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Abstract— This paper presents a fairly complete treatment of Il. PRELIMINARIES

stability and controllability of piecewise-linear systens defined . . o N
on a conic partition of R?. This includes necessary and sufficient In this section, we present some preliminary definitions

conditions for stability and controllability, as well as edablish- ~and results. In particular, we show that if a closed, convex
ing that controllability implies stabilizability by piece wise-linear ~ cone contains no subspaces and no eigenvectors of the system
state feedback. A key tool in the approach is the study of the matrix, then all trajectories escape the cone.
Poincaré map. Definition 1: Let © = Ax be the dynamics on a convex
l. INTRODUCTION coneC of IRid. We define an eigenvector of to bevisible

if it lies in I, the closure oftC.

The following result appeared in [2] and relies on Lef-
%fchetz’s fixed point theorem.

Lemma 1 (Pachter, [2]):Let £ be a non-empty closed
convex cone iR¢ but not a linear subspace.Af is invariant

This paper studies stability and controllability of
piecewise-linear systems defined on a conic partition
R?, which we call conewise linear systemgCLS). We
derive necessary and sufficient conditions for stabilitg an
for controllability, as well as establish that controlletyi . er the semigroupeAt}, i.e., Ak C K for all t > 0,
implies stabilizability via piecewise-linear state feadk. then K contains an eigenvector of. -

The analysis relies on the study of the Poincaré map. As 10ng| gmma 1 clearly implies the following result. Its relevance
as the_z stan_dard aSS‘_JmF’“O”S are p_osed concerning the lacky, enabling us to argue that the characteristic values
of trajectories following unstable eigenvectors or unigab computed in Section 11 are well-defined.

sliding modes, the properties of the Poincaré map are theTheorem 1:Let K be a closed convex cone iR, and

determining factor in stability. The Poincaré map is agai'%upposeic does not contain a subspace®f. Suppose no
used to study controllability, thus providing a unifyingthe. eigenvectors ofdA € R4 lie in K. Then for any initial
Assuming there are no one-dimensional controlled invarian,qition 2o € K, 2o # 0, there existsy € R such that
subspaces or half-lines (those on sliding surfaces), acBaén eAtogy ¢ K.

type map of the boundary of the funnel of the controlled
trajectories provides necessary and sufficient conditfons 20 € K, ez, € K, for all > 0. Let K denote the maximal

controllability. _ invariant set under the semigrogip”*} contained ink; that
Pachter and Jacobson [1] also obtain a necessary a@dg js formed by the union of trajectories that lie A for

sufficient condition for stability of switched linear syste 5, ; > ¢. Clearly K + @, and since the dynamics are linear
in the plane with conic switching by calculating the gainy js eyident thatk is also a closed convex cone. Moreover,
of a Poincare map. In this paper we go one step furthg¥ s ot a subspace sindé does not contain a subspace

by obtaining explicit algebraic expressions for what wey pd Thus by Lemma 1§ contains an eigenvector of
refer to as thecharacteristic valuef the CLS. Roughly jeading to a contradiction. n

speaking, for a CLS there are two mechanisms that lead to
stability or instability. One is the effect of the time-asge Il. STABILITY
of the eigenvalues of the individual linear components on |n this section we define the characteristic values of a
each partition weighted by the fraction of the time thaplanar CLS and express them as explicit functions of the
trajectories spend on each partition. The other is inducegstem parameters. The method amounts to computing the
by the non-commutativity of the individual linear maps. Thegrowth of trajectories over one cycle around the origin and
expressions obtained in this paper distinguish between tging this parameter to obtain the asymptotic behavior®f th
two components and thus shed some new light on the issggs. Let A = {A; e R?*2 j=1,...,ky} be a collection
of stability. of matrices and lefvs, ..., v, 1} be a set of unit vectors in
) ) ) ) R? directed counterclockwise such that.; = v;. We define
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Proof: Suppose that for some non-zero initial condition



