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EXPERIMENT 1

CONTROL DESIGN USING MATLAB AND SIMULINK

1 Purpose

The purpose of this simulation experiment is to familiarize you with basic tools for analysis and design
of control systems using Matlab and Simulink. In Part I, a helicopter system is used to illustrate tools
for linear systems. In Part II, a magnetic levitation system is used to illustrate simple nonlinear systems
analysis and control design.

2 Part I: Control of a Helicopter System

Introduction
A state space model for longitudinal motion of a helicopter near hover is given by
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where x1 is the pitch rate, x2 is the pitch angle, x3 is the horizontal velocity, and u is the rotor tilt angle.
Designing a controller for the helicopter system is challenging since it is an open loop unstable system.

The design specifications are:

(a) The closed loop system is stable;

(b) The closed loop system asymptotically tracks a step input.

Once you have obtained a controller which achieves the above design specs, you can try to improve the
response by tuning the various control parameters.

3 Preparation

You will be using Matlab and Simulink to design controllers in this experiment. The experimental work in
Part I involves mostly design work using Simulink. In your preparation, you will build up preliminary data
to facilitate your experimental work. You should also familiarize yourself with the libraries of Simulink,
especially “Continuous”, “Sinks”, and “Sources”.

1. Enter the helicopter system matrices A, B, and C into Matlab. Use the command “ss2tf” to produce
the transfer function G(s). Matlab uses the object “sys” to represent a system block which can
then be composed using the commands “series” and “feedback”. Use the command “tf” to generate
the helicopter “sys” object. Determine the helicopter poles and zeros and show that it is open loop
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unstable. Determine the eigenvalues of A and verify that they are the same as the poles of G(s).
Label this as preparation for Part I to be handed in with preparation for Part II.

2. A Simulink diagram for the helicopter system, heli.mdl, is supplied. You can display it by starting
Matlab and typing heli. Note that the input and output are not yet connected to a source or sink,
and no control law is in place. So the Simulink diagram represents the open loop system. Study
heli.mdl carefully to gain better understanding of Simulink modelling. For example, you can click
each block and look at the block parameters.

4 Experiment

4.1 Control Design for Helicopter System

You will learn different approaches to control design in the course. For now, since you have learned
some classical control design techniques in ECE311S, we shall build a controller that achieves the design
specifications using root locus ideas.

1. Start heli.mdl. Connect a step function as the input. Connect x3, which is the output y, to a scope.
We shall refer to the open loop system as G(s).

2. From your preparation, you know that the system is unstable. To control the flight of the helicopter,
you need to stabilize the system. Furthermore, to achieve asymptotic tracking, we need an integrator
at the origin (review ECE311 material, if necessary, to reinforce your understanding). Consider the
the feedback system described in the following diagram:

G(s)

-

r yK
s+a

s
C1(s)

Figure 1: Complete controller design

where the reference input r is a step. The controller C1(s) serves to stabilize the closed loop system,
while the controller C2(s) = s+a

s
provides asymptotic tracking. Motivated by root locus considera-

tions, choose as your starting point the controller

C1(s) =
s + 0.65

s + 10

s + 0.2

s + 11

(You should reflect on and try to understand why based on root locus and the poles and zeros of
G(s), a second order controller is chosen). Add C1(s) and C2(s) to your Simulink diagram for G(s)
and complete the feedback system shown in Figure 1. Choose a small value for a initially so that
C2(s) ≈ 1. Choose some value for the gain K. You will adjust it in your simulation to get a stable
closed loop system. Click ”Simulation”, ”Simulation parameters”, ”Solver”, and set ”Stop time” to
180. Start the simulation and look at the output on the scope. If it is not stable, adjust the gain K

so that a finite steady state value is reached. Note that once the system is stabilized, the tracking
error should tend to 0. However, the error dynamics may be slow depending on the choice of a and
K. Enter in the space below the first set of values of a and K when you successfully stabilized the
closed loop system. Do a rough sketch of the step response and label your sketch.
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3. Tune the various control parameters to see if you can get a better step response. You do not have to
try to get the best response possible. You should record how the step response changes as a result of
your tuning to gain insight on, for example, the effects of placement of controller poles and zeros. For
your final control configuration, compute the maximum overshoot, and the 2% settling time for the
step response. Put your final control parameters and experimental observations and results in the
space provided below. Print your Simulink diagram for the final continuous time controller you have
designed, label it, and insert it after this page. Sketch or print the step responses on the Simulink
scope and include them with your Simulink diagram. Show this to your TA, and demonstrate your
simulation.
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5 Part II: Control of a Magnetically Levitated Ball

5.1 Introduction

Many industrial systems contain nonlinearities. It is therefore important to understand how to apply
control design procedures based on linear systems to nonlinear systems and their limitations. A magnetic
levitation (maglev) system to suspend a ball is often used as an illustrative model for control design of a
nonlinear system.

