
Chapter 6

CONTROL OF MARKOV CHAINS

OVER AN INFINITE HORIZON

6.1 Infinite Horizon Stochastic Control Problems for Markov Chains

In this chapter, we shall examine some infinite time stochastic control problems. We have already discussed
very briefly the infinite time linear regulator problem in Chapter 5. That problem, however, is very special
in the sense that an analytical solution is possible. Few other interesting infinite time stochastic control
problems admit such simple analytical solutions. Nevertheless, it is possible to characterize the solution
of the stochastic control problem in certain cases. These concern the control of Markov chains with finite
control sets.

The systems we shall be interested in have a countable state space. We know such systems can always
be represented as a Markov chain. Since the control affects the future evolution of the system, we may
view it as a parameter governing the transition probabilities of the chain. This leads us to the following
description of the process to be controlled:

The process xt is a homogeneous Markov chain with state space X the nonnegative integers. Its
evolution is governed by the time-invariant transition probabilities Pij(u) = P{xt+1 = j|xt = i and control
u was used}. The set of control values U is usually assumed to be finite. This, we shall see, is a crucial
simplifying assumption which fortunately is often satisfied in applications. Note that since the state space
is the set of nonnegative integers, sometimes k is used to denote a state value. We therefore use t to denote
time in this chapter.

It is possible to express any Markov chain in the form of a stochastic difference equation. To see this,
suppose we have a countable set of nonnegative numbers {ak, k ≥ 0}, with 0 ≤ ak ≤ 1, and

∑

ak = 1. The
ak’s represent a probability distribution. Suppose we now want to construct a random variable X with the
probability distribution

P (X = k) = ak

We can do this through the use of a random variable w uniformly distributed on [0 1]. Set

X =

∞
∑

k=0

kI(
Pk−1

i=0 ai,
Pk

i=0 ai]
(w)

where IA(x) is the indicator function of the set A, i.e.,

IA(x) = 1 if x ∈ A

= 0 otherwise
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Then

P (X = k) = P (

k−1
∑

i=0

ai < w ≤
k
∑

i=0

ai) = ak

as desired. Now consider a homogeneous Markov chain with transition probabilities Pij(u). Define

f(i, u, w) =

∞
∑

k=0

kI(
Pk−1

j=0 Pij(u),
Pk

j=0 Pij(u)](w)

Then we have

f(i, u, w) = k ⇐⇒ w ∈ (

k−1
∑

j=0

Pij(u),

k
∑

j=0

Pij(u)]

so that
P [f(i, u, w) = k] = Pik(u)

Finally, define the stochastic process xt through the stochastic difference equation

xt+1 = f(xt, ut, wt)

where wt is an independent identically distributed (i.i.d) random sequence with a uniform distribution on
[0 1]. The process xt is the desired Markov chain with the required transition probability distribution
Pij(ut). Owing to this construction, we can interpret stochastic control problems for Markov chains in the
same way as we did in the previous chapter.

To describe the stochastic control problem completely, we need to specify the cost criterion. We shall
define the per stage cost by L(·, ·) : X × U → R. The function L has the interpretation that if xt = i, and
the action u is chosen, then the cost incurred is L(i, u). There are 3 main forms of the cost criterion for
an infinite time problem:

(i) discounted cost: E
∞
∑

t=0

αtL(xt, ut), α ∈ (0, 1)

(ii) positive cost: E

∞
∑

t=0

L(xt, ut) with L(i, u) ≥ 0, all i and u

(iii) average cost: lim
T→∞

1

T
E

T−1
∑

t=0

L(xt, ut)

The simplest cast is the discounted cost case, which we shall first discuss.