Fori € Z, we defineV; = {\v; : A € (0,00)}. Let n; wherer; = M

w;
denote the unit vector orthogonal ¥ satisfyingn/viy1 >  Case 2:4; € R2*2 has two distinct real eigenvalue$ >
0 (i.e.,{n1,...,ne} is a collection of unit normal vectors to A

{V1,..., "V} ordered counterclockwise). _ Let P, € R2*2 denote the transformation such that=
The asymptotic behavior of the system is determined gki 0 P~' and definev/, v/ by (Ill.2). Then (Ill.4)

%

by the visible eigenvectors, sliding modes, and by the ¢raje Y
tories which encircle the origin. First we place conditiams holds with
the visible eigenvectors and sliding modes to insure stabil 1 ol

3274l
- A A " A=A 10g(v£1v£,2)

a;r = n;rAiUi , a; = nLlAile , 1e€Z. (ll1) N+ N/ (I1.5)
Oéi = .
If afa; | <0and|o) |+ |o; | #0, letr; € [0,1] denote 2
the (unique) number satisfyinga;” + (1 —r;)a;_ ; = 0. Let 8 = }10 (%Uz{z)
b2 i1Via

& =] (ridi + (1 — 1) Aim1)v; . . _ . _
Note that sinceC; contains no eigenvectors of; it has to
Clearly, all trajectories that lie ofv; are asymptotically pe the case that, and v have the same sign (component
stable if and only if¢; < 0. In the casen} = a;_; = 0, wise). Alsov), v/} # 0, otherwiseX’; contains an eigenvector
v; is an eigenvector of bothl; and A;_;, and as a result of ;. Therefore formulas (111.5) are well-defined.

all trajectories that lie ofV; are asymptotically stable if and c55¢ 3: 4, € R?*2 has a real eigenvalug, of multiplicity
only if the corresponding eigenvalues are both negative. Wein, its minimal polynomial.

summarize this in the following lemma. _ N Let P, € R2%2 denote the transformation such that —
Lemma 2:In order for X to be asymptotically stable it is p (M1 2|P1 and definev/, v/ by (I1.2). Then (II1.4)

necessary that Ao T
- - ) ) ) holds wit
(i) All visible eigenvectors are associated with stable

. o vl 1 " /
eigenspaces. RS det (Vi1 Vi

n + - + — H i = Y A7) e " /

(i) If o a;_; <Oand|o; |+|a;_;| #0, theng; <0, i.e., Vig Uiy UjpUsn Via  Vio
all sliding modes are stable. o= A (I11.6)

Next we compute the time needed for a trajectory to
transverse a cone, as well as its growth in the cone. These B, = 1Og(v_§2)
calculations are used later to determine the asymptotic be- ’ i
havior of the trajectories that encircle the origin. Fix Z. ] ) ]
Suppose thatd; has no visible eigenvectors relative kg, Note thatvi,vl, # 0, otherwise/C; contains an eigenvector
Without loss of generality we may assume thgt > 0. of A;. ) ) )
Then necessarilyy; > 0, for otherwiseK; is invariant ~ 1he following may be proved by direct computation so
under the semigroupe:*}, and by Lemma 1 must contain W€ omit the proof.
an eigenvector of4; contradicting the hypothesis. Thus the Lemma 3:The expressions for; and; are independent
trajectory of X; starting atv; exits the cone crossing the setOf the choice of theP’s.
V41 in finite time by Theorem 1. We consider three cases We now present the main result of this section. Let
depending on the Jordan form df,.

i2

Case 1:A4; € R?*2 has a pair of complex eigenvaluas+ T= ZTi'
i, i€l
Let P; € R?*2 denote the transformation such thét = Theorem 2:The planar CLSY = {(£,K)), i —

P;(\I + wiJ)P7'. The time; that it takes the system 1
2 = (M + wiJ)z to traverse the congP; v, Py}

&, —1, Lo, . . .
is 7, = 2L vin D vi+1) This is the same as the time that
it takes the original systemt = A;z, with z(0) = v;, to
traverselC;. We define:

,..., L} is asymptotically stable if and only if

(@) Conditions (i) and (ii) of Lemma 2 hold.
(b) If there are no visible eigenvectors or sliding modes,
then with ;, a;, and 8; as defined in (111.3), (lI.5),

(111.6),
’U,ﬁ = Pifl’U,L- , U;l — Piilvi+1 s (”IZ) = Z (TiOéi + ﬁl) <0. (|”7)
T
and . i=T . .
1BAl Proof: First show that if there are no visible eigenvec-
o=\, B = log( HUUH) : (1-3) " tors or sliding modes, then (l11.7) is necessary and sufficie

. i ) Without loss of generality suppose thaf > 0. Then, as
A simple computation yields mentioned in the paragraph following Lemma 2 we must
. B; havea; > 0, and hence alsoj > 0. By inductiona;” > 0,
o(r) = Mg, =it ) (1.4) o~ > 0 forall i € Z. Thus the trajectory of ' satisfying



z(0) = vy, encircles the origin and cross&s at time 7. by z’ ~ z”, if there exists a: € & andT > 0, such that the
Using the results in Cases 1-3 above, we have controlled system admits a unique solutionRg satisfying
Bors 11 Biri 1 2(0) = 2’ andx(T) = 2”. Solutions are meant in the sense
()l = HPf»’e TPy Prem Ul” 01E Izilippov. If D( c) R2, thenz’ ~ D means thatt’ ~ z”
= M| PP P PreR T Py | for all z”/ € D. We say that¥ is completely controllable
(1.8) o R2 if 2/ ~ R2 for all 2’ € R2. Also, we say that™; is
completely controllablé any two points inkC; can be joined
= e |lvga || = €7, through a trajectory iric;.
where B, £ P71 A,P,, i € T. Therefore||z(k7)| = " Difficulties with existence and uniqueness of solutions for
’ iome ' o . discontinuous systems are well known [7]-[9], and several
forﬁal.l ke .N’ '”.‘fF{'y'“g tQhat (Hl'7)h IS n(?cessary. lF Is also solution concepts have been proposed to overcome them
sufficient flnce i1z € R \{%};’ t e:n] or € {o(t) : 0 S [10], [11]. Here we highlight by way of an example the
b < T}’ or someg > O'. us, the _trajectory starting difference between open-loop and closed-loop controle wit
from & converges asymptotically @@ provided (l11.7) holds.

; . ! / respect to uniqueness of solutions of discontinuous system
Necessity of (a) is asserted in Lemma 2. It remains to sho P q ¥

. e . - onsider the one-dimensional system
that if X has visible eigenvectors or sliding modes, then (asﬁ/ y

is sufficient. It is evident that in this case, a trajectoryrat ) u ifz<0

revisit a cone it exits. Therefore it has to get trapped inesom = —u x>0 (IV.10)
conelC; after some time,. Then necessarily eithet; has a ’

visible eigenvector relative t&;, or there is a stable sliding Supposer(0) = —1. Clearly there is no continuous feedback
mode inK;. In both cases it is fairly straightforward to showcontrol u which can steer the system fo On the other
that the trajectory converges asymptotically to the origiis ~ hand under the feedback = 1, if » < 0 andu = —1,

also evident that trajectories are bounded uniformly owgr a if = > 0, the closed loop system has a unique trajectory

bounded set of initial conditions. This completes the proofr(t) =t — 1, and hence-1 is steered td on [0,2]. Along
m this trajectory the control takes the values(t) = 1, for

Remark 1: t €10,1], andu(t) = —1, for ¢t € [1,2]. However, using this
1) When there are no visible eigenvectors or slidin?‘ as an open-loop control in (IV.10) we observe that there is
o}

modes the stability of is determined by the complex 0SS of uniqueness of the solution, and as a restiltannot
numbersy + jw, where be steered td by this open loop control.

Apropos the above discussion, we consider two classes of

w= 2r ) (1.9)  control inputs: a) the set of all bounded measurable feddbac
T controlsu : R? — R, which is denoted b¥,,,, and b) the set
Thus, we call them theharacteristic valuesof the of all piecewise_continuous Open_'oop contrals [0’ OO) N
CLS. R, denoted by/.