The simplified differential equation for the system is given by

ÿ = g − k

(

u2

y2

)

where u the control input is the current through the electromagnet, y the vertical displacement of the
ball from the magnet, g is the gravitational acceleration, and k is a constant determined by the physical
dimensions and material of the system. For the purposes of this experiment, g = 9.8, and k = 1. The
objective of the control problem is to keep the ball suspended at some fixed distance from the electromagnet.
This corresponds to the specifications that asymptotically, the position y(t) reaches an equilibirum point
ȳ and the equilibrium velocity ẏ is 0.

6 Preparation: The Nonlinear Maglev Model and Its Linearization

In your preparation, you will derive the state equations of the nonlinear maglev system and linearize it
about an equilibrium point.

6.1 The Nonlinear Model

1. Take the state vector x = [y ẏ]T , corresponding to the position and velocity of the ball. Write down
the nonlinear differential equation for x. You will have a nonlinear function on the right hand side
of the differential equation, so that the state equation is of the form

ẋ = f(x, u)
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where f(x, u) = [f1(x, u) f2(x, u)]T is a 2 dimensional vector with component functions f1(x, u) and
f2(x, u).

2. Let the desired equilibrium position be ȳ = 0.5. The equilibrium position is maintained by a steady
state input current ū. Thus at equilibrium, y = ȳ, and u = ū, and there should be no change in the
ball’s position. Determine ū, taking it to be positive. Write down f(x, u) and ū.

6.2 The Linearized Model

The majority of control system designs are based on linear models. In preparation for the controller design
expeirment, you will first linearize the nonlinear model you have built about the equilibrium point

1. Linearize the system around the equilibrium point x∗ =
[

ȳ 0
]T

, u∗ = ū, where ȳ = 0.5 and ū was
determine in the nonlinear model preparation. Let

A =
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The linearized system is given by

d

dt
δx = Aδx + Bδu

δy = Cδx

where δx = x − x∗ denotes the deviation of the state from the equilibrium. Similarly, δu = u − u∗ =
u− ū. Note that δx1 = y− ȳ = δy and δx2 = x2 = ẏ. Record the resulting matrices A and B in your
preparation.

7 Experiment

7.1 Controller Design for the Linearized System

We shall first design a controller for the linearized system.

1. Draw the Simulink diagram for the linearized system.

2. Note that when δx = 0, y = ȳ and x2 = ẏ = 0 so that the ball is balanced at the desired set point.
When the ball is initially placed under the electromagnet at t = 0, δx(0) 6= 0. The control objective
can now be recast as finding a control law such that δx(t)−→

t→∞

0 when initially δx(0) is nonzero. Let

δx(0) =
[

0.3 0.2
]T

. Consider a control law of the form

δu = −Kδx

The closed loop system is given by
d

dt
δx = (A − BK)δx

We know that if the eigenvalues of (A−BK) have negative real parts, we will have δx(t)−→
t→∞

0, achiev-

ing the design objective. Find K = [k1 k2] so that the eigenvalues of (A − BK) are approximately
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at −0.2 and −0.3. You can do this analytically, or use the Matlab command “place”. In using this
control law, we are assuming that both the position and velocity of the ball can be measured. We
call the control law a state feedback control law. Add this controller to the Simulink diagram for the
linearized system, and show on the Simulink scope that δx converges to 0. In the space below, record
your control gains and sketch or tape the response trajectories of δx(t) and δu(t) from the Simulink
scope.

7.2 Control Design for the Nonlinear Maglev System

Although we have designed a controller for the linearized system, we can try using it on the original
nonlinear system. We can expect that if the deviations from the equilibrium point are not large, the
controller design based on linearization should still work well.

1. First draw the Simulink diagram for the nonlinear system, defining a suitable nonlinear function in
your model using the Simulink fcn block from the nonlinear library. You may also find the Mux

block from the “Signals and Systems” library useful.

2. In terms of the original control signal u, the feedback law is

u = ū − Kδx = ū − k1(y − ȳ) − k2ẏ

Again, since both y and ẏ are used in feedback, we refer to this as a state feedback law. Add this
controller to the Simulink diagram for the original nonlinear system. Note that for the simulation of
the nonlinear system, you need to set the initial condition to x(0) = x∗+ δx(0). Tune the parameters
k1, k2, if necessary, and check that the design specs are satisfied on the Simulink scope. Print your
Simulink diagram implementing the state feedback controller and the closed loop responses of x(t)
and u(t) as displayed on the Simulink scope. Label your printout “State feedback control design for
maglev system” and insert it after this page.
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3. Now that you have a basic working design, you can try to speed up the response by tuning k1 and
k2. Find at least one K so that the linearized system eigenvalues are real and further away from 0,
and another K so that the linearized system eigenvalues are complex with negative real parts. Try
these gains in your controller and observe the response of the nonlinear system. Change the initial
conditions to see when the controller fails to achieve the required specs. In the space below, describe
your observations and discuss the performance of the various controllers, especially in connection
with their ability to control the nonlinear maglev system over the range of initial conditions.
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