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Abstract

This paper presents a fairly complete treatment of stability and controllability of
piecewise-linear systems defined on a conic partition of R

2. This includes necessary
and sufficient conditions for stability and controllability, as well as establishing that
controllability implies stabilizability by piecewise-linear state feedback. A key tool
in the approach is the study of the Poincaré map.
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1 Introduction

This paper studies stability and controllability of piecewise-linear systems de-
fined on a conic partition of R

2, which we call conewise linear systems (CLS).
We derive necessary and sufficient conditions for stability and for controllabil-
ity, as well as establish that controllability implies stabilizability via piecewise-
linear state feedback. The analysis relies on the study of the Poincaré map. As
long as the standard assumptions are posed concerning the lack of trajectories
following unstable eigenvectors or unstable sliding modes, the properties of
the Poincaré map are the determining factor in stability. The Poincaré map is
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again used to study controllability, thus providing a unifying theme. Assum-
ing there are no one-dimensional controlled invariant subspaces or half-lines
(those on sliding surfaces), a Poincaré type map of the boundary of the funnel
of the controlled trajectories provides necessary and sufficient conditions for
controllability.

Pachter and Jacobson [1] also obtain a necessary and sufficient condition for
stability of switched linear systems in the plane with conic switching by cal-
culating the gain of a Poincaré map. In this paper we go one step further by
obtaining explicit algebraic expressions for what we refer to as the characteris-
tic values of the CLS. Roughly speaking, for a CLS there are two mechanisms
that lead to stability or instability. One is the effect of the time-average of the
eigenvalues of the individual linear components on each partition weighted by
the fraction of the time that trajectories spend on each partition. The other
is induced by the non-commutativity of the individual linear maps. The ex-
pressions obtained in this paper distinguish between the two components and
thus shed some new light on the issue of stability.

Xu and Antsaklis [2] obtain necessary and sufficient conditions for asymptotic
stabilizability of second-order switched linear systems, and they construct a
stabilizing control law. Their results are obtained via a detailed analysis of
the Poincaré map and the phase portraits of individual vector fields; they ob-
tain a conic switching law essentially by selecting the linear system along each
ray that points most directly to the origin. While the underlying geometric
approach based on the study of the Poincaré map is the same, the primary
difference between the present work and theirs lies in the problem formulation:
they start with a collection of autonomous linear vector fields and address the
problem of selecting the switching boundaries so as to obtain an asymptot-
ically stable system; in the present work we consider a controlled piecewise
linear system on a given partition and address the problem of existence of a
stabilizing control law.

Several results on necessary and sufficient conditions for stability pertain to
switched systems with arbitrary time switching. Boscain [3] obtained neces-
sary and sufficient conditions for the stability of a time-switched linear sys-
tem with two subsystems and arbitrary switching between them. Holcman
and Margaliot [4] obtained a necessary and sufficient condition for stability
of two homogeneous subsystems with arbitrary switching by constructing an
appropriate common Lyapunov function. Margaliot [5] studied the problem
of stability of switched systems with arbitrary switching using a variational
approach in order to analyze the most unstable trajectory of the switched sys-
tem. See the references therein for related work on worst-case switching laws
and Lie-algebraic methods. The identification of worst case trajectories arises
in the present work in our analysis of stabilizability.

2



The paper is organized as follows. In Section 2 we present a preliminary result
on trajectories escaping convex cones in R

d. In Section 3 we give our main
result on stability by computing characteristic values. In Section 4 we present
necessary and sufficient conditions for controllability, and in Section 5 results
are given on stabilizability.

2 Preliminaries

In this section, we present some preliminary definitions and results. In par-
ticular, we show that if a closed, convex cone contains no subspaces and no
eigenvectors of the system matrix, then all trajectories escape the cone.

Definition 1 Let ẋ = Ax be the dynamics on a convex cone K of R
d. We

define an eigenvector of A to be visible if it lies in K̄, the closure of K.

The following result appeared in [6] and relies on Lefschetz’s fixed point the-
orem.

Lemma 2 (Pachter, [6]) Let K be a non-empty closed convex cone in R
d

but not a linear subspace. If K is invariant under the semigroup {eAt}, i.e.,
eAtK ⊂ K for all t ≥ 0, then K contains an eigenvector of A.

Lemma 2 clearly implies the following result. Its relevance is in enabling us to
argue that the characteristic values computed in Section 3 are well-defined.

Theorem 3 Let K be a closed convex cone in R
d, and suppose K does not

contain a subspace of R
d. Suppose no eigenvectors of A ∈ R

d×d lie in K.
Then for any initial condition x0 ∈ K, x0 6= 0, there exists t0 ∈ R such that
eAt0x0 /∈ K.

PROOF. Suppose that for some non-zero initial condition x0 ∈ K, eAtx0 ∈ K,
for all t ≥ 0. Let K̂ denote the maximal invariant set under the semigroup
{eAt} contained in K; that is, K̂ is formed by the union of trajectories that
lie in K for all t ≥ 0. Clearly K̂ 6= ∅, and since the dynamics are linear, it
is evident that K̂ is also a closed convex cone. Moreover, K̂ is not a subspace
since K does not contain a subspace of R

d. Thus, by Lemma 2, K̂ contains an
eigenvector of A, leading to a contradiction. �
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3 Stability

In this section we define the characteristic values of a planar CLS and express
them as explicit functions of the system parameters. The method amounts
to computing the growth of trajectories over one cycle around the origin and
using this parameter to obtain the asymptotic behavior of the CLS. Let A =
{Aj ∈ R

2×2 , j = 1, . . . , k0} be a collection of matrices and let {v1, . . . , v`+1}
be a set of unit vectors in R

2 directed counterclockwise such that v`+1 =
v1. We define Θ(· , ·) to be the angle in radians between two vectors in R

2

in the counterclockwise sense, and assume, without loss of generality, that
Θ
(

vi, vi+1

)

< π. Let {K1, . . . ,K`} be a set of open convex cones that form

a partition of R
2 such that Ki is generated by {vi, vi+1}. On each Ki we

have the dynamics ẋ = Aix with Ai ∈ A. We denote the resulting CLS by
Σ = {(Σi,Ki) , i = 1, . . . , `} where Σi denotes the dynamics on Ki. Let
J = ( 0 −1

1 0 ) and define the index set I = {1, . . . , `}. For i ∈ I, we define
Vi = {λvi : λ ∈ (0,∞)}. Let ni denote the unit vector orthogonal to Vi

satisfying nT

i vi+1 > 0 (i.e., {n1, . . . , n`} is a collection of unit normal vectors
to {V1, . . . , V`} ordered counterclockwise).