6.2 The Discounted Cost Criterion

Assume that |L(i, u)| < M is a finite constant. Since the control set is finite, and the state space is
countable, we can allow the admissible control laws to be any function of the state

ut = φt(xt)

If the policy is time varying, that is, if Φ = {φ0, φ1, ...} consists of different functions, the transition
probabilities, being given by Pij(φt(i)) at time t, will no longer be stationary. We will only get a Markov
chain with stationary transition probabilities if a stationary policy Φ = {φ, φ...} is used.
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Let α be any number in (0,1). For any policy Φ, define

VΦ(i) = EΦ
i

[

∞
∑

t=0

αtL(xt, ut)

]

(6.1)

where EΦ
i is the expectation operation conditioned on x0 = i and the policy Φ being used. Since L(i, u) is

bounded, every policy Φ gives a bounded VΦ(i).
The interpretation of the discount factor α is that costs incurred in the future are less important than

those incurred in the present. This is reflected by the fact that future costs are discounted at the rate of
α per unit time.

The control problem is to find a policy Φ∗ such that VΦ(i) is minimized for all i. More precisely, let

Vα(i) = inf
Φ
VΦ(i)

Φ∗ is optimal if VΦ∗(i) = Vα(i) for each i.
The following theorem gives the dynamic programming equation which characterizes the optimal cost

Vα(i).

Theorem 6.1 The optimal cost Vα satisfies the equation

Vα(i) = min
u







L(i, u) + α
∞
∑

j=0

Pij(u)Vα(j)







(6.2)

Proof: Let Φ be an arbitrary policy and suppose Φ chooses control u at time t = 0. Then

VΦ(i) = L(i, u) +

∞
∑

j=0

Pij(u)WΦ(j)

where WΦ(j) is the expected discounted cost incurred from time 1 onwards, given that the policy Φ is used
and x1 = j. But from the form of the cost function

WΦ(j) ≥ αVα(j)

Hence

VΦ(i) ≥ L(i, u) + α

∞
∑

j=0

Pij(u)Vα(j)

≥ min
u







L(i, u) + α

∞
∑

j=0

Pij(u)Vα(j)







Since Φ is arbitrary, we obtain

Vα(i) ≥ min
u







L(i, u) + α

∞
∑

j=0

Pij(u)Vα(j)







(6.3)

To go the other way, suppose u0 is the control which minimizes the right hand side of (6.2). Such a control
exists since the control set is finite. Now let Φ be the policy which chooses u0 at time 0 and if the next
state is j, to apply Φj , a policy satisfying

VΦj
(j) ≤ Vα(j) + ε ε > 0
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Hence

VΦ(i) = L(i, u0) + α

∞
∑

j=0

Pij(u0)VΦj
(j)

≤ L(i, u0) + α
∞
∑

j=0

Pij(u0)[Vα(j) + ε]

= min
u



L(i, u) + α

∞
∑

j=0

Pij(u)Vα(j)



 + αε

Hence

Vα(i) ≤ min
u

[L(i, u) + α
∞
∑

j=0

Pij(u)Vα(j)] (6.4)

since ε is arbitrary. Equations (6.3) and (6.4) combine to give the desired result.

Remark 6.2.1: We can interpret Theorem 6.1 using the Principle of Optimality. Suppose we start in
state i and choose an arbitrary decision u which may or may not be optimal. This incurs an initial cost
of L(i, u) and the system makes a random transition to state j with probability Pij(u). By the Principle
of Optimality, for the overall behaviour to be optimal, we must behave optimally from stage 1 onwards.
However, starting with stage 1, we apply a discount factor of α. So if we land in state j and behave
optimally from stage 1 to infinity, we will incur the cost αVα(j). Averaging over all random transitions,
the total expected cost becomes

L(i, u) + α

∞
∑

j=0

Pij(u)Vα(j)

Since the first decision u is arbitrary, the optimal choice at stage 0 must be to minimize the above total
expected cost to give the optimal cost. This is precisely the dynamic programming equation (6.2).

Remark 6.2.2: If the state transition is described using a stochastic difference equation (which as shown
above can be done for Markov chains),

xt+1 = f(xt, ut, wt)

where wt is an i.i.d. sequence, then it is readily seen that the optimal value function satisfies the equation

Vα(x) = min[L(x, u) + αEwVα(f(x, u,w))] (6.5)

Combining with the results of Problem 5.6 in Chapter 5, we see that if we can solve (6.5) for Vα(x) with
αtEVα(xt)−→t→∞

0, Vα(x) is the optimal value function even when xt is a more general Markov process with
a state space which may be uncountable, and when the per stage costs may not be bounded. The policy
resulting from minimizing the R.H.S. of (6.5) is then optimal.

We shall defer the discussion of the existence of solutions to (6.2) later. Our present task is to establish
the form of the optimal policy. To this end, we introduce the space B(I), which is the space of bounded
functions with domain the nonnegative integers, I. For any function f : I → U , define

Tf : B(I) → B(I)

by

[Tfγ](i) = L(i, f(i)] + α

∞
∑

j=0

Pij [f(i)]γ(j)

The mappings Tf have the following properties:
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(1) Tf is monotone, i.e. if γ1(i) ≥ γ2(i), all i, then (Tfγ1)(i) ≥ (Tfγ2)(i), all i.

(2) If Vf is the cost incurred using the stationary policy {f, f, ...}, TfVf = Vf , i.e., Vf is a fixed point of
Tf .

(3) T n
f γ −→n→∞Vf all γ ∈ B(I).

Properties (1) and (2) are obvious.
Property (3) may be proved as follows: For any γ ∈ B(I),

(T 2
f γ)(i) = L(i, f(i)) + α

∞
∑

j=0

Pij(f(i))(Tfγ)(j)

= L(i, f(i)) + α

∞
∑

j=0

Pij [f(i)]L(j, f(j))

+α2
∑

j

∑

k

Pij [f(i)]Pjk[f(j)]γ(k)

So T 2
f γ has the interpretation of being the cost incurred by applying the policy f for two periods and then

incurring a cost α2γ from then on. By induction, it is not difficult to show that T n
f γ corresponds to the

cost incurred after n steps of applying the policy f and incurring a final cost of αnγ. Since γ is bounded,

αnγ −→n→∞0, and the result follows.

We can now prove:

Theorem 6.2 (Optimality Theorem). Let φα be the stationary policy which, if the state of the process is
i, selects the control which minimizes the right hand side of (6.2), i.e.,

L(i, φα(i)) + α
∑

j

Pij [φα(i)]Vα(j) = min
u

[L(i, u) + α
∑

j

Pij(u)Vα(j)]

Then Vφα
(i) = Vα(i) for all i and hence φα is optimal.

Proof: It is easily seen that in terms of the mapping Tφα
introduced in the above, (6.2) can simply be

written as

Tφα
Vα = Vα

Hence

T n
φα
Vα = Vα

But since Vα ∈ B(I), we have from property (3) then T n
φα
Vα → Vφα

.

So Vφα
= Vα as claimed, and φα is optimal.

From Theorem 6.2, we see that once Vα is found, the optimal policy is easily obtained. To find Vα, we
introduce the following:

For any function g ∈ B(I), we define ‖g‖ = sup |g(i)|.
A mapping T : B(I) → B(I) is called a contraction if there exists a constant β < 1, such that

‖Tg − Th‖ ≤ β‖g − h‖ for all g, h ∈ B(I)

The following result, the Contraction Mapping Theorem, is well-known.
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If T : B(I) → B(I) is a contraction mapping, then there exists a unique function g ∈ B(I) such
that Tg = g. Furthermore, for any h ∈ B(I), T nh → g as n → ∞. For a proof, see for example, D.G.
Luenberger, Optimization by Vector Space Methods.

Now define the mapping Tα : B(I) → B(I) by

(Tαg)(i) = min
u



L(i, u) + α
∑

j

Pij(u)g(j)



 (6.6)

Equation (6.2) is then equivalent to
TαVα = Vα (6.7)

We show that Tα is a contraction. For any g, h ∈ B(I),

(Tαg)(i) − (Tαh)(i) = min
u







L(i, u) + α
∑

j

Pij(u)g(j)







−min
u







L(i, u) + α
∑

j

Pij(u)h(j)







= min
u







L(i, u) + α
∑

j

Pij(u)g(j)







− L(i, u0) − α
∑

Pij(u0)h(j)

where u0 is the control at which the minimum is attained. Thus

(Tαg)(i) − (Tαh)(i) ≤ α
∑

j

Pij(u0)[g(j) − h(j)]

