into a
sequential optimization problem. The basic idea is very simple yet powerful. We begin by defining a special
class of policies.

Definition: A policy Φ is called Markov if each function φk is a function of xk only, so that uk = φk(xk).

Note that if a Markov policy Φ is used, the corresponding state process will be a Markov process.

Let Φ be a fixed Markov policy. Define recursively the functions

V Φ
N (x) = ELN (x, φN (x), wN )

V Φ
k (x) = ELk(x, φk(x), wk) + EV Φ

k+1[fk(x, φk(x), wk)] (5.2)

Since x is fixed, the expectation is with respect to w. We use the following notation

(a) xΦ
k is the state process generated when the Markov policy Φ is used.

(b) uΦ
k = φk(x

Φ
k ) is the control input at time k when the Markov policy Φ is used.

Lemma 5.2.1 now shows that the functions V Φ
k (x) represent the cost-to-go at time k when Φ is used.

Lemma 5.2.1 Let Φ be a Markov policy. Then

V Φ
k (xΦ

k ) = E[

N
∑

j=k

Lj(x
Φ
j , u

Φ
j , wj)|xΦ

k ]

= E[

N
∑

j=k

Lj(x
Φ
j , u

Φ
j , wj)|XΦ

k ] (5.3)

where the expectation is with respect to wk.

Proof. For notational simplicity, we write Lj for Lj(x
Φ
j , u

Φ
j , wj) whenever there is no possibility of

confusion. The proof is by backward induction, a procedure used most often in connection with dynamic
programming. First note that Lemma 5.2.1 is true for k = N . Now assume, by induction, that it is true
for j = k + 1, · · · , N . We have

E[

N
∑

j=k

Lj|xΦ
k ] = E[Lk +

N
∑

j=k+1

Lj|xΦ
k ]

= E[Lk|xΦ
k ] + E{E[

N
∑

j=k+1

Lj|xΦ
k+1, x

Φ
k ]|xΦ

k }

= E[Lk|xΦ
k ] + E{E[

N
∑

j=k+1

Lj|xΦ
k+1]|xΦ

k } by the Markov nature of xΦ
k

= E[Lk|xΦ
k ] + E[V Φ

k+1(x
Φ
k+1)|xΦ

k ]

= E[Lk|xΦ
k ] + E[V Φ

k+1(fk(x
Φ
k , u

Φ
k , wk))|xΦ

k ] (5.4)
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It is readily be verified that the following property of conditional expectation holds: If z and w are two
independent random variables,

E[h(z,w)|z] = Ewh(z,w) (5.5)

where Ew denotes expectation with respect to the random variable w. Using (5.5) in (5.4) and noting that
xΦ

k and wk are independent, the R.H.S. is seen to be V Φ
k (xΦ

k ). Hence the Lemma is also true for j = k, By
induction, the Lemma is proved.

Now define, for an arbitrary admissible policy Ψ, the cost-to-go at time k by

JΨ
k = E[

N
∑

j=k

Lj(x
Ψ
j , u

Ψ
j , wj)|XΨ

k ]

Then
JΨ

0 = E[
N
∑

j=0

Lj(x
Ψ
j , u

Ψ
j , wj)|x0]

and

EJΨ
0 = J(Ψ)

The next lemma defines a sequence of functions which form a lower bound to the cost-to-go.

Lemma 5.2.2 (Comparison Principle)

Let Vk(x) be any function such that the following inequalities are satisfied for all x and u:

VN (x) ≤ ELN (x, u,wN )

Vk(x) ≤ EwLk(x, u,wk) + EwVk+1[fk(x, u,wk)] (5.6)

Let Ψ be any admissible policy. Then

Vk(x
Ψ
k ) ≤ JΨ

k for all k w.p.1

Proof. Again the proof is by backward induction. Lemma 5.2.2 is clearly true for k = N by the
definition of VN (x). Suppose it is true for j = k+ 1, · · · , N . We need to show that it is true for j = k. By
independence of wk and xk, (5.6) can be written as

Vk(x
Ψ
k ) ≤ E{Lk(x

Ψ
k , ψk(XΨ

k ), wk) + Vk+1[fk(x
Ψ
k , ψk(XΨ

k ), wk)]|XΨ
k }

≤ E{Lk(x
Ψ
k , ψk(XΨ

k ), wk) + JΨ
k+1|XΨ

k }

= E{Lk(x
Ψ
k , ψk(XΨ

k ), wk) + E

N
∑

j=k+1

[Lj(x
Ψ
j , ψj(XΨ

j ), wj)|XΨ
k+1]|XΨ

k }

= E{
N
∑

k

Lj |XΨ
k }

= JΨ
k

Corollary 5.2.1 For any function Vk(x) satisfying (5.6), J∗ ≥ EV0(x0)

The next result is the main optimality theorem of dynamic programming in the stochastic control
context.
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Theorem 5.1 Define the sequence of functions

VN (x) = inf
u
ELN (x, u,wN )

Vk(x) = inf
u
{EwLk(x, u,wk) + EwVk+1[fk(x, u,wk)]} (5.7)

(i) For any admissible policy Φ,

Vk(x
Φ
k ) ≤ JΦ

k

and

EV0(x0) ≤ J(Φ)

(ii) A Markov policy Φ∗ is optimal if the infimum for (5.7) is achieved at Φ∗. Then

Vk(x
Φ∗

k ) = JΦ∗

k w.p.1

and

EV0(x0) = J∗ = J(Φ∗)

(iii) A Markov policy Φ∗ is optimal only if for each k, the infimum for (5.7) at each xΦ∗

k is achieved by
φ∗k(x

Φ∗

k ).

Proof. (i): Vk satisfies the Comparison Principle so that (i) obtains.