2) Letf =) s B anda =) ;T If 3=0, then In Section IV-A we study controllability ovet/ of the
stability results ifa: < 0; that is, the time-average of sypsystems?;, i € Z. We also establish that the reachable
the eigenvalues is negative. Likewise, Xf = 0 for  sets ofY; overi/ are also reachable over the class of constant
all i € 7, then stability depends only of, which  gain linear feedback controls. In Section IV-B we study the
is independent of the eigenvalues of the individuajeachability from cone to cone, ovéf,,. In Section IV-
matriceSAi. A further examination of the Constituentc we combine these results to obtain necessary and suffi-
terms iny and their relation to the work in [3], [4] can cient conditions for controllability of overi4,,. A slight
be found in [5]. strengthening of these conditions renders them necessdry a

sufficient for controllability of2 overi/; results can be found

. : in [5].

. Cons@er a controlled CLS, whose dynamics aregXSQpec- I[n]What follows we work with a refinement of the original

ified by i(t) = Aix(t) + biu(t) on K;, whereA; € R™, o iion \which enables a simplification of the results on

bi € R* andu(t) < R. As bgfore,Ei denotes the restriction reachability within cones. I1B; NK; # @, we divide; into

of ¥ on K;. Fori € 7, defineB; = span{b;}. We present y,, cones alongB;. Similarly, if A7'B, is one dimensional

a rather complete characterization of controllability bist and A~'B, N K, # @, we dividek; into two cones along

system onR2 = R”\ {0}, the punctured plane which does 4 ~13. We retain the same notation for the CLS on the

not include the origin. The punctured plane is also used il%lfinement of this partition.

the analysis of controllability of bilinear systems [6]. We

can also develop a controllability theory for the full planeA- Reachability within Cones

but this requires a more complicated analysis of trajeesori  Controllability of 2’ depends heavily on the reachable sets

that can cross through and studying the well-posedness ofof X;. Thus, in this section, the reachable sets3gf are

trajectories that pass through a vertex of a partition. analyzed.
Let U be a set of controls. if’, z”” are two points inRk2, Let ¢, (t,xz0;u) denote the trajectory(t), t > 0, of & =
we say thatt’ can be steered t0” overl{, and denote this A,z + b;u, satisfyingz(0) = xo. If b; # 0, let b denote the

IV. CONTROLLABILITY



unit vector which is orthogonal tb; and satisﬁeSchf >0
forall z € ;. If b; = 0, setb? = 0. Also, letK;, = K;\{0}.
For z € K;, define
Reachs, (z) é{4,0,L-(:‘,,23;u) t>0,ueld,
pi(s,z;u) € Kin, Vs € [0,1]}.

To assist in the taxonomy dieachs,, define, forb; # 0,
WH(z,b) £ {zeR?: (b)T2> (b)) Tz} U {z}
W (z,b) 2 {zeR>: (b)) T2 < ()T z} U{z}.

Lemma 4:Assume that iflC;. N B, # @ then 4;b; ¢ B;.
For x € KC;. the following hold:
(A) If b; = 0, then Reachy,(z) = {etlz : t >
0, andedit'z € Ky, V' € [0,1]}.
(B) If b, # 0 andrange(A;) C B;, thenReachy,(z) =
(I + Bz) N
(C) If b; # 0, andrange(A4;) ¢ B;, thenReachy, (z) =

I/V+(‘Z'7 bL) NICix s if (’Uz‘+1 + UL)TATb: >0
W™ (2, b:) N Kiw, i (vig1 +vi)TATDE < 0.

open line segment joining” andx’ + A\gb;. Let ¢ € [0, 00),
z=1" — ', and consider the feedback control

- 2TJAi$(t)

ul(t) = ANE — Chob] Jx(t). (IV.12)

The closed-loop system resulting from (IV.12) is

bl JAx(t)

z T

Z(t) (IV.13)