The asymptotic behavior of the system Σ is determined by the visible eigen-
vectors, sliding modes, and by the trajectories which encircle the origin. First
we place conditions on the visible eigenvectors and sliding modes to insure
stability. Let

α+
i

M

= nT

i Aivi , α−

i
M

= nT

i+1Aivi+1 , i ∈ I . (3.1)

If α+
i α−

i−1 ≤ 0 and |α+
i |+ |α−

i−1| 6= 0, let ri ∈ [0, 1] denote the (unique) number
satisfying riα

+
i + (1 − ri)α

−

i−1 = 0. Let

ξi
M

= vT

i (riAi + (1 − ri)Ai−1)vi .

Clearly, all trajectories that lie on Vi are asymptotically stable if and only if
ξi < 0. In the case α+

i = α−

i−1 = 0, vi is an eigenvector of both Ai and Ai−1,
and as a result all trajectories that lie on Vi are asymptotically stable if and
only if the corresponding eigenvalues are both negative. We summarize this in
the following lemma.

Lemma 4 In order for Σ to be asymptotically stable it is necessary that

(i) All visible eigenvectors are associated with stable eigenspaces.
(ii) If α+

i α−

i−1 ≤ 0 and |α+
i | + |α−

i−1| 6= 0, then ξi < 0, i.e., all sliding modes are
stable.

Next we compute the time needed for a trajectory to transverse a cone, as
well as its growth in the cone. These calculations are used later to determine

4



the asymptotic behavior of the trajectories that encircle the origin. Fix i ∈ I.
Suppose that Ai has no visible eigenvectors relative to Ki. Without loss of
generality we may assume that α+

i > 0. Then necessarily α−

i > 0, for otherwise
K̄i is invariant under the semigroup {eAit}, and by Lemma 2 must contain
an eigenvector of Ai contradicting the hypothesis. Thus the trajectory of Σi

starting at vi exits the cone crossing the set Vi+1 in finite time by Theorem 3.
We consider three cases depending on the Jordan form of Ai.

Case 1: Ai ∈ R
2×2 has a pair of complex eigenvalues λi ± jωi.

Let Pi ∈ R
2×2 denote the transformation such that Ai = Pi

(

λiI + ωiJ
)

P−1
i .

The time τi that it takes the system ż = (λiI + ωiJ)z to traverse the cone

{P−1
i vi, P

−1
i vi+1} is τi =

Θ(P−1

i
vi, P

−1vi+1)

ωi
. This is the same as the time that it

takes the original system ẋ = Aix, with x(0) = vi, to traverse Ki. We define:

v′

i = P−1
i vi , v′′

i = P−1
i vi+1 , (3.2)

and

αi = λi , βi = log
( ‖v′

i‖
‖v′′

i ‖

)

. (3.3)

A simple computation yields

x(τi) = eµiτivi+1 , µi = αi +
βi

τi

, (3.4)

where τi =
Θ(v′i,v

′

i+1
)

ωi
.

Case 2: Ai ∈ R
2×2 has two distinct real eigenvalues λ′

i > λ′′
i .

Let Pi ∈ R
2×2 denote the transformation such that A = Pi

(

λ′

i
0

0 λ′′

i

)

P−1
i and

define v′
i, v′′

i by (3.2). Then (3.4) holds with

τi =
1

λ′
i − λ′′

i

log
(

v′
i2v

′′
i1

v′
i1v

′′
i2

)

αi =
λ′

i + λ′′
i

2

βi =
1

2
log
(

v′
i1v

′
i2

v′′
i1v

′′
i2

)

.

(3.5)

Note that since Ki contains no eigenvectors of Ai it has to be the case that
v′

i and v′′
i have the same sign (component wise). Also v′

i1v
′′
i2 6= 0, otherwise Ki

contains an eigenvector of Ai. Therefore formulas (3.5) are well-defined.

Case 3: Ai ∈ R
2×2 has a real eigenvalue λi of multiplicity 2 in its minimal

polynomial.
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Let Pi ∈ R
2×2 denote the transformation such that Ai = Pi

(

λi 1

0 λi

)

P−1
i and

define v′
i, v′′

i by (3.2). Then (3.4) holds with

τi =
v′′

i1

v′′
i2

− v′
i1

v′
i2

=
1

v′
i2v

′′
i2

det







v′′
i1 v′

i1

v′′
i2 v′

i2







αi = λi

βi = log
(

v′
i2

v′′
i2

)

.

(3.6)

Note that v′
i2v

′′
i2 6= 0, otherwise Ki contains an eigenvector of Ai.

The following may be proved by direct computation so we omit the proof.

Lemma 5 The expressions for αi and βi are independent of the choice of the
Pi’s.

We now present the main result of this section. Let

τ =
∑

i∈I

τi .