(ii): Let Φ be a Markovian policy which achieves the infimum. Then by Lemma 5.2.1 and (i)

Vk(x
Φ
k ) = JΦ

k ≤ JΨ
k all k and any admissible Ψ

In particular, JΦ
0 = V0(x0) ⇒ Φ is optimal by Corollary 5.2.1.

(iii): To prove (iii), we suppose Φ is Markovian and optimal. We prove by induction that Φ achieves
the infimum. For k = N , (iii) is clearly true. For, if φ

′

N 6= φN achieves the infimum, we can define a
Markov policy Φ

′

= (φ0, ...φN−1, φ
′

N ). Then since ELk = EL
′

k, k ≤ N − 1, we see that Φ not optimal.

Now suppose (iii) is true for k+ 1 and JΦ
k+1 = Vk+1(x

Φ
k+1), but that it is not true for k. Then ∃ φ′

k s.t.

EwLk(x
Φ
k , φk(x

Φ
k ), wk) +EwVk+1[fk(x

Φ
k , φk(x

Φ
k ), wk)]

≥ EwLk(x
Φ
k , φ

′

k(x
Φ
k ), wk) +EwVk+1[fk(x

Φ
k , φ

′

k(x
Φ
k ), wk)] (5.8)

Furthermore, strict inequality holds with positive probability so that expectation of L.H.S. of (5.8) >
expectation of R.H.S. Define

Φ
′

= (φ0...φk−1, φ
′

k, φk+1...φN )

Then

ELl = EL
′

l l ≤ k − 1

By the induction hypothesis, φk+1 · · ·φN achieve the infimum. Since φ, φ
′

are both Markovian

EJΦ
k+1(x

Φ
k+1) = EVk+1(x

Φ
k+1)

EJΦ
′

k+1(x
Φ

′

k+1) = EVk+1(x
Φ

′

k+1)
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We then have

J(Φ) = E
k−1
∑

0

Ll +ELk +EVk+1(x
Φ
k+1)

> E
k−1
∑

0

L
′

l + EL
′

k + EVk+1(x
Φ

′

k+1)

= J(Φ
′

)

contradicting the optimality of Φ.

Based on Theorem 5.1, the solution to stochastic control problems can be obtained through the solution
of the dynamic programming equation (5.7). It is to be solved recursively backwards, starting at k = N .
For k = N and each x, we have the corresponding optimal control φ∗N (x). At every step k < N , we evaluate
the R.H.S. of (5.7) for every possible value of x, and for each x, the optimal feedback law is given by

φ∗k(x) = argmin{EwLk(x, u,wk) + EwVk+1[fk(x, u,wk)]}

Theorem 5.1 can be interpreted through the Principle of Optimality enunciated by Bellman:

Principle of Optimality

An optimal policy has the property that whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the first decision.

Let us discuss how the Principle of Optimality determines the optimal control at time k. Suppose we
are in state x at time k, and we take an arbitrary decision u. The Principle of Optimality states that if
the resulting state is xk+1, the remaining decisions must be optimal so that we must incur the optimal
cost Vk+1(xk+1). The optimal decision at time k must therefore be that u which minimizes the sum of the
average cost at time k and the average value of Vk+1(xk+1) over all possible transitions. This is precisely
the content of the dynamic programming equation.

5.3 Inventory Control Example

The method of dynamic programming will now be illustrated with one of its standard application examples.
A store needs to order inventory at the beginning of each day to fill the needs of customers. We assume
that whatever stock ordered is delivered immediately. We assume, for simplicity, that the cost per unit
stock order is 1 and the holding cost per unit item remaining unsold at the end of the day is also 1.
Furthermore, there is a shortage cost per unit demand unfilled of 3. The stochastic control problem is:
given the probability distribution for the random demand during the day, find the optimal planning policy
for 2 days to minimize the expected cost, subject to a storage constraint of 2 items.

To analyze this problem let us introduce mathematical notation and make precise our assumptions.
Let xk be the stock available at the beginning of the kth day, uk the stock ordered at the beginning of

the kth day, wk the random demand during the kth day. The storage constraint of 2 units translate to the
inequality xk + uk ≤ 2. Since stock is nonnegative and integer-valued, we must also have 0 ≤ xk, 0 ≤ uk.
The xk process is then seen to satisfy the equation

xk+1 = max(0, xk + uk −wk) (5.9)

Now let us assume that the probability distribution of wk is the same for all k, given by

P (wk = 0) = 0.1, P (wk = 1) = 0.7, P (wk = 2) = 0.2
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Assume also that the initial stock x0 = 0. The cost function is given by

Lk(xk, uk, wk) = uk + max(0, xk + uk − wk) + 3max(0, wk − xk − uk) (5.10)

N = 1 since we are planning for today and tomorrow. So the dynamic programming algorithm gives

V ∗
k = min

0≤uk≤2−x
E{uk + max(0, x + uk −wk)

+3max(0, wk − x− uk) + V ∗
k+1[max(0, x+ uk − wk)]} (5.11)

with V ∗
2 (x) = 0 for all x.

We now proceed backwards

V ∗
1 (x) = min

0≤u1≤2−x
E{u1 + max(0, x+ u1 − w1) + 3max(0, w1 − x− u1)}

Now the values that x can take on are 0, 1, 2, and so is u1. Hence, using the probability distribution for
w1, we get

V ∗
1 (0) = min

0≤u1≤2
{u1 + 0.1max(0, u1) + 0.3max(0,−u1) + 0.7max(0, u1 − 1)

+2.1max(0, 1 − u1) + 0.2max(0, u1 − 2) + 0.6max(0, 2 − u1)} (5.12)

For u1 = 0, R.H.S. of (5.12) = 2.1 + 1.2 = 3.3
For u1 = 1, R.H.S. of (5.12) = 1 + 0.1 + 0.6 = 1.7
For u1 = 2, R.H.S. of (5.12) = 2 + 0.2 + 0.7 = 2.9

Hence the minimizing u1 for x1 = 0 is 1 so that φ∗1(0) = 1, and V ∗
1 (0) = 1.7.