≤ α
∑

j

Pij(u) sup
j

|g(j) − h(j)|

= α‖g − h‖

Since we can clearly reverse the roles of g and h, we also get

(Tαh)(i) − (Tαg)(i) ≤ α‖g − h‖

Hence
sup

i
|(Tαg)(i) − (Tαh)(i)| ≤ α‖g − h‖

Thus
‖Tαg − Tαh‖ ≤ α‖g − h‖

so that Tα is indeed a contraction.
By the contraction mapping theorem, (6.7) has a unique solution Vα, which may be obtained by iterating

Tα on any function in B(I). A particularly convenient choice is to use the iteration T n
α θ where θ is the

identically zero function. The method of finding Vα by iteratively applying Tα to any bounded function is
called successive approximation.

While the method of successive approximations may be used in principle to compute Vα, in practice we
will only get an approximation to Vα after a finite number of iterations. However, if T n

α θ is close enough
to Vα, then the policy obtained by minimizing

L(i, u) + α
∑

j

Pij(n)(T n
α θ)(j)
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may be the optimal policy. If we denote the policy obtained by φn, we can evaluate Vφn
by applying the

policy φn in the equation
Tφn

Vφn
= Vφn

If Vφn
so obtained in fact also satisfies the dynamic programming equation (6.2), then by uniqueness

Vφn
= Vα and φn is optimal. Later now, we shall illustrate this method with an example.
Another method of finding the optimal policy and the optimal cost is obtained by the following con-

struction.
Suppose for any stationary policy f , we have evaluated Vf . Define f∗ as the policy which selects the

control that minimizes [L(i, u) + α
∑

j Pij(u)Vf (j)] for each i. We claim that f∗ is at least as good as f .
For,

(Tf∗Vf )(i) = L[i, f∗(i)] + α
∑

j

Pij [f
∗(i)]Vf (j)

≤ L[i, f(i)] + α
∑

j

Pij [f(i)]Vf (j)

= Vf (i)

By monotonicity, (T n
f∗Vf )(i) ≤ Vf (i). Letting n→ ∞, we obtain Vf∗(i) ≤ Vf (i).

We can in fact make a stronger statement: f∗ will either be a policy which is strictly better than f ,
i.e., Vf∗(i) < Vf (i) for some i, or else f∗ and f are both optimal. For, if Vf∗ = Vf , then the policy f∗ is
characterized by selecting that u which minimizes

L(i, u) + α
∑

j

Pij(u)Vf∗(j)

Since Tf∗Vf∗ = Vf∗ , we have

Vf∗(i) = L(i, f∗(i)) + α
∑

j

Pij(f
∗(i))Vf∗(j)

= min
u



L(i, u) + α
∑

j

Pij(u)Vf∗(j)





Hence Vf∗ satisfies (6.2) so that by uniqueness

Vf∗ = Vf = Vα

This method of successively improving the policy until the optimal one is obtained is called approxi-
mation in policy space, or the policy improvement algorithm. Note that if the state space is finite rather
than countable, then the policy improvement algorithm leads to an optimal policy after a finite number of
iterations. This is due to the fact that there are only a finite number of policies in the case where the state
space is finite. Since the above results show that a strict improvement is obtained with each iteration, no
repetitions will occur. At some point, no improvements will be possible and the optimal policy will be
obtained.

6.3 An Example

We give an example which illustrates the steps involved in obtaining the optimal policy using either
successive approximation or the policy improvement algorithm. Let the state space by {0, 1} and the
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control space be {1, 2}. The per stage costs are given by
[

L(0, 1) L(0, 2)
L(1, 1) L(1, 2)

]

=

[

1 0
2 2

]

The transition probabilities are given by

[

P00(1) P00(2) P01(1) P01(2)
P10(1) P10(2) P11(1) P11(2)

]

=





1
2

1
4

1
2

3
4

2
3

1
3

1
3

2
3





α is taken to be 1
2 .