Theorem 6 The planar CLS Σ = {(Σi,Ki) , i = 1, . . . , `} is asymptotically
stable if and only if

(a) Conditions (i) and (ii) of Lemma 4 hold.
(b) If there are no visible eigenvectors or sliding modes, then with τi, αi, and

βi as defined in (3.3), (3.5), (3.6),

µ :=
∑

i=I

(τiαi + βi)

τ
< 0 . (3.7)

PROOF. First show that if there are no visible eigenvectors or sliding modes,
then (3.7) is necessary and sufficient. Without loss of generality suppose that
α+

1 > 0. Then, as mentioned in the paragraph following Lemma 4 we must
have α−

1 > 0, and hence also α+
2 > 0. By induction α+

i > 0, α−

i > 0 for all
i ∈ I. Thus the trajectory x of Σ satisfying x(0) = v1, encircles the origin and
crosses V1 at time τ . Using the results in Cases 1–3 above, we have

‖x(τ)‖ =
∥

∥

∥P`e
B`τ`P−1

` · · ·P1e
B1τ1P−1

1 v1

∥

∥

∥

= eµ1τ1
∥

∥

∥P`e
B`τ`P−1

` · · ·P2e
B2τ2P−1

2 v2

∥

∥

∥

...

= eµτ‖v`+1‖ = eµτ ,

(3.8)
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where Bi
M

= P−1
i AiPi, i ∈ I. Therefore, ‖x(kτ)‖ = ekµτ , for all k ∈ N, implying

that (3.7) is necessary. It is also sufficient since if x̂ ∈ R
2 \ {0}, then %x̂ ∈

{x(t) : 0 ≤ t < τ}, for some % > 0. Thus, the trajectory starting from x̂
converges asymptotically to 0, provided (3.7) holds. Necessity of (a) is asserted
in Lemma 4. It remains to show that if Σ has visible eigenvectors or sliding
modes, then (a) is sufficient. It is evident that in this case, a trajectory cannot
revisit a cone it exits. Therefore it has to get trapped in some cone Ki after
some time t0. Then necessarily either Ai has a visible eigenvector relative to Ki,
or there is a stable sliding mode in K̄i. In both cases it is fairly straightforward
to show that the trajectory converges asymptotically to the origin. It is also
evident that trajectories are bounded uniformly over any bounded set of initial
conditions. This completes the proof. �

Remark 7

(1) When there are no visible eigenvectors or sliding modes the stability of Σ
is determined by the complex numbers µ ± jω, where

ω =
2π

τ
. (3.9)

Thus, we call them the characteristic values of the CLS.
(2) Let β =

∑

i∈I βi and α =
∑

i∈I τiαi. If β = 0, then stability results if
α < 0; that is, the time-average of the eigenvalues is negative. Likewise, if
λi = 0 for all i ∈ I, then stability depends only on β, which is independent
of the eigenvalues of the individual matrices Ai.

The previous remarks warrant a further examination of the constituent terms
of µ. First, if the matrices {A1, . . . , Ak0

} commute pairwise, i.e., they form an
Abelian Lie algebra, and they are of simple structure, i.e., they correspond to
Case 1 or Case 2, then they can be simultaneously diagonalized and we obtain
β = 0 [7, p. 224]. Next, let us say that a Lie Algebra L of R

2×2 which contains
the identity matrix has the stable property if any time-switched linear system
whose dynamics are defined over any finite collection of Hurwitz elements of
L is asymptotically stable. It is shown in [8] that solvable Lie subalgebras
of R

2×2 have the stable property (see also [9] for further extensions of these
results). We make some connections between these Lie algebraic criteria for
the stability of time-switched systems and our results on CLSs. Let β(Σ) be
the parameter β associated with a CLS Σ.

Theorem 8 Let Σ be a CLS whose dynamics are governed by {Ai , i =
1, . . . , k0} and suppose that each Ai is either of the form

Ai = Pi(λiI + ωiJ)P−1
i , ωi 6= 0 , (3.10)

or
Ai = Pi(λiI + N)P−1

i , N =
(

0 1

0 0

)

,
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and satisfies (0, 1)Ai

(

1
0

)

> 0, (i.e., trajectories flow counterclockwise). If the

Lie algebra L generated by {I , Ai , i = 1, . . . , k0} has the stable property, then
β = 0.

PROOF. First, suppose β > 0. We construct a set of Hurwitz matrices
{A′

1, . . . , A
′
k0

| A′
i ∈ L} defining a new CLS which retains the same value

of β. Let
A′

i = −(λi + ε)I + Ai = Pi(−εI + ωiJ)P−1
i ,

or
A′

i = −(λi + ε)I + Ai = Pi(−εI + N)P−1
i ,

where ε > 0. First we note that A′
i ∈ L because I and any multiple of it

belong to L. Let Σ ′ be the CLS obtained from Σ by substituting Ai with A′
i,

i = 1, . . . , k0. Note that, by using (3.3) and (3.6), β(Σ ′) = β(Σ). Now we can
choose ε such that each A′

i is Hurwitz but µ = −ε + β
τ

> 0, since β > 0.
According to Theorem 6, the CLS is unstable, contradicting the hypothesis
that L has the stable property.

Instead, suppose β < 0. Replace each Ai by Ai
M

= (λi−ε)I −Ai to form a CLS
Σ. The trajectories of Σ encircle the origin in the clockwise direction, and it
can be easily verified that β(Σ) = −β(Σ)+ ε > 0, for ε > 0 sufficiently small.
Repeating the argument above we arrive at the same contradiction. �

We have seen that if the Lie algebra generated by the subsystem matrices
of a CLS is solvable, implying it has the stable property, then under the
conditions of Theorem 8, β = 0. However, the converse statement is not true
as the following example illustrates.

Example 9 Consider the CLS with two subsystems

A1 =







−1 −2

0.5 −1





 , A2 =







−1 −0.5

2 −1





 .