Similarly, for x1 = 1, we obtain

V ∗
1 (1) = min

0≤u1≤1
E{u1 + max(0, 1 + u1 − w1) + 3max(0, w1 − 1 − u1)}

= 0.7 for the choice u1 = 0.

Hence
φ∗1(1) = 0 and V ∗

1 (1) = 0.7

Finally, for x1 = 2, we have

V ∗
1 (2) = min

0≤u1≤0
E{u1 + max(0, 2 + u1 − w1) + 3max(0, w1 − 2 − u1)}

= 0.9

In this case, no decision on u1 is necessary since it is constrained to be 0. Hence φ∗1(2) = 0. Now to go
back to k = 0, we apply (5.11) to get

V ∗
0 (x) = min

0≤u0≤2−x
E{u0 + max(0, x + u0 − w0) + 3max(0, w0 − x− u0)

+V ∗
1 [max(0, x+ u0 − wo)]} (5.13)

Since the initial condition is taken to be x = 0, we need only compute V ∗
0 (0). This gives

V ∗
0 (0) = min

0≤u0≤2
E{u0 + max(0, u0 − w0) + 3max(0, w0 − u0)

+V ∗
1 [max(0, u0 − w0)]}

= min
0≤u0≤2

{u0 + 0.1max(0, u0) + 0.3max(0,−u0)

+0.1V ∗
1 [max(0, u0)] + 0.7max(0, u0 − 1) + 2.1max(0, 1 − u0)

+0.7V ∗
1 [max(0, u0 − 1)] + 0.2max(0, u0 − 2) + 0.6max(0, 2 − u0)

0.2V ∗
1 [max(0, u0 − 2)]} (5.14)
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Using the values of V ∗
1 (x) computed at the previous step, we find that for

u0 = 0, R.H.S. of (5.14) = 5.0

u0 = 1, R.H.S. of (5.14) = 3.3

u0 = 2, R.H.S. of (5.14) = 3.82

Hence, the minimizing u0 is u0 = 1 and

V ∗
0 (0) = 3.3 with φ∗0(0) = 1 .

Had the initial state been 1, we would have

V ∗
0 (1) = 2.3 with φ∗0(1) = 0 ;

and had x0 been 2, we would have

V ∗
0 (2) = 1.82 with φ∗0(2) = 0 .

The above calculations completely characterize the optimal policy Φ∗. Note that the optimal control policy
is given as a look-up table, not as an analytical expression.

5.4 A Gambling Example

In general, dynamic programming equations cannot be solved analytically. One has to be content with
generating a look-up table for the optimal policy through minimizing the right hand side of the dynamic
programming equation. However, in some very special cases, it is possible to solve the dynamic program-
ming equation. We give an illustrative example to show how this may be done.

A gambler enters a game whereby he may, at time k, stake any amount uk ≥ 0 that does not exceed
his current fortune xk (defined to be his initial capital plus his gain or minus his loss thus far). If he wins,
he gets back his stake plus an additional amount equal to his stake so that his fortune will increase from
xk to xk + uk. If he loses, his fortune decreases to xk − uk. His probability of winning at each stake is p
where 1

2 < p < 1, so that his probability of losing is 1− p. His objective is to maximize E log xN where xN

is his fortune after N plays.

The stochastic control problem is characterized by the state equation

xk+1 = xk + ukwk

where P (wk = 1) = p, P (wk = −1) = 1 − p. Since there are no per stage costs, we can write down the
dynamic programming equation

Vk(x) = max
u

E[Vk+1(x+ ukwk)]

with terminal condition

VN (x) = log x

Since it is not obvious what is the form of the function Vk(x), we do one step of dynamic programming
computation starting from the known terminal condition at time N .

VN−1(x) = max
u

E log(x+ uwN−1)

= max
u

{p log(x+ u) + (1 − p) log(x− u)}
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Differentiating, we get
p

x+ u
− 1 − p

x− u
= 0

Simplifying, we get
uN−1 = (2p − 1)xN−1

It is straightforward to verify that this is the maximizing value of uN−1. Upon substituting into the right
hand side of VN−1(x), we obtain

VN−1(x) = p log 2px+ (1 − p) log 2(1 − p)x

= p log 2p+ p log x+ (1 − p) log 2(1 − p) + (1 − p) log x

= log x+ p log 2p + (1 − p) log 2(1 − p)

We see that the function log x+ αk fits the form of VN−1(x) as well as VN (x). This suggests that we try
the following guess for the optimal value function

Vk(x) = log x+ αk

Putting into the dynamic programming equation, we find

log x+ αk = max
u

E{log(x+ uwk−1) + αk+1}
= max

u
{p log(x+ u) + (1 − p) log(x− u) + αk+1}

Noting that the maximization is the same as that for time N − 1, we have again the optimizing uk given
by

uk = (2p − 1)xk

Substituting, we obtain

log x+ αk = p log(2px) + (1 − p) log 2(1 − p)x+ αk+1

= p log 2p + p log x+ (1 − p) log 2(1 − p) + (1 − p) log x+ αk+1

= log x+ αk+1 + p log 2p + (1 − p) log 2(1 − p)

We see that the trial solution indeed solves the dynamic programming equation if we set the sequence αk

to be given by the equation

αk = αk+1 + p log 2p + (1 − p) log 2(1 − p)

= αk+1 + log 2 + p log p+ (1 − p) log(1 − p)

with terminal condition αN = 0. This completely determines the optimal policy for this gambling problem.