It follows from the foregoing that if( = 0 then the
trajectory z(t) of (IV.13) starting atz(0) = 2’ converges
asymptotically taz”, along the straight line joining these two
points. Also, sinceb] Jx = —(b})Tz < 0, for all z € K;,
and b Jz' # 0, the vector fieldb] Jx(t)\ob; results in a
trajectory that joinst’ andz’ + A\gb; along a straight line in
finite time. Fory € K; let

m(y) = Vin{y+oz | 0 € R}, ma2(y) = Vin{y+ob; | 0 € R},

and definel’, = conv{y,m(y),n2(y)}, where ‘conv’ de-
notes the convex hull. Let,(¢,¢), with ¢ > 0, denote the

Proof: Cases (A) and (B) are obvious. For case (Cjrajectory of (IV.13), starting frony, i.e., v,(0,¢) =y, and

first note that sinced;xz ¢ B, for all x € K;, we have

xTATbY # 0. Suppose, without loss of generality, that

xTATbr >0, for all z € K;. It follows that if p;(s, z;u) €
Reachy, (z), wherex € K., s € [0,t], andt > 0, then

set
7(y,¢) 2 inf {t > 0:7,(t,¢) € V1 }.

It is evident from the direction of the vector field of (I1V.13)

(b7)Ti(s,z;u) > 0, for almost alls € [0,¢]. Suppose that provided. > 0, thenr(y,¢) < co and

wi(t,m;u) # z. We claim that(b?) T (t, z;u) > (b)) .
If not, then (b})"¢;(s,x;u) = 0 for almost alls € (0,1),
from which it follows that(b; )T A;; (s, z;u) = 0, for all s €
[0,¢], or equivalently thatd;y; (s, z;u) € B;. This implies
pi(s,z;u) € K;, so eitherp;(s,z;u) € V; or @;(s,z;u) €

V11, for all s € [0,¢]. Suppose, without loss of generality,

the latter is the case. Then,= vi(t,z;u) —x € Viqq is
a nonzero vector irC;, which satisfiesz € B; (since by

assumptionv?)Tz = 0) and A,z € B,. This contradicts the

hypothesis of the lemma. Hendggachs, (z) € W (x,b;)N
Kis.
To show the converse, let’ € W (2, b;)NK;s, 2" # 2,

and set: = z/ —x’. Suppose, without loss of generality that

b = Jb;. If A2’ ¢ B; and A;x” ¢ B; then if we let
u(t) = (b] J2)"12TJA;x(t), we obtain

i Jz
Since bTb‘T]?Z”” >0 foral z =¢&z+a', £ €0,1], it follows

by (IV.11) that the solutionz(t) with z(0) = «/, satisfies
x(t") = «” for some finitet” > 0. Suppose thatd;z” €

{7y(t7§) ‘te (O,T(%O)} cry, (IvV.14)

with I denoting the interior of ;. In particular, for¢ > 0,
v (7(2', ), ¢) lies in the relative interior ofonv{z”, =’ +
Aob;}. Since the vector field of (IV.13) is transversal to
Vi, 7(2',¢) is continuous in¢ € (0,00), and in turn, the
same holds fory, (7(z', ), ¢). Continuity of the solution of
(IV.13) with respect ta;, combined with (1V.14), shows that

, " as¢ — 0
YV’ (T(I 7<)?<) - {x/ + )\Obl as< = 0.
Thereforey, (7(a/,¢"),¢") = 2, for some¢” € (0,00).

If A;z” ¢ B; and A;2’ € B,;, the conclusion follows
along the same lines, by using time reversal. Afz” €
B; and A;x’ € B;, using an intermediate point € K;
satisfying A;4 € B; and b] Ja' < b]Ji < blJz", the
previous arguments show thate Reachy, (2’) andz” €
Reachy, (2). [ |

The proof of Lemma 4 shows that linear feedback control
can be used to steer Reachy, as stated in the following

B; and A;z’ ¢ B,. Since, by construction of the partition, corollary.