The switching boundaries are v1 = [1 0]T, v2 = [0 1]T, v3 = −v1, and v4 = −v2.
Let A1 be associated with K1 = cone{v1, v2} and K2 = cone{v2, v3}, and A2 be
associated with K3 = cone{v3, v4} and K4 = cone{v4, v1}. The eigenvalues of
A1 and A2 are both −1 ± j and

P1 =







2 −2

1 1





 , P2 =







1 −1

2 2





 .

With this data we find β = 0. Let H1 = ( 1 0
0 −1 ), H2 = ( 0 1

0 0 ), and H3 = ( 0 0
1 0 ).

They form a basis for sl(2), the Lie algebra of the special linear group SL(2)
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of 2 × 2 matrices, which is not solvable. Then we observe that A1 = −I +
1
2
H3 − 2H2, A2 = −I + 2H3 + 1

2
H2, and [A1, A2] = −3.75H1. Therefore, the

Lie algebra generated by {A1, A2} is not solvable.

Next we show that if β = 0 over all switching boundaries, then for a particular
class of matrices, the generated Lie algebra is Abelian. Let A be a collection
of matrices and S denote the class of all CLS Σ = {(Σj,Kj) , j = 1, . . . , `},
` ≥ 3, where {Ki} is some conic partition of R

2 and the dynamics Σj on Kj

are governed by ẋ = Ajx with Aj ∈ A.

Theorem 10 Suppose A = {Ãi , i = 1, . . . , k0} is a collection of matrices of

the form (3.10) and suppose (0, 1)Ãi

(

1
0

)

> 0, for all i = 1, . . . , k0 (i.e., tra-

jectories flow counterclockwise). If β(Σ) ≤ 0 for all Σ ∈ S, then the matrices
in A commute. Hence, β(Σ) = 0 for all Σ ∈ S.

PROOF. First note that Ãi and Ãj commute if and only if P−1
i Pj = %T where

T is an orthonormal matrix and % > 0, or equivalently iff
(

P−1
i Pj

)

T

P−1
i Pj is

a multiple of the identity. We argue by contradiction. Suppose that for some

i, j ∈ {1, . . . , k0},
(

P−1
i Pj

)

T

P−1
i Pj is not a multiple of the identity. Since it is

symmetric and positive definite, it has distinct positive eigenvalues µ1 < µ2.
Let ṽ1 be a unit eigenvector associated with µ1. Then for any vector v

‖P−1
i Pjv‖2 = vT

(

P−1
i Pj

)

T

P−1
i Pjv ≥ µ1‖v‖2 , (3.11)

and the inequality is strict unless v ∈ span{ṽ1}. Then noting that P−1
j JPjṽ1 6∈

span{ṽ1} and using (3.11) we have

‖P−1
i JPj ṽ1‖ = ‖P−1

i Pj(P
−1
j JPjṽ1)‖ >

√
µ1‖P−1

j JPjṽ1‖ . (3.12)

Let v1
M

= Pjṽ1 and vk
M

= Jk−1v1, for k = 2, 3, 4. Consider the partition generated
by {vi} and associate Ãj to K1 = cone{v1, Jv1} and K3 = cone{−v1,−Jv1}
and Ãi to K2 and K4. Then, by (3.12)

‖P−1
j v1‖

‖P−1
j v2‖

‖P−1
i v2‖

‖P−1
i v3‖

‖P−1
j v3‖

‖P−1
j v4‖

‖P−1
i v4‖

‖P−1
i v1‖

=

(‖P−1
j v1‖

‖P−1
j v2‖

‖P−1
i v2‖

‖P−1
i v1‖

)2

=

(

‖ṽ1‖
‖P−1

j JPjṽ1‖
‖P−1

i JPj ṽ1‖
‖P−1

i Pjṽ1‖

)2

> 1 ,

contradicting the hypothesis that β(Σ) ≤ 0, for all Σ ∈ S. �
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4 Controllability

Consider a controlled CLS Σ whose dynamics are specified by ẋ(t) = Aix(t)+
biu(t) on Ki, where Ai ∈ R

2×2, bi ∈ R
2 and u(t) ∈ R. As before, Σi denotes the

restriction of Σ on Ki. For i ∈ I, define Bi = span{bi}. We present a rather

complete characterization of controllability of this system on R
2
∗

M

= R
2 \ {0},

the punctured plane which does not include the origin. The punctured plane
is also used in the analysis of controllability of bilinear systems [10]. We can
also develop a controllability theory for the full plane but this requires a more
complicated analysis of trajectories that can cross through 0, and studying
the well-posedness of trajectories that pass through a vertex of a partition.

Let U be a set of controls. if x′, x′′ are two points in R
2
∗
, we say that x′

can be steered to x′′ over U , and denote this by x′
 x′′, if there exists a

u ∈ U and T > 0, such that the controlled system admits a unique solution
in R

2
∗

satisfying x(0) = x′ and x(T ) = x′′. Solutions are meant in the sense of
Filippov. If D ⊂ R

2
∗
, then x′

 D means that x′
 x′′ for all x′′ ∈ D. We

say that Σ is completely controllable on R
2
∗ if x′

 R
2
∗ for all x′ ∈ R

2
∗. Also,

we say that Σi is completely controllable if any two points in Ki can be joined
through a trajectory in Ki.

Difficulties with existence and uniqueness of solutions for discontinuous sys-
tems are well known [11–13], and several solution concepts have been proposed
to overcome them [14,15]. Here we highlight by way of an example the differ-
ence between open-loop and closed-loop controls with respect to uniqueness
of solutions of discontinuous systems. The example illustrates that even if
uniqueness of solutions is obtained via feedback, the corresponding solution in
the sense of Caratheodory may not be unique. With this example as motiva-
tion, we present controllability results for open-loop and closed-loop controls
independently, in each case requiring uniqueness of solutions.