5.5 The Curse of Dimensionality

In principle, dynamic programming enables us to solve general discrete time stochastic control problems.
However, unless we are lucky enough to be able to solve the dynamic programming equation analytically, we
would need to search for the optimal value of u for each x. If we examine the computational effort involved,
we quickly see that in practice, there are difficulties in applying the dynamic programming algorithm. To
get a feeling about the numbers involved, suppose the state space is finite and contains Nx elements.
Similarly, let the total number of elements in the control set be Nu and let the planning horizon be N
stages. Then at every stage, we need to evaluate V ∗ at Nx values of the state. If we look at the right hand
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side of (5.7), we see that for each x, we have to evaluate the value of EwLk(x, u,wk)+EwV
∗
k+1[fk(x, u,wk)]

for Nu values of u. So the number of function evaluations per stage is of the order of NxNu. For N stages
then, the total number of function evaluations would be NxNuN . Often the state is a continuous variable.
Discretization of the state space is used to produce a finite approximating set. For good accuracy, Nx is
often large. Thus, with any planning horizon N greater than 10, as is common, we shall be burdened with
a significant computational problem. Although this rough analysis does not take into account much more
efficient computational methods associated with dynamic programming, it does give an indication to the
rapid increase in the computational difficulties. This computational difficulty associated with the method
of dynamic programming is often called the curse of dimensionality, and has effectively prevented it from
being applied to many practical problems.

For the theoretically inclined, there are interesting technical problems associated with the dynamic
programming equation. Two such mathematical problems are the following:

(1) We have to show the minimization in (5.7) can be carried out at every stage. Typical assumptions
which enable us to do that are the following:

(a) Assume that the control set is finite. Then the minimization of the right hand side at every
stage is easily determined by simply searching over the control set.

(b) Assume that the control set is compact (for Euclidean space, this is the same as closed and
bounded) and show, from other assumptions connected with the problem, that the R.H.S. is
continuous in u so that the minimum exists.

(2) The quantities appearing in (5.7) makes probabilistic sense, i.e., they are all valid random variables.
Such measure-theoretic questions can be avoided if the underlying stochastic process is a Markov
chain with countable state space.

Of course, all these problems disappear if we can actually solve the dynamic programming equation
explicitly. Such cases are rare and are often of limited scope and interest, as in the gambling example.
There is however one important class of stochastic control problems which have broad applicability and
for which we have a simple solution. This is the linear regulator problem which we shall treat next.

5.6 The Stochastic Linear Regulator Problem

The system process is given by the equation

xk+1 = Axk +Buk +Gwk

xk0 = x0
(5.15)

where wk is an independent sequence of random vectors with Ewk = 0 and Ewkw
T
k = Q, and Ex0 = m,

cov(x0) = Σ0, x0 independent of wk. The cost criterion is given by

J = E







xT
NMxN +

N−1
∑

k=k0

‖Dxk + Fuk‖2







(5.16)

where M ≥ 0 and F TF > 0. The control set is the entire R
m space, hence the control values are

unconstrained. The form of the cost is motivated by the desire to regulate the state of the system xk to
zero at time N without making any large excursions in its trajectory, and at the same time, not spending
too much control effort.



5.6. THE STOCHASTIC LINEAR REGULATOR PROBLEM 73

The dynamic programming equation for this problem can be written down immediately.

Vk(x) = min
u

{

‖Dx+ Fu‖2 +E{Vk+1[Ax+Bu+Gwk]}
}

(5.17)

with terminal condition VN (x) = xTMx.
The great simplicity of this problem lies in the fact that we can actually solve the dynamic programming

equation (5.17) analytically. To this end, we first note 2 preliminary results.

(i) For any random vector x with mean m and covariance Σ, and any S ≥ 0, we have

E(xTSx) = E{(x−m)TS(x−m)} + EmTSx+ExTSm−mTSm

= tr SΣ +mTSm (5.18)

(ii) For R1 > 0, any R2, and R3 symmetric,

g(u) = uTR1u+ uTR2x+ xTRT
2 u+ xTR3x

= (u+R−1
1 R2x)

TR1(u+R−1
1 R2x) + xT (R3 −RT

2 R
−1
1 R2)x

Hence for each x, the value of u which minimizes g(u) is given by

u = −R−1
1 R2x

with the resulting value of g(u) given by

g(u) = xT (R3 −RT
2R

−1
1 R2)x

Now noting the form of the cost and the terminal condition, we try a solution for Vk(x) in the form

Vk(x) = xTSkx+ qk (5.19)

Applying (5.17), we see immediately that SN = M and qN = 0

E{Vk+1[Ax+Buk +Gwk]} = (Ax+Buk)
TSk+1[Axk +Buk]

+tr Sk+1GQG
T + qk+1 (5.20)

so that (5.17) becomes

xTSkx+ qk = min
uk

{‖Dx+ Fuk‖2 + (Ax+Buk)
TSk+1(Ax+Buk)

+tr Sk+1GQG
T + qk+1} (5.21)

The optimal feedback law is given by, according to Theorem 5.1, the minimizing value of the R.H.S. of
(5.21). We find, using preliminary result (ii), that

uk = φ∗k(xk) = −(F TF +BTSk+1B)−1(BTSk+1A+ F TD)xk (5.22)

This is then the optimal policy. On substituting (5.22) into (5.21) and grouping the quadratic terms
together, we see that Sk must satisfy

Sk = ATSk+1A+DTD − (ATSk+1B +DTF )(F TF +BTSk+1B)−1(BTSk+1A+ F TD)
SN = M

(5.23)
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qk must satisfy

qk = qk+1 + tr Sk+1GQG
T

qN = 0
(5.24)

(5.24) can be solved explicitly for qk, to give

qk =

N−1
∑

j=k

tr Sj+1GQG
T (5.25)

The optimal cost is given by

EVk0(x0) = ExT
0 Sk0x0 + qk0

= mT
0 Sk0m0 + tr Sk0Σ0 +

N−1
∑

j=k0

tr Sj+1GQG
T (5.26)

There are several things to notice about the solution of the linear regulator problem.