A;7'B; NK; = @, it must be the case that’ € V, UV, ;.
Without loss of generality supposé € V,. If follows from
the hypothesis thaV; ¢ B; and thus the linex’ + A\b;,
A € R intersectsV;, i.e., 2’ + Agb; € V;, for some)g € R.
Since A,z ¢ B;, implying 2’ ¢ V;, it follows that Ay # 0.
We know thatz’ + \ob; # 2, sincex” € W*(z',b;). Let
" eV, NnW(2',b;) be any point such that” lies in the

Corollary 3: Assume that if;. N B; # @ then A;b; ¢
B;. Also, supposé; # 0 andrange(4;) ¢ B;. Leta’ € K;.
andz” € Reachy,(z’) such thatspan{A;z’, A;x"} ¢ B;.
Then there is a feedback control= le:c for somek; €
R?, such that the trajectory(t), with z(0) = 2/, satisfies
z(t") = z”, for somet” > 0 andz(t) € K; for all ¢t €
(0,¢").



B. Reachability between Cones growth in IC; asEj(n). These growth factors can be com-

In this section we analyze the existence of controlle§Ut€d explicitly using Lemma 4. , ,
trajectories (oveid,,) starting in K; and reachingi, 1, Definition 2: Assume Condition 1. Define fof € Z and
and vice versa. The main idea is to analyze the possibfe© g
directions of flow ofY; and X;; alongV,;,;. We use the

; ) : 0 if (v +v;)TAJbS >0
notation/C; — K;41 to indicate that there exists a controlled .
trajectoryz(-) in K; U iy 1, defined fort € [—¢,¢], with ¢ (k) = 0] b if (0501 +0,)TATH <0, b; £0
¢ > 0 and satisfyings(—¢) € K;, 2(¢) € Ki1. Analogously vj10; LT =
for ;11 — K;. In order to indicate the direction (counter- e HiTi if b; =0,
clockwise, or clockwise) that the boundafy can be crossed
by controlled trajectories, we define the sgtC {1,-1} e \ "
with the property thatl € G; if K; — K;11, and—1 € G; (U}LQJ if (vj41+0;)TAJDY >0, b #0

L ) . §(k) =10 if (vj41 +v)TATbS <0

+ A Ty -5 T 4 ]
B =mn;b;, B =mnipbi. efHi T if b, =0.

Then using (I11.1) and the signum function, and allowing fory 4 e

k ; w; andr; are the trajectory growth rate and time to
discontinuous controls, we have

transverseC; computed in Section Il1.
Theorem 4:For X to be completely controllable oR2,
overl,,, it is necessary and sufficient that
(a) Condition 1 holds.
(b) For somex € G the following inequalities hold

Gi ={sgn(o; +uB): (a; +ub ) (o, +u'Bh,) >0,
Hu,u'elR}.
(IV.15)

A more explicit characterization df; is provided by the

following lemma. ¢ _ [
Lemma 5: For eachi € Z, §('€)éH§j(f€)<1a §(ﬁ)éH§j(f€) <1.
() If 55,67 #0, theng, = {1, —1}. i=1 =1 (IV.16)
(i) If 87,8, =0, then Proof: Necessity of [ i
: y of (a) has been discussed earlier. Note
_ . = + — that if
{segn(e; )} if 85, =08 =0, o105 >0 (041 + vj)TAJT»b;f _0, (IV.17)
{sgn(e; )} if B, #0 . .
P = and b; # 0, then necessarilyange(A;) C B;. Thus if
{sen(of )} if B #0 (IV.17) holds for allj € Z, the reachable set from every point
(2} otherwise. x is one-dimensional. It follows that i’ is completely con-

trollable, thené(x)£(x) = 0. To show that (b) is necessary,
C. Main Result first observe that ifG = {1, -1}, thené(x) = £ '(—k),

In this section we gather the previous results on reachffoy'dedé(”) # 0, otherwiseg(x) = §(—r) = 0 Similarly
bility within and between cones to obtain our main result of°" £(). It follows from these arguments that if (b) do_es not
controllability. The essential idea is to analyze trajeie® hold, then we rr}ay suppose WIthOUF loss of genergllty that
which encircle the origin either in a counterclockwise 0|g = {1}, and Hj_zlé(“) > 1. Consider the collection of
clockwise sense. We compute the maximum and minimuRPiNtSz: € V; defined byz;, = v; and
growth around such a cycle. Necessary and sufficient condi-