Consider the one-dimensional system

ẋ =







u if x < 0

−u if x > 0 .
(4.13)

Suppose x(0) = −1. Clearly there is no continuous feedback control u which
can steer the system to 1. On the other hand under the feedback u = 1, if
x < 0 and u = −1, if x > 0, the closed loop system has a unique trajectory
x(t) = t − 1, and hence −1 is steered to 1 on [0, 2]. Along this trajectory the
control u takes the values u(t) = 1, for t ∈ [0, 1], and u(t) = −1, for t ∈ [1, 2].
However, using this u as an open-loop control in (4.13) we observe that there
is loss of uniqueness of the solution, and as a result −1 cannot be steered to
1 by this open loop control.
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Apropos the above discussion, we consider two classes of control inputs: a)
the set of all bounded measurable feedback controls u : R

2
∗
→ R, which is

denoted by Um, and b) the set of all piecewise-continuous open-loop controls
u : [0,∞) → R, denoted by U .

In Section 4.1 we study controllability over U of the subsystems Σi, i ∈ I.
We also establish that the reachable sets of Σi over U are also reachable over
the class of constant gain linear feedback controls. In Section 4.2 we study
the reachability from cone to cone, over Um. In Section 4.3 we combine these
results to obtain necessary and sufficient conditions for controllability of Σ
over Um. A slight strengthening of these conditions renders them necessary
and sufficient for controllability of Σ over U , as shown in Section 4.4.

In what follows we work with a refinement of the original partition which
enables a simplification of the results on reachability within cones. If Bi∩Ki 6=
∅, we divide Ki into two cones along Bi. Similarly, if A−1

i Bi is one dimensional
and A−1

i Bi ∩Ki 6= ∅, we divide Ki into two cones along A−1
i Bi. We retain the

same notation for the CLS on the refinement of this partition.

4.1 Reachability within Cones

Controllability of Σ depends heavily on the reachable sets of Σi. Thus, in this
section, the reachable sets of Σi are analyzed.

Let ϕi(t, x0; u) denote the trajectory x(t), t ≥ 0, of ẋ = Aix + biu, satisfying
x(0) = x0. If bi 6= 0, let b∗i denote the unit vector which is orthogonal to bi and

satisfies xTb∗i > 0 for all x ∈ Ki. If bi = 0, set b∗i = 0. Also, let Ki∗
M

= K̄i \ {0}.
For x ∈ Ki∗ define

ReachΣi
(x)

M

=
{

ϕi(t, x; u) : t ≥ 0 , u ∈ U , ϕi(s, x; u) ∈ Ki∗ , ∀s ∈ [0, t]
}

.

To assist in the taxonomy of ReachΣi
, define, for bi 6= 0,

W+(x, bi)
M

= {z ∈ R
2 : (b∗i )

Tz > (b∗i )
Tx} ∪ {x}

W−(x, bi)
M

= {z ∈ R
2 : (b∗i )

Tz < (b∗i )
Tx} ∪ {x} .

Lemma 11 Assume that if Ki∗ ∩ Bi 6= ∅ then Aibi /∈ Bi. For x ∈ Ki∗ the
following hold:

(A) If bi = 0, then ReachΣi
(x) =

{

eAitx : t ≥ 0 , and eAit
′

x ∈ Ki∗ , ∀t′ ∈ [0, t]
}

.

(B) If bi 6= 0 and range(Ai) ⊂ Bi, then ReachΣi
(x) = (x + Bi) ∩ Ki∗.
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(C) If bi 6= 0, and range(Ai) 6⊂ Bi, then

ReachΣi
(x) =







W+(x, bi) ∩ Ki∗ , if (vi+1 + vi)
TAT

i b∗i > 0

W−(x, bi) ∩ Ki∗ , if (vi+1 + vi)
TAT

i b∗i < 0 .

PROOF. Cases (A) and (B) are obvious. For case (C) first note that since
Aix /∈ Bi for all x ∈ Ki, we have xTAT

i b∗i 6= 0. Suppose, without loss of
generality, that xTAT

i b∗i > 0, for all x ∈ Ki. It follows that if ϕi(s, x; u) ∈
ReachΣi

(x), where x ∈ Ki∗, s ∈ [0, t], and t > 0, then (b∗i )
Tϕ̇i(s, x; u) ≥ 0, for

almost all s ∈ [0, t]. Suppose ϕi(t, x; u) 6= x. We claim that (b∗i )
Tϕi(t, x; u) >

(b∗i )
Tx. If not, then (b∗i )

Tϕ̇i(s, x; u) = 0 for almost all s ∈ (0, t), from which
it follows that (b∗i )

TAiϕi(s, x; u) = 0, for all s ∈ [0, t], or equivalently that
Aiϕi(s, x; u) ∈ Bi. This implies ϕi(s, x; u) 6∈ Ki, so either ϕi(s, x; u) ∈ Vi or
ϕi(s, x; u) ∈ Vi+1, for all s ∈ [0, t]. Suppose, without loss of generality, the

latter is the case. Then, z
M

= ϕi(t, x; u) − x ∈ Vi+1 is a nonzero vector in Ki∗

which satisfies z ∈ Bi (since by assumption (b∗i )
Tz = 0) and Aiz ∈ Bi. This

contradicts the hypothesis of the lemma. Hence, ReachΣi
(x) ⊂ W +(x, bi)∩Ki∗.