1. (5.23) may be recognized as a discrete time Riccati difference equation. It is identical in form to the
Riccati difference equation which features so prominently in the Kalman filter equations. We can
put them into one-to-one correspondence by the following table:

Regulator Filter

k ≤ N k ≥ k0

A AT

B CT

DTD GQGT

F TF HRHT

DTF GTHT

DT [I − F (F TF )−1F T ]D G[Q− THT (HRHT )−1HT T ]GT

This is an illustration of the intimate relation within linear-quadratic control and linear filtering, and
is also referred to as the duality between filtering and control.

2. The optimal feedback law is the same one as the linear regulator problem for deterministic systems,
i.e., for the case where wk = 0 and x0 fixed. On the one hand, this says that the linear feedback law
is optimal even in the face of additive disturbances, a clearly desirable engineering property. On the
other hand, it also says that the naive control scheme of setting all disturbances to its mean values
and solving the resulting deterministic control problem is in fact optimal. So for this problem, the
stochastic aspects do not really play an important role. This is due to the very special nature of the
linear regulator problem.

3. The manner in which the stochastic aspects enter is basically through the modification of the optimal
cost. If the problem were deterministic, then the optimal cost in (5.26) would contain only the term
mT

0 Sk0m0. The random nature of the initial state x0 contributes the additional term tr Sk0Σ0, and

the random nature of the disturbance wk contributes the term
N−1
∑

j=k0

tr Sj+1GQG
T .
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5.7 Asymptotic Properties of the Linear Regulator

The asymptotic properties of the linear regulator again centre on those of the Riccati difference equation.
The asymptotic behaviour of the Riccati equation has already been studied in the filtering context. We
can summarize the results as follows:

Let

Â = A−B(F TF )−1F TD

D̂ = (I − F (F TF )−1F T )
1
2D

(or any D̂ satisfying D̂T D̂ = DT (I − F (F TF )−1F T )D). If (A,B) is stabilizable and (D̂, Â) detectable,
then there exists a unique solution, in the class of positive semidefinite matrices, to the algebraic Riccati
equation

S = ATSA+DTD − (ATSB +DTF )(F TF +BTSB)−1(BTSA+ F TD). (5.27)

Moreover, the closed-loop system matrix A−B(F TF+BTSB)−1(BTSA+F TD) is stable. For any M ≥ 0,

Sk, the solution of (5.23) −→
k→−∞

S.

If we consider the stationary version of the feedback law (5.22), i.e.

φ(xk) = −(F TF +BTSB)−1(BTSA+ F TD)xk (5.28)

Where S is the unique positive semidefinite solution of (5.27), the resulting closed-loop system is given by

xk+1 = (A−B(F TF +BTSB)−1(BTSA+ F TD))xk +Gwk (5.29)

If we denote the covariance of xk by Σk, then by stability of (5.29), Σk
−→
k→∞ Σ. This means that the second

moments of xk are finite in the infinite interval and second moment stability obtains. In particular, if x0 is
Gaussian and wk is a white Gaussian sequence, the closed-loop system (5.29) will also generate a Gaussian
process. It converges to a stationary Gaussian process as k → ∞. Note that because of the noise input,
xk will not go to zero as k → ∞.

5.8 Stochastic Control of Linear Systems with Partial Observations

In Section 5.5, we considered the linear regulator problem when the entire state xk is observed. In this
section, we assume that xk is not directly observable. Our system is given by

xk+1 = Axk +Buk +Gwk (5.30)

yk = Cxk +Hvk (5.31)

xk0 = x0

where we assume wk and vk to be independent Gaussian random sequences with Ewk = Evk = 0, Ewkw
T
j =

Qδkj, Evkv
T
j = Rδkj with R > 0, HRHT > 0, and Ewkv

T
j = Tδkj. Furthermore, x0 is assumed to be a

Gaussian random vector with mean m0 and covariance P0, independent of wk and vk.

The control problem is to minimize

J = E







xT
NMxN +

N−1
∑

k=k0

‖Dxk + Fuk‖2






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The crucial distinction between the present problem and that in Section 5.5 is that the control law cannot
be made a function of xk. It can only be allowed to depend on the past observations. It is thus very
important to specify the admissible laws.

Let Yk = σ{y(s), k0 ≤ s ≤ k}, the sigma field generated by {y(s), k0 ≤ s ≤ k}. This represents the
information contained in the observations so that we have a causal control policy with a one-step delay
in the information feedback. We take the admissible control laws to be Φ = {φk0 , ..., φN−1} where φk is
a (Borel) function of Yk−1. The interpretation is that uk depends on ys, k0 ≤ s ≤ k − 1. Once Yk−1 is
known, the value uk is also determined.

The key to the solution of the problem is that under the linear-Gaussian assumptions, the estimation
and control can be separated from each other. Introduce the system

x̄k+1 = Ax̄k +Gwk

x̄k0 = x0 (5.32)

ȳk = Cx̄k +Hvk (5.33)

Lemma 5.8.1 For any admissible policy Φ, Ȳk = Yk, k = k0, · · ·N − 1. In other words, Ȳk contains the
same amount of information as Yk.

Proof: Let x̃k = xk − x̄k. Then
x̃k+1 = Ax̃k +Buk

x̃k0 = 0
(5.34)

We claim that x̃k depends only on Yk−2. This is clearly true for x̃k0+1 because x̃k0+1 = Ax̃k0+Buk0 = Buk0,
which is assumed to be dependent on Yk0−1 (i.e. no observed information). Suppose, by induction, that
x̃k depends only on Yk−2. Then since x̃k+1 = Ax̃k +Buk, the R.H.S. depends only on Yk−1, and the claim
follows.

Now yk0 = ȳk0 . Assume by induction that Yj = Ȳj, j ≤ k − 1. Then

yk = Cxk +Hvk = Cx̄k +Hvk + Cx̃k

= ȳk + Cx̃k (5.35)

Using the previous claim, the R.H.S. of (5.35) depends only on Ȳk. Hence Yk ⊂ Ȳk. But from (5.35), we
also see that Ȳk ⊂ Yk so that Ȳk = Yk.