Let us define the successive approximations by vi, i = 0, 1, 2, .... Then we have the following recurrence
relations

vn+1 = Tαvn (6.8)

Letting v0(0) = v0(1) = 0, we have

v1(0) = min
u∈{1,2}



L(0, u) +
1

2

1
∑

j=0

P0j(u)v0(j)





= min
u∈{1,2}

[L(0, u)] = 0

Similarly, v1(1) = min[L(1, u)] = 2.
Applying (6.8) to v1 yields

v2(0) = min
u∈{1,2}



L(0, u) +
1

2

∑

j

P0j(u)v1(j)





= min

{

1 +
1

2

(

1

2
· 0 +

1

2
· 2
)

, 0 +
1

2

(

1

4
· 0 +

3

4
· 2
)}

= min

{

3

2
,
3

4

}

=
3

4

and

v2(1) = min
u∈{1,2}



L(1, u) +
1

2

∑

j

P1j(u)v1(j)





= min

{

2 +
1

2

(

1

3
· 2
)

, 2 +
1

2
· 2

3
· 2
}

= min

{

7

3
,
8

3

}

=
7

3

Iterating again gives

v3(0) =
31

32
and v3(1) =

95

36
Noting that v3 is reasonably close to v2, we use v3 to compute a possible candidate φ3 for the optimal
policy. To do so, we apply Theorem 6.2 but with v3 replacing Vα. We then get, if the state is 0,

L(0, 1) + α
∑

j

P0j(1)v3(j) = 1 +
1

2

(

1

2
· 31

32
+

1

2
· 95

36

)

> L(0, 2) + α
∑

j

P0j(2)v3(j) =
1

2

(

1

4
· 31

32
+

3

4
· 95

36

)



6.3. AN EXAMPLE 93

so that

φ3(0) = 2

Similarly,

φ3(1) = 1

We check to see if φ3 is in fact optimal. This requires the verification that Vφ3 satisfies (6.2). First, we
compute Vφ3

Vφ3(0) = L[0, φ3(0)] + α
∑

j

P0j [φ3(0)]Vφ3(j)

=
1

2

[

1

4
Vφ3(0) +

3

4
Vφ3(1)

]

(6.9)

(6.10)

and

Vφ3(1) = 2 +
1

2

[

2

3
Vφ3(0) +

1

3
Vφ3(1)

]

(6.11)

Solving these equations give

Vφ3(0) =
36

29
, Vφ3(1) =

84

29

On putting into (6.2), we see indeed that Vφ3 satisfies (6.2). Hence by uniqueness Vφ3 = Vα so that φ3 is
the optimal policy φα.

Let us compute the optimal policy using policy improvement. We begin with the arbitrary choice of
φ0(0) = 1, φ0(1) = 1. We then get

Vφ0(0) = 1 +
1

2

(

1

2
Vφ0(0) +

1

2
Vφ0(1)

)

(6.12)

(6.13)

Vφ0(1) = 2 +
1

2

[

2

3
Vφ0(0) +

1

3
Vφ0(1)

]

(6.14)

(6.15)

Solving (6.12) and (6.14) yields

Vφ0(0) =
32

13
, Vφ0(1) =

44

13

We now find φ1 by minimizing



L(i, u) +
1

2

1
∑

j=0

Pij(u)Vφ0(j)



 for each i

Now

L(0, 1) +
1

2

1
∑

j=0

P0j(1)Vφ0(j) = 1 +
1

2

[

1

2
· 32

13
+

1

2
· 44

13

]

=
32

13

> L(0, 2) +
1

2

1
∑

j=0

P0j(u)Vφ0(j) = 0 +
1

2

[

1

4
· 32

13
+

3

4
· 44

13

]

=
4 + 33

2

13
,
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while

L(1, 2) +
1

2

1
∑

j=0

P1j(2)Vφ0(j) = 2 +
1

2

[

1

3
· 32

13
+

2

3
· 44

13

]

=
46

13
> L(1, 1) +

1

2

1
∑

j=0

P1j(1)Vφ0(j) =
44

13
.

Hence φ1(0) = 2, φ1(1) = 1 is an improved policy.
Solving for Vφ1 gives Vφ1(0) = 36

29 , Vφ1(1) = 84
29 and a second iteration on the policy improvement

algorithm yields the same policy as φ1. Hence φ1 = φα is optimal, a conclusion we had obtained previously
using successive approximation.