To show the converse, let x′′ ∈ W+(x′, bi) ∩ Ki∗, x′′ 6= x′, and set z = x′′ − x′.
Suppose, without loss of generality that b∗i = Jbi. If Aix

′ /∈ Bi and Aix
′′ /∈ Bi

then if we let u(t) = (bT

i Jz)−1zTJAix(t), we obtain

ẋ(t) = Aix(t) + biu(t) =
bT

i JAix(t)

bT
i Jz

z . (4.14)

Since
bT

i
JAix

bT

i
Jz

> 0 for all x = ξz + x′, ξ ∈ [0, 1], it follows by (4.14) that

the solution x(t) with x(0) = x′, satisfies x(t′′) = x′′ for some finite t′′ > 0.
Suppose that Aix

′′ ∈ Bi and Aix
′ /∈ Bi. Since, by construction of the partition,

A−1
i Bi ∩ Ki = ∅, it must be the case that x′′ ∈ Vi ∪ Vi+1. Without loss of

generality suppose x′′ ∈ Vi. If follows from the hypothesis that Vi 6⊂ Bi and
thus the line x′ + λbi, λ ∈ R intersects Vi, i.e., x′ + λ0bi ∈ Vi, for some
λ0 ∈ R. Since Aix

′ /∈ Bi, implying x′ /∈ Vi, it follows that λ0 6= 0. We know
that x′ + λ0bi 6= x′′, since x′′ ∈ W+(x′, bi). Let x̃′′ ∈ Vi ∩ W+(x′, bi) be any
point such that x′′ lies in the open line segment joining x̃′′ and x′ + λ0bi. Let
ζ ∈ [0,∞), z̃ = x̃′′ − x′, and consider the feedback control

u(t) =
z̃TJAix(t)

bT
i Jz̃

− ζλ0b
T

i Jx(t) . (4.15)

The closed-loop system resulting from (4.15) is

ẋ(t) =
bT

i JAix(t)

bT
i Jz̃

z̃ − ζbT

i Jx(t)λ0bi . (4.16)
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It follows from the foregoing that if ζ = 0 then the trajectory x(t) of (4.16)
starting at x(0) = x′ converges asymptotically to x̃′′, along the straight line
joining these two points. Also, since bT

i Jx = −(b∗i )
Tx < 0, for all x ∈ Ki, and

bT

i Jx′ 6= 0, the vector field bT

i Jx(t)λ0bi results in a trajectory that joins x′ and
x′ + λ0bi along a straight line in finite time. For y ∈ Ki let

η1(y) = Vi ∩ {y + %z̃ | % ∈ R} , η2(y) = Vi ∩ {y + %bi | % ∈ R} ,

and define Γy = conv{y, η1(y), η2(y)}, where ‘conv’ denotes the convex hull.
Let γy(t, ζ), with t ≥ 0, denote the trajectory of (4.16), starting from y, i.e.,
γy(0, ζ) = y, and set

τ(y, ζ)
M

= inf {t ≥ 0 : γy(t, ζ) ∈ V1} .

It is evident from the direction of the vector field of (4.16) that provided ζ > 0,
then τ(y, ζ) < ∞ and

{

γy(t, ζ) : t ∈
(

0, τ(y, ζ)
)}

⊂ Γ o
y , (4.17)

with Γ o
y denoting the interior of Γy. In particular, for ζ > 0, γx′(τ(x′, ζ), ζ) lies

in the relative interior of conv{x̃′′, x′ +λ0bi}. Since the vector field of (4.16) is
transversal to Vi, τ(x′, ζ) is continuous in ζ ∈ (0,∞), and in turn, the same
holds for γx′(τ(x′, ζ), ζ). Continuity of the solution of (4.16) with respect to
ζ, combined with (4.17), shows that

γx′

(

τ(x′, ζ), ζ
)

→






x̃′′ as ζ → 0

x′ + λ0bi as ζ → ∞ .

Therefore, γx′

(

τ(x′, ζ ′′), ζ ′′
)

= x′′, for some ζ ′′ ∈ (0,∞).

If Aix
′′ /∈ Bi and Aix

′ ∈ Bi, the conclusion follows along the same lines,
by using time reversal. If Aix

′′ ∈ Bi and Aix
′ ∈ Bi, using an intermediate

point x̂ ∈ Ki satisfying Aix̂ ∈ Bi and bT

i Jx′ < bT

i Jx̂ < bT

i Jx′′, the previous
arguments show that x̂ ∈ ReachΣi

(x′) and x′′ ∈ ReachΣi
(x̂). �

The proof of Lemma 11 shows that linear feedback control can be used to
steer in ReachΣi

as stated in the following corollary.

Corollary 12 Assume that if Ki∗ ∩ Bi 6= ∅ then Aibi /∈ Bi. Also, suppose
bi 6= 0 and range(Ai) 6⊂ Bi. Let x′ ∈ Ki∗ and x′′ ∈ ReachΣi

(x′) such that
span{Aix

′, Aix
′′} 6⊂ Bi. Then there is a feedback control u = kT

i x, for some
ki ∈ R

2, such that the trajectory x(t), with x(0) = x′, satisfies x(t′′) = x′′, for
some t′′ > 0 and x(t) ∈ Ki for all t ∈ (0, t′′).
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4.2 Reachability between Cones

In this section we analyze the existence of controlled trajectories (over Um)
starting in Ki and reaching Ki+1, and vice versa. The main idea is to ana-
lyze the possible directions of flow of Σi and Σi+1 along Vi+1. We use the
notation Ki � Ki+1 to indicate that there exists a controlled trajectory x(·)
in Ki ∪ Ki+1, defined for t ∈ [−ε, ε], with ε > 0 and satisfying x(−ε) ∈ Ki,
x(ε) ∈ Ki+1. Analogously for Ki+1 � Ki. In order to indicate the direction
(counterclockwise, or clockwise) that the boundary Vi can be crossed by con-
trolled trajectories, we define the set Gi ⊆ {1,−1} with the property that
1 ∈ Gi if Ki � Ki+1, and −1 ∈ Gi if Ki+1 � Ki. Let

β+
i

M

= nT

i bi , β−

i
M

= nT

i+1bi .

Then using (3.1) and the signum function, and allowing for discontinuous
controls, we have

Gi =
{

sgn(α−

i + uβ−

i ) : (α−

i + uβ−

i )(α+
i+1 + u′β+

i+1) > 0 , ∃u, u′ ∈ R

}

. (4.18)

A more explicit characterization of Gi is provided by the following lemma.