) - . ; etiTiz;  if by =0

tions for controllability are obtained in terms of thesewtio 21 =4 o« ! !

factors—both shrinkage and expansion must be possible. I viﬂfj z; otherwise.
i

The existence of trajectories that encircle the origin is a

necessary condition for controllability df; for if not, either

someV; is invariant under any controlled trajectory or there
is a subcollection of cones whose union is invariant unde

any controlled trajectory. Le§ £ Nicz Gi- We require the
following.
Condition 1: G # @.

Let v : [0,4] — R?+, be the curve defined by(s) =
et (s=IH T 5, if b; =0, s€[j—1,7]

T *
vi+1b5

vIb*

J 7

zipr+ (s — ) (2541 — z) b #0, s€lj—17.

According to the hypothesi§zy; 1] < ||v1||. Consider the

Note that under Condition 1 the hypothesis of Lemma 4 igordan curve consisting ¢f/(s), s € [0, 4]} and the straight
satisfied for alli € Z. For if not, then either] = 5" =0,  segment|z,,1,21] C V; and letD denote its interior. It
ora; = f; =0, resulting inG; = @. follows by Lemma 4, thaReachx(v1) C D, thus arriving

It is necessary to determine the growth around a cycley a contradiction.
as in Theorem 2. We define the inverse of the maximum Sufficiency: Assume (a)—(b). Without loss of generality
possible growth inC; aséj(n) and the minimum possible sypposel € @G, and £(1) < 1, £(1) < 1. By Lemma 4,



if bj }é 0 and range(Aj) ¢ ‘Bj, then ReaCth (’Uj) N VjJrl
contains all points of the form;v;,1, where

OO> R if (Uj+1 + ’UJ)TA;rb; >0

(O, :Ibi*) s if (ijrl + ’UJ)TAJ—b; <0.
Otherwise Reachyx; (v;) N V;1 = {0;vj41}, Where

.
? b’b* , if b; #0, and range(A;) C B;

andrange(4;) ¢ B;, thenReachy, (v;) NV, 41 contains all
points of the formg;v;11, where

vl b* f
[ Ijrll)?l;j ) OO) ) if (vi+1 + Uz)TAszf >0

0; €

(o, ﬂbf*} L if (v + o) TATBE < 0.
1+1 i

Moreover, by Corollary 3, for any such;, there exists a
constant gairk; = k;(o;), such that under the contral =
le:c the closed-loop trajectory ifC;, steersv; to o;v;41.
On the other hand, ib; # 0 andrange(A;) C B;, then

0 =

eMiTi

_ Reachy, (v;) = (v; +B;)NK;.. In this case, it easily follows
if bj =0. that for some(; € R, the closed-loop trajectory starting at

Then, by considering the trajectories that follow a congletv: and under the feedback contml Cz , is a straight