6.4 Positive Cost Criterion

In this section, we consider the positive cost criterion in which all per stage costs are nonnegative, i.e.
L(i, u) ≥ 0, all i and u. Also, we do not assume L(i, u) to be bounded for all i, u.

As before, let

VΦ(i) = Ei
Φ

[

∞
∑

t=0

L(xt, ut)

]

and
Vp(i) = inf

Φ
VΦ(i) i ≥ 0 .

A policy Φ∗ is optimal if VΦ∗(i) = Vp(i), ∀i. Of course, Vp(i) may be infinite even if the per stage costs are
finite. Thus the above control problem is only meaningful if Vp(i) <∞ for some initial states i.

The following results may be proved in the same way as in the discounted cost problem.

Theorem 6.3 The optimal cost satisfies the equation

Vp(i) = min
u

[L(i, u) +
∑

j

Pij(u)Vp(j)] ∀i (6.16)

Denote by N(I) the set of all nonnegative functions on the state space, and define, for any stationary
policy Φ = {f, f, ...}

Tf : N(I) → N(I)

by

(Tfγ)(i) = L[i, f(i)] +
∑

j

Pij(f(i))γ(j)

Then we have

(i) Tf is monotone

(ii) TfVf = Vf

(iii) (T n
f θ)(i) −→n→∞

Vf (i) for each i, where θ denotes the identically zero function.

The only difference between the above 3 properties and the analogous results in the discounted cost case
is that (T n

f γ)(i) → Vf (i) only if γ = θ. This is due to the fact that in the discounted cost case, we incur
final costs of the form αnγ. In this case, the discount factor α is absent, and we cannot guarantee the final
cost to go to zero unless it is zero.
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Theorem 6.4 (Optimality Theorem) Let φp be the stationary policy which, if the state is i, selects the
control which minimizes the right hand side of (6.16), then Vφp

(i) = Vp(i), and hence φp is optimal.

Proof: By applying φp
to Vp, we get

Tφp
Vp = Vp

But

Tφp
θ ≤ Tφp

Vp = Vp

Hence

T n
φp
θ ≤ Vp

On letting n→ ∞, we get Vφp
≤ Vp. But since Vp ≤ Vφp

, this proves the desired result.

Although Theorems 6.3 and 6.4 are similar to Theorems 6.1 and 6.2, they are more difficult to use
in practice. The successive approximation method does converge to the optimal cost function for the
finite control set case. However, without the discount factor, we do not in general have a geometric
rate of convergence. Furthermore, the policy improvement method does not necessarily converge to the
optimal control law. This is because without the discount factor, uniqueness of solution to the dynamic
programming equation (6.16) is not guranateed. For additional details on this problem, see D.P. Bertsekas,
Dynamic Programming and Stochastic Control.

6.5 Average Cost per Unit Time Criterion

The cost criterion we now consider is the average cost per unit time. For any policy Φ, we define

VΦ(i) = lim
T→∞

1

T
EΦ

i

T−1
∑

t=0

L(xt, ut)

This problem turns out to be more difficult than the discounted or positive cost problems. It is not
necessarily true that an optimal policy exists, and it may also happen that a nonstationary policy is strictly
better than a stationary policy (see the counterexamples in S.M. Ross, Applied Probability Models with
Optimization Applications). We shall give a sufficient condition for the existence of an optimal stationary
policy.

Theorem 6.5 If there exists a bounded function h defined on the nonnegative integers and a constant λ
such that

λ+ h(i) = min
u



L(i, u) +
∑

j

Pij(u)h(j)



 (6.17)

then there exists a stationary policy Φa such that

λ = VΦa(i) = inf
Φ
VΦ(i) for all i ≥ 0,

where Φa is the policy which, for each i, selects an action which minimizes the right hand side of (6.17).