Lemma 13 For each i ∈ I,

(i) If β+
i+1β

−

i 6= 0, then Gi = {1,−1}.
(ii) If β+

i+1β
−

i = 0, then

Gi =







































{sgn(α−

i )} if β+
i+1 = β−

i = 0 , and α+
i+1α

−

i > 0

{sgn(α−

i )} if β+
i+1 6= 0

{sgn(α+
i+1)} if β−

i 6= 0

{∅} otherwise.

4.3 Main Result

In this section we gather the previous results on reachability within and be-
tween cones to obtain our main result on controllability. The essential idea is
to analyze trajectories which encircle the origin either in a counterclockwise
or clockwise sense. We compute the maximum and minimum growth around
such a cycle. Necessary and sufficient conditions for controllability are ob-
tained in terms of these growth factors—both shrinkage and expansion must
be possible.
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The existence of trajectories that encircle the origin is a necessary condition for
controllability of Σ; for if not, either some Vi is invariant under any controlled
trajectory or there is a subcollection of cones whose union is invariant under
any controlled trajectory. Let G M

=
⋂

i∈I Gi. We require the following.

Condition 1 G 6= ∅.

Note that under Condition 1 the hypothesis of Lemma 11 is satisfied for all
i ∈ I. For if not, then either α+

i = β+
i = 0, or α−

i = β−

i = 0, resulting in
Gi = ∅.

It is necessary to determine the growth around a cycle, as in Theorem 6.
We define the inverse of the maximum possible growth in Kj as ξ

j
(κ) and

the minimum possible growth in Kj as ξj(κ). These growth factors can be
computed explicitly using Lemma 11.

Definition 14 Assume Condition 1. Define for j ∈ I and κ ∈ G

ξ
j
(κ) =



























0 if (vj+1 + vj)
TAT

j b∗j > 0
(

vT

j
b∗
j

vT

j+1
b∗
j

)−κ

if (vj+1 + vj)
TAT

j b∗j ≤ 0 , bj 6= 0

e−κµjτj if bj = 0 ,

ξj(κ) =



























(

vT

j
b∗
j

vT

j+1
b∗
j

)κ

if (vj+1 + vj)
TAT

j b∗j ≥ 0 , bj 6= 0

0 if (vj+1 + vj)
TAT

j b∗j < 0

eκµjτj if bj = 0 .

Here µj and τj are the trajectory growth rate and time to transverse Kj com-
puted in Section 3.

Theorem 15 For Σ to be completely controllable on R
2
∗, over Um, it is nec-

essary and sufficient that

(a) Condition 1 holds.
(b) For some κ ∈ G the following inequalities hold

ξ(κ)
M

=
∏̀

j=1

ξ
j
(κ) < 1 , ξ(κ)

M

=
∏̀

j=1

ξj(κ) < 1 . (4.19)

PROOF. Necessity of (a) has been discussed earlier. Note that if

(vj+1 + vj)
TAT

j b∗j = 0 , (4.20)
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and bj 6= 0, then necessarily range(Aj) ⊂ Bj. Thus if (4.20) holds for all
j ∈ I, the reachable set from every point x is one-dimensional. It follows
that if Σ is completely controllable, then ξ(κ)ξ(κ) = 0. To show that (b) is

necessary, first observe that if G = {1,−1}, then ξ(κ) = ξ−1(−κ), provided

ξ(κ) 6= 0, otherwise ξ(κ) = ξ(−κ) = 0. Similarly for ξ(κ). It follows from
these arguments that if (b) does not hold, then we may suppose without loss
of generality that G = {1}, and

∏`
j=1 ξ

j
(κ) ≥ 1. Consider the collection of

points zi ∈ Vi defined by z1 = v1 and

zj+1 =











eµjτjzj if bj = 0

vT

j+1
b∗
j

vT

j
b∗
j

zj otherwise.

Let γ : [0, `] → R
2∗, be the curve defined by

γ(s) =











eµj(s−j+1)τjzj if bj = 0 , s ∈ [j − 1, j]

zj+1 + (s − j)
(

zj+1 −
vT

j+1
b∗
j

vT

j
b∗
j

zj

)

if bj 6= 0 , s ∈ [j − 1, j].

According to the hypothesis ‖z`+1‖ ≤ ‖v1‖. Consider the Jordan curve con-
sisting of {γ(s) , s ∈ [0, `]} and the straight segment [z`+1, z1] ⊂ V1 and let
D denote its interior. It follows by Lemma 11, that ReachΣ(v1) ⊂ D̄, thus
arriving at a contradiction.

Sufficiency: Assume (a)–(b). Without loss of generality suppose 1 ∈ G, and
ξ(1) < 1, ξ(1) < 1. By Lemma 11, if bj 6= 0 and range(Aj) 6⊂ Bj, then
ReachΣj

(vj) ∩ Vj+1 contains all points of the form %jvj+1, where

%j ∈



















(

vT

j
b∗
j

vT

j+1
b∗
j

,∞
)

, if (vj+1 + vj)
TAT

j b∗j > 0

(

0,
vT

j
b∗
j

vT

j+1
b∗
j

)

, if (vj+1 + vj)
TAT

j b∗j < 0 .

Otherwise, ReachΣj
(vj) ∩ Vj+1 = {%jvj+1}, where

%j =















vT

j
b∗
j

vT

j+1
b∗
j

, if bj 6= 0 , and range(Aj) ⊂ Bj

eµjτj , if bj = 0 .