We may now split the system into two parts

xk = x̄k + x̃k (5.36)

using (5.32) and (5.34). Furthermore, the estimate

x̂k+1|k = E{xk+1|Yk} = E{x̄k+1 + x̃k+1|Yk}
= E{x̄k+1|Yk} + x̃k+1 (5.37)

But E{x̄k+1|Yk} = E{x̄k+1|Ȳk} corresponds to the optimal conditional mean estimate in the Kalman
filtering problem. So (5.37) becomes

x̂k+1|k = Aˆ̄xk|k−1 +Kk(ȳk −C ˆ̄xk|k−1) +Ax̃k +Buk (5.38)

where Kk is the Kalman filter gain. But using (5.37), we have

x̂k+1|k = Ax̂k|k−1 +Buk +Kk(yk − Cx̃k − C ˆ̄xk|k−1)

= Ax̂k|k−1 +Buk +Kk(yk − Cx̂k|k−1) (5.39)
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If we compare (5.39) to the standard Kalman filter, we see that the additional term Buk in the state
equation appears in the same additive manner in the estimation equation (5.39). This is a consequence of
our assumption about admissible laws.

The next step in the development is the simplification of the cost. Consider the term

E{xT
kD

TDxk|Yk−1} = E{(xk − x̂k|k−1)
TDTD(xk − x̂k|k−1)|Yk−1} + x̂T

k|k−1D
TDx̂k|k−1

= tr DTDPk|k−1 + x̂T
k|k−1D

TDx̂k|k−1

Hence
E(xT

kD
TDxk) = E(E{xT

kD
TDxk|Yk−1}) = tr DTDPk|k−1 + E(x̂T

k|k−1D
TDx̂k|k−1) (5.40)

Similarly, noting that uk is known given Yk−1,

E(xT
kD

TFuk) = E(E{xT
kD

TFuk|Yk−1}) = E(x̂T
k|k−1D

TFuk) (5.41)

Note that the 1st term on the R.H.S. of (5.40) is independent of uk. Using (5.40) and (5.41), we obtain
the following expression for the cost

J = E{x̂T
N |N−1Mx̂N |N−1 +

N−1
∑

k=k0

[‖Dx̂k|k−1 + Fuk‖2]}

+ terms independent of control (5.42)

Now (5.39) may be written as
x̂k+1|k = Ax̂k|k−1 +Buk +Kkνk (5.43)

where νk = yk −Cx̂k|k−1 = ȳk −C ˆ̄xk|k−1 is the innovations process. According to the results in Section 3.2,
νk is also a Gaussian white noise process, and in the form of ȳk−C ˆ̄xk|k−1, can be seen to be independent of
uk. We have now reduced the problem from one with partial observations to one with complete observations
in that x̂k+1|k is the state of the system, known at time k + 1 from (5.39), with cost criterion

Ĵ = E{x̂T
N |N−1Mx̂N |N−1 +

N−1
∑

k=k0

‖Dx̂k|k−1 + Fuk‖2}

since the terms in (5.42) which are independent of the control will not affect the choice of the control law.
The results of Section 5.6 are now directly applicable and we obtain

uk = −(F TF +BTSk+1B)−1(BTSk+1A+ F TD)x̂k|k−1

= φk(Yk−1) (5.44)

since x̂k|k−1 depends only on Yk−1.
The result obtained in (5.44) characterizing the optimal control in the partially observed linear regulator

problem is usually known as the Separation Theorem. The name comes from the fact that the feedback
law

φk(x) = −(F TF +BTSk+1B)−1(BTSk+1A+ F TD)x

is precisely the optimal control law for the deterministic linear regulator problem with quadratic cost. The
Separation Theorem says then that if we have additive Gaussian white noise in the system, the optimal
feedback law should be applied to the best estimate of the state of the system. This separates the task of
designing the optimal stochastic control into 2 parts: that of designing the optimal deterministic feedback
law, and that of designing the optimal estimator. This constitutes one of the most important results in
system theory.
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Remark: If we allow uk to depend on Yk, Lemma 5.8.1 still holds, with virtually no change in the
proof. In this case, there is no delay in the information available for control. Now assume in addition
that E(wkv

T
k = 0), i.e. T = 0, but allow admissible control laws to be of the form uk = φk(y

k). Then by
imitating the above development shows that the optimal control law in this case is given by

uk = −(F TF +BTSk+1B)−1(BTSk+1A+ F TD)x̂k|k

(See Exercise 5.8.)

5.9 Stability of the closed-loop System

Equation (5.30) together with the control law (5.44) give rise to the closed-loop system

xk+1 = Axk −B(F TF +BTSk+1B)−1(BTSk+1A+ F TD)x̂k|k−1 +Gwk (5.45)

Let ek|k−1 = xk − x̂k|k−1. Then ek|k−1 satisfies the equation

ek+1|k = Aek|k−1 − (APk|k−1C
T +GTHT )(CPk|k−1C

T +HRHT )−1Cek|k−1

−(APk|k−1C
T +GTHT )(CPk|k−1C

T +HRHT )−1Hvk +Gwk (5.46)

Let

Lk = (F TF +BTSk+1B)−1(BTSk+1A+ F TD)

Kk = (APk|k−1C
T +GTHT )(CPk|k−1C

T +HRHT )−1

(5.45) and (5.46) may be combined to give the following system

[

xk+1

ek+1|k

]

=

[

A−BLk BLk

0 A−KkC

] [

xk

ek|k−1

]

+

[

Gwk

Gwk −KkHvk

]

(5.47)

If the algebraic Riccati equations associated with Sk and Pk|k−1 have unique stabilizing solutions, then we
may consider the stationary control law given by

uk = −(F TF +BTSB)−1(BTSA+ F TD)x̂k|k−1

where x̂k|k−1 is generated by the stationary filter given by (3.11). Let

L = (F TF +BTSB)−1(BTSA+ F TD)