Proof: For any policy Φ, we have

EΦ
i

{

T
∑

t=1

[h(xt) −EΦ(h(xt)|xt−1, ut−1)]

}

= 0 (6.18)
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But

EΦ[h(xt)|xt−1, ut−1] =

∞
∑

j=0

h(j)Pxt−1,j(ut−1)

=
∞
∑

j=0

h(j)Pxt−1,j(ut−1) + L(xt−1, ut−1) − L(xt−1, ut−1)

≥ min
u







L(xt−1, u) +
∑

j

Pxt−1,j(u)h(j)







− L(xt−1, ut−1)

= λ+ h(xt−1) − L(xt−1, ut−1) (6.19)

(6.20)

with equality if Φ = Φa.
Hence from (6.18) and (6.19) we get

0 ≤ EΦ
i

{

T
∑

t=1

[h(xt) − λ− h(xt−1) + L(xt−1, ut−1)]

}

or

λ ≤ EΦ
i

h(xT )

T
− EΦ

i

h(x0)

T
+

1

T
EΦ

i

T
∑

t=1

L(xt−1, ut−1)

On letting T → ∞, we obtain

λ ≤ lim
T→∞

1

T
EΦ

i

T
∑

t=1

L(xt−1, ut−1) (6.21)

Since equality is achieved in (6.21) with Φa, the theorem is proved.
An illustration of Theorem 6.5 is given in Problem 5.6 for the linear stochastic regulator problem.
It is possible to relate the average cost per unit time problem to the discounted cost problem. It is

also possible to formulate a successive approximation and a policy improvement algorithm. We shall not
go into the details but refer the reader to Bertsekas.



6.6. EXERCISES 97

6.6 Exercises

1. A Toymaker can be in one of two states: state 1 corresponds to having a successful toy, state 2 an
unsuccessful one. If he is in state 1, he can choose to advertise (1) or not advertise (2). If he is in
state 2, he can choose to (1) or not to (2) do research. The transition probabilities and rewards are
given as follows:

State Action Transition Probabilities Rewards
i u Pi1(u) Pi2(u) L(i, u)

1 1 0.5 0.5 6
2 0.8 0.2 4

2 1 0.4 0.6 -3
2 0.7 0.3 -5

Suppose the objective of the toymaker is to maximize the discounted reward criterion E
∑∞

k=0 α
kL(xk, uk)

for α = 0.9.

Determine the optimal policy using

(a) Successive approximation starting with v0(i) = 0, i = 1, 2.

(b) Policy improvement starting with the policy φ(i) = 1, i = 1, 2.

2. The Markov chain xk under control has two states 1,2. In state 1, there are 3 possible actions: 1, 2,
3. For n = 1, 2, 3, action n yields a return of 5−n

4 and xk remains in state 1 with probability n−1
2 .

In state 2, there is only one action, 1, that yields a return of 0 and the system stays in state 2 with
probability 1. Suppose the criterion is to maximize the average discounted return

J = E
∞
∑

k=0

αkL(xk, uk)

where L(xk, uk) is the return at state xk with action uk. Show that the return function under the 3
possible stationary policies φ1, φ2, φ3 where

φ1(1) = 1, φ2(1) = 2, φ3(1) = 3

φ1(2) = 1, φ2(2) = 1, φ3(2) = 1

are given respectively by V1 =

[

1
0

]

,

V2 =

[

3/4
1−α/2

0

]

and V3 =

[ 1
2(1−α)

0

]

Obtain the optimal control law as a function of α, 0 < α < 1.

3. Suppose the process xk satisfies the equation

xk+1 = wkuk
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where the control uk is constrained to lie in [0, xk], is wk is a nonnegative, independent, identically
distributed sequence. The control problem is to find a policy which maximizes the discounted cost

criterion E

∞
∑

k=0

αk(xk − uk)
1
2 where 0 < α < 1. The distribution of w is assumed to be such that

αEw
1
2
k < 1.

(a) Derive the dynamic programming equation for the optimal value function for this problem.

(b) The equation in (a) can be expressed in the form

V = TV (DP )

The successive approximation algorithm attempts to solve (DP) by computing vn = T n0 and
taking the limit. Compute v1(x) and v2(x).

(c) From the form of v1 and v2, guess the form of the function V (x) and solve (DP) explicitly.

(d) Show that the function V (x) determined in (c) is the optimal value function and hence determine
the optimal control law.