Then, by considering the trajectories that follow a complete cycle, we have

ReachΣ(v1) ∩ V1 ⊃











{

%v1 : % ∈ (ξ(1),∞)
}

if ξ(1) = 0

{

%v1 : % ∈ (0, ξ−1(1))
}

otherwise.
(4.21)

Iterating (4.21) we obtain ReachΣ(v1) ∩ V1 ⊃ V1, and the result now easily
follows. �
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Remark 16 If ξ(κ)ξ(κ) = 0 then (4.19) implies ξ(κ)+ξ(κ) < 1. On the other

hand, if ξ(κ)ξ(κ) 6= 0 then ξ(κ) = ξ
−1

(κ) and (4.19) does not hold. It follows

that (4.19) in Theorem 15 may be replaced by ξ(κ) + ξ(κ) < 1.

Example 17 In this example none of the individual pairs (Ai, bi) are control-
lable, yet the CLS is completely controllable. Let Ki, i = 1, 2, 3, 4, correspond
to the four quadrants of the plane in counterclockwise order. We define

A1 =
(

3 0

0 3

)

, b1 =
(

1

−1

)

A2 = 0 , b2 =
(

2

1

)

A3 = A4 =
(

0 1

−1 0

)

, b3 = b4 = 0 .

An easy calculation yields G = {−1}, ξ(−1) = 0, and ξ(−1) = 0.5.

Example 18 In this example all of the individual pairs (Ai, bi) are control-
lable and conditions (a)–(b) of Theorem 15 are satisfied, yet the CLS is not
completely controllable. As in Example 17, let Ki, i = 1, 2, 3, 4, correspond to
the four quadrants of the plane in counterclockwise order. We define

A1 = A3 =
(

2 3

−1 −1

)

, A2 = A4 =
(

−1 1

−3 2

)

,

b1 =
(

1

−1

)

, b2 =
(

1

1

)

, b3 =
(

−1

1

)

, b4 =
(

−1

−1

)

.

Here, G = {1,−1}, ξ(1) = ξ(−1) = 0, and ξ(1) = ξ(−1) = 1.

4.4 Controllability over U

To study controllability of Σ over U (4.18) should be replaced by

Ĝi =
{

sgn(α−

i + uβ−

i ) : (α−

i + uβ−

i )(α+
i+1 + uβ+

i+1) > 0 , ∃u ∈ R

}

. (4.22)

Thus Lemma 13 should be replaced by

Lemma 19 For each i ∈ I,

(i) If β+
i+1β

−

i > 0, then Ĝi = {1,−1}.
(ii) If β+

i+1β
−

i = 0, then

Ĝi =























{sgn(α−

i )} if β+
i+1 = β−

i = 0 , and α+
i+1α

−

i > 0

{sgn(α−

i )} if β+
i+1 6= 0

{sgn(α+
i+1)} if β−

i 6= 0
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(iii) If β+
i+1β

−

i < 0, and det







α+
i+1 α−

i

β+
i+1 β−

i





 6= 0, then

Ĝi =
{

sgn
(

α−

j − β−

j
α+

j+1

β+

j+1

)}

.

(iv) In all other cases Ĝi = ∅.

Let Ĝ M

=
⋂

i∈I Ĝi. Then Theorem 15 still holds if in its statement Um and G are
replaced by U and Ĝ, respectively.

The following example demonstrates this difference.

Example 20 In this example all of the individual pairs (Ai, bi) are control-
lable and conditions (a)–(b) of Theorem 15 are satisfied, yet the CLS is only
controllable if we allow discontinuous feedback controls. As in Example 17, let
Ki, i = 1, 2, 3, 4, correspond to the four quadrants of the plane in counterclock-
wise order. We define

A1 = A3 =
(

2 3

−1 −2

)

, A2 =
(

−1 1

−3 5

)

, A4 =
(

−1 1

−3 2

)

,

b1 =
(

1

−1

)

, b2 =
(

1

2

)

, b3 =
(

−1

1

)

, b4 =
(

1

1

)

.

An easy calculation yields α+
1 = α+

4 = −1, α−

4 = α−

3 = −3, β+
1 = β−

3 = −1,
and β−

4 = β+
4 = 1. Therefore Ĝ = {−1} and ξ(−1) = 2, ξ(−1) = 0. On

the other hand, since G = {−1, 1} and ξ(1) = 0.5, ξ(1) = 0, the system is
controllable over Um.

5 Stabilization

Theorem 21 Suppose Σ is completely controllable over Um. Then it is sta-
bilizable by piecewise-linear feedback of the form u = kT

i x, for x ∈ Ki, where
ki ∈ R

2, i ∈ I.

PROOF. Without loss of generality suppose 1 ∈ G, and ξ(1) < 1. Let i ∈ I
be arbitrary. By Lemma 11, if bi 6= 0 and range(Ai) 6⊂ Bi, then ReachΣi

(vi) ∩
Vi+1 contains all points of the form %ivi+1, where

%i ∈



















[

vT

i
b∗
i

vT

i+1
b∗
i

,∞
)

, if (vi+1 + vi)
TAT

i b∗i > 0

(

0, vT

i
b∗
i

vT

i+1
b∗
i

]

, if (vi+1 + vi)
TAT

i b∗i < 0 .
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Moreover, by Corollary 12, for any such %i, there exists a constant gain ki =
ki(%i), such that under the control u = kT

i x, the closed-loop trajectory in
Ki∗ steers vi to %ivi+1. On the other hand, if bi 6= 0 and range(Ai) ⊂ Bi,
then ReachΣi

(vi) = (vi +Bi)∩Ki∗. In this case, it easily follows that for some
ζi ∈ R, the closed-loop trajectory starting at vi and under the feedback control

u = ζib
∗
i , is a straight line segment in Ki∗ that joins vi to

vT

i
b∗
i

vT

i+1
b∗
i

vi+1. Hence we

set %i =
vT

i
b∗
i

vT

i+1
b∗
i

. Lastly, if bi = 0, in view of Lemma 11, set %i = eµiτi . Since
∏

i∈I ξi < 1, it follows