K = (APCT +GTHT )(CPCT +HRHT )−1

The closed-loop system then takes the form

[

xk+1

esk+1|k

]

=

[

A−BL BL
0 A−KC

] [

xk

esk|k−1

]

+

[

Gwk

Gwk −KHvk

]

(5.48)

This is again a system of the form
ξk+1 = Âξk + ηk

and the stability of ξk, in the sense of boundedness of its covariance, is governed by the stability of Â. But
the block triangular nature of Â shows that the stability of Â is determined by the stability of A−BL and
that of A−KC. Using our previous results concerning asymptotic behaviour of the Kalman filter and the
linear regulator, we can immediately state the following result.
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Theorem 5.2 If the pairs (A,B) and (Ǎ, Ǧ) are stabilizable, and the pairs (C,A) and (D̂, Â) are de-
tectable, then the stationary control law

uk = −(F TF +BTSB)−1(BTSA+ F TD)x̂k|k−1 (5.49)

where S is given by the unique positive semidefinite solution of the algebraic Riccati equation (5.27) and
x̂k|k−1 is given by the stationary filter (3.11), gives rise to a stable closed-loop system.

In connection with stationary control laws we may consider infinite time control problems. Note that
we cannot in general formulate the cost criterion associated with an infinite time control problem as

E
∞
∑

k=0

‖Dxk + Fuk‖2,

since the noise terms will make the above cost infinite no matter what the control law is. This may be

seen from the optimal cost for the finite time problem which contains the term

N−1
∑

k=k0

tr Sk+1GQG
T . If as

N → ∞, Sk → S, the infinite sum will become unbounded. One way of formulating a meaningful infinite
time problem is to take the average cost per unit time criterion

Jr = lim
N→∞

1

N

N−1
∑

k=0

E‖Dxk + Fuk‖2 (5.50)

It can be shown that if the conditions of Theorem 5.2 hold, the control law (5.49) is in fact optimal for the
cost (5.50). See, for example, Kushner, Introduction to Stochastic Control and the exercises.
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5.10 Exercises

1. This problem illustrates the fact that in stochastic control, closed-loop control generally out-performs
open-loop control. Consider the linear stochastic system

xk+1 = xk + uk + wk

with cost criterion

J(Φ) = E
N
∑

k=0

x2
k

where N ≥ 1, Ex0 = 0, Ex2
0 = 1, Ewk = 0, Ew2

k = 1, and wk is an independent sequence, also
independent of x0.

(a) Let uk be any deterministic sequence (corresponding to open-loop control). Determine the cost
criterion in terms of N and uk.

(b) Let uk be given by the closed-loop control law uk = −xk. Determine the cost criterion associated
with this policy and show that it is strictly less that the cost criterion determined in (a),
regardless of the open-loop control sequence used in (a).

2. Let xk denote the price of a given stock on the kth day and suppose that

xk+1 = xk + wk

x0 = 10

where wk forms an independent, identically distributed sequence with probability distribution P (wk =
0) = 0.1, P (wk = 1) = 0.4, P (wk = −1) = 0.5. You have the option to buy one share of the stock at
a fixed price, say 9. You have 3 days in which to exercise the option (k = 0, 1, 2). If you exercise the
option, and the stock price is x, your profit is max(x − 9, 0). Formulate this as a stochastic control
problem and find the optimal policy to maximize your expected profit.

3. Consider the following gambling problem. On each play of a certain game, a gambler has a probability
p of winning, with 0 < p < 1/2. He begins with an initial amount of M dollars. On each play he
may bet any amount up to his entire fortune. If he bets u dollars and wins, he gains u dollars, while
if he loses he loses the u dollars he has bet. Let xk be his fortune at time k. Then we readily see
that xk satisfies the following equation

xk+1 = xk + ukwk

where uk satisfies 0 ≤ uk ≤ xk, and wk is an independent sequence with P (wk = 1) = p and
P (wk = −1) = 1 − p. The total number of plays is fixed to be N and the gambler would like to
construct an optimal policy to maximize Ex2

N where xN is the fortune he has at time N .

(a) Formulate the problem as a stochastic control problem and obtain the dynamic programming
equation which characterizes the optimal reward.

(b) Characterize the optimal policy in terms of the parameter p.

(Hint: Guess the form of the optimal reward Vk(x). Be careful about the maximization.)
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4. An employer has N applicants for an advertised position. Each applicant has an independent nonneg-
ative score which obeys a common probability distribution known to the employer. The actual score is
found by interviewing the applicant. An applicant is either appointed or rejected after the interview.
Once rejected, the applicant is lost. The position must be filled by the employer. The problem is to
find the optimal appointment policy which maximizes the expected score of the candidate appointed.

We formulate the problem as a dynamic programming problem. Let the score associated with the kth
candidate be wk with density function p(w). wk is an independent identically distributed sequence
by assumption. Let xk be the state of the process, which is either the score of the kth candidate, or
if an appointment has already been made, the distinguished state F . The two control values at time
k are 1 for appoint or 2 for reject. We can therefore write the state equation as

xk+1 = f(xk, uk, wk+1)

where
f(xk, uk, wk+1) = F if xk = F or uk = 1

= wk+1 if uk = 2

(i) Determine the per stage “reward” L(xk, uk) as a function of xk, uk.

(ii) Obtain the dynamic programming equation for this optimization problem. Be sure to include
the starting (terminal) condition for the optimal cost.

(iii) Show that for k ≤ N − 1, the optimal control is to appoint the kth candidate if xk > αk and
reject if xk < αk while both appointment and rejection are optimal if xk = αk. Characterize αk.
(Hint: Set αk = EVk+1(wk+1) and obtain a difference equation for αk.)