cycle, we have line segment inC; that joinsv; to - b* ——-v;11. Hence we

setp; = if b, = 0, in view of Lemma 4, set

{oviioe (€(1),00)} if £(1)=0

Reachy(v1)NV1 D 0; = et Since[ [, & < 1, it follows that the collection

{oi, i € T} may be selected such thaf,_, o, < 1. Let
4 denote the segment of the closed-loop trajectory under
a complete cycle. Clearly steersv; to to (Hiez gi) V1,
at o and it easily follows that the closed-loop trajectory coges
_ Remark 2:1f £(r)¢(k) = 0 then (IV.16) implies{(x) +  asymptotically to the origin. Since, by linear scaling gver
§(x) < 1. On the other hand, if(x){(x) # 0 then{(x) =  ; c R? satisfies\z € 4 for some) > 0, it follows that the
E_l(m) and (IV.16) does not hold. It follows that (IV.16) in closed-loop system is asymptotically stable. ]
Theorem 4 may be replaced §yx) + £(x) < 1 Remark 3:As seen in Example 2, even if every pair
Example 1:In this example none of the individual pairs (4;,b;) is controllable, the system might not be stabilizable
(4;,b;) are controllable, yet the CLS is completely control-by state feedback. This connects directly to the stability
lable. Let/C;, i = 1,2, 3, 4, correspond to the four quadrantsanalysis. Despite the fact that the eigenvalues of the dlose
of the plane in counterclockwise order. We define loop systemA; + b;k] can be selected to have any negative
3 0 1 values desired, thus making the coefficientsas negative
A = (0 3) ’ b= (71) as desired, this process also affects the ggjris a manner
2
Ar=0, b =(3)

}  otherwise.
(Iv.18)

Iterating (1V.18) we obtairReachy(v1) NV, D V4, and the

result now easily follows. [ ]

{ov1:0€(0,£71(1))

that might always result in an unstable system.

REFERENCES

Ag = A, = ( 0 1) by =by =0. [1] M. Pachter, D. H. Jacobson, The stability of planar dyitainsystems
-10)”" linear-in-cones, IEEE Trans. Automat. Control 26 (2) (19837-590.
. . - - [2] M. Pachter, D. H. Jacobson, Observability with a conisatvation
An easy calculation yield§y = {-1}, {(-1) = 0, and set, IEEE Trans. Automat. Control 24 (4) (1979) 632—633.

&(-1)=0.5. [3]
Example 2:In this example all of the individual pairs
(Aiv bi) are controllable and conditions (a)_(b) of Theorem 4[4] A. A. Agrachev, D. Liberzon, Lie-algebraic stability i@ria for
are satisfied, yet the CLS is not completely controllable. As  switched systems, SIAM J. Control Optim. 40 (1) (2001) 2582
in Example 1 letlC,. i = 1.2.3.4 correspond to the four [8] A. Arapostathis, M. Broucke, Stability and controllétyi of planar,
' A . . conewise linear systems, Systems Control Lett. 56 (12) {rQ60—
guadrants of the plane in counterclockwise order. We define

158, hybrid control systems.
2 3 -1 1
A1:A3:(7171), A2:A4:(_3 2)7

D. Liberzon, J. P. Hespanha, A. S. Morse, Stability of tsihed
systems: a Lie-algebraic condition, Systems Control I38t{(3) (1999)
117-122.

[6] W. Boothby, A transitivity problem from control theory, of Differ-
1 1 -1 -1
n=() e=() m=(0) w=(5)-

ential Equations 17 (2) (1975) 296-307.
[7] J.-l. Imura, A. van der Schaft, Characterization of wallsedness of
Here,G = {1,—1},£(1) = £(—1) = 0, and{(1) = (1) =
1.

V. STABILIZATION

Theorem 5:SupposeX’ is completely controllable over
Un. Then it is stabilizable by piecewise-linear feedback ofy 4

the formu = k] z, for x € K;, wherek; € R?, i € .
_ Proof: W|thout loss of generality supposec G, and
&(1) < 1. Leti € 7 be arbitrary. By Lemma 4, ib; # 0

piecewise-linear systems, |IEEE Trans. Automat. Contrq(93%2000)
1600-1619.
[8] A. Bacciotti, Some remarks on generalized solutionsis€antinuous
differential equations, Int. J. Pure Appl. Math. 10 (3) (2p@57-266.
[9] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, A. |. Subbotirsyfptotic
controllability implies feedback stabilization, IEEE Tia Automat.
Control 42 (10) (1997) 1394-1407.
A. F. Filippov, Differential equations whose rightiidh side is discon-
tinuous on intersecting surfaces, Differentsige Uravneniya 15 (10)
(1979) 1814-1823.
A. F. Filippov, Differential equations with discontious righthand
sides, Vol. 18 of Mathematics and its Applications (Sovieri€s),
Kluwer Academic Publishers Group, Dordrecht, 1988, tratesl from
the Russian.

[10]