(iv) Suppose p(w) = 1, 0 ≤ w ≤ 1, and N = 4. Determine the αk sequence and hence the optimal
policy.

5. This problem treats the optimal control of a simple partially observed scalar linear system with
quadratic criterion.

(a) Let

xk+1 = xk + uk

yk = xk + vk

J = E

{

qx2
N +

N−1
∑

k=0

f2u2
k

}

, q > 0

Ex0 = m0, cov(x0) = p0 > 0, Evk = 0, Evkvj = rδkj, r > 0. Admissible controls uk are
functions of yτ , 0 ≤ τ ≤ k − 1. Find the optimal control law explicitly in terms of the given
parameters. You’ll have to solve two Riccati difference equations.

(b) Let Xk = Ex̂2
k|k−1. Determine the difference equation satisfied by Xk. Express the control effort

Eu2
k in terms of Xk.

(c) Let N = 4, q = 10, f = 1, m0 = 1, p0 = 1, r = 1. Find sequentially Eu2
k for k = 0, 1, 2, 3.

6. (i) Infinite time problems can also be solved directly using dynamic programming. Consider the
system

xk+1 = Axk +Buk +Gwk (ex6.1)
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where the state xk is perfectly observed. The cost criterion to be minimized is

Jρ = E
∞
∑

k=0

ρk‖Dxk + Fuk‖2

Show that if there exists a function V (x) such that ρkEV (xk)−→k→∞
0 and that V (x) satisfies the

dynamic programming equation

V (x) = min
u

{‖Dx+ Fu‖2 + ρEV (Ax+Bu+Gwk)} (ex6.2)

then the optimal control law is given by

uk = argmin{‖Dxk + Fuk‖2 + ρEV (Axk +Buk +Gwk)} (ex6.3)

Determine the function V (x) and the control law uk explicitly, making appropriate assumptions
about properties of solutions to an algebraic Riccati equation.

(ii) Similar results can be obtained for the average cost per unit time problem

Jav = lim
N→∞

1

N
E

N−1
∑

k=0

‖Dxk + Fuk‖2

Show that if there exist a real number λ and a function W (x) such that 1
NEW (xN ) −→

N→∞
0 and

that
λ+W (x) = min

u
[‖Dx+ Fu‖2 + EW (Ax+Bu+Gwk)] (ex6.4)

then the control which minimizes the R.H.S. of (ex6.4) is the optimal control. Determine the
function W (x) explicitly and the optimal control law. Finally, show that λ is the optimal cost.

(Hint: Consider the identity E
{

∑N
j=1W (xj) − E[W (xj)|xj−1, uj−1]

}

= 0.

Show that E[W (xj)|xj−1, uj−1] ≥ λ + W (xj−1) − ‖Dxj−1 + Fuj−1‖2 and substitute this into
the identity.)

7. A singular quadratic control problem is one in which there is no penalty on the control. This problem
shows how sometimes a singular control problem can be transformed into a nonsingular one. Suppose
the scalar transfer function

H(z) =
b1z

n−1 + ...+ bn
zn + a1zn−1 + ...+ an

b1 6= 0

is realized by a state space representation of the form

xk+1 = Axk + buk

yk = cxk

so that c(zI − A)−1b = H(z). Without loss of generality, we may take (c,A) to be in observable
canonical form

A =











0 −an

1
...

. . .
...

1 −a1











c = [0 . . . 0 1]
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Then

b =







bn
...
b1







Suppose the control problem is to minimize

J =
∞
∑

k=0

y2
k

This is then a singular control problem.

(a) Show that J is minimized if and only if J1 =
∑∞

k=0 y
2
k+1 is minimized.

(b) Express J1 in the form of

J1 =

∞
∑

k=0

‖Dxk + Fuk‖2 with F TF > 0

What are D and F?

(c) Put vk = uk + (F TF )−1F TDxk and express the system equations in terms of vk, i.e., find Â
and b̂ so that

xk+1 = Âxk + b̂vk

Express J1 also in terms of vk, i.e. find D̂ and F̂ so that J1 =
∑∞

k=0 ‖D̂xk + F̂ vk‖2, F̂ T F̂ > 0.

(d) Give conditions in terms of the original system matrices under which (Â, b̂) is stabilizable and
(D̂, Â) is detectable. Determine the optimal control (which is also stabilizing) in this case.

(e) Determine the necessary and sufficient conditions for detectability of (D̂, Â) using the original
transfer function H(z).

8. We discussed the solution to the LQG problem when there is a one-step delay in the information
available for control. Assume that E(wkv

T
k = 0), i.e. T = 0, but the admissible control laws are of

the form uk = φk(y
k). Imitate the derivation of Section 5.8 to show that the optimal control law in

this case for the finite time problem is

uk = −(F TF +BTSk+1B)−1(BTSk+1A+ F TD)x̂k|k

9. (i) For the control algebraic Riccati equation (CARE), assume F = 0. (CARE) now reads, assuming
that the indicated inverse exists,

S = ATSA+DTD −ATSB(BTSB)−1BTSA

Assume that B is a n×1 column vector and D is a 1×n row vector, DB 6= 0. Verify that DTD
is a solution of CARE. Give appropriate structural conditions under which this solution is the
unique positive semidefinite solution which stabilizes the closed-loop system.

(Hint: Refer to problem 7.)

(ii) Consider the system
yk + ayk−1 = uk−1 + buk−2 + ek + cek−1

A state space representation of this system is

xk+1 =

[

0 0
1 −a

]

xk +

[

b
1

]

uk +

[

c
1

]

ek+1
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yk = [0 1]xk

Find the time-invariant control law using LQG theory which minimizes
limN→∞

1
NE

∑N−1
j=0 y2

j where uk is allowed to be a function of yk. Check all the structural
assumptions needed (stabilizability, detectability, etc.) and solve as many equations explicitly
as you can.

(Hint: Use the result obtained in (i).)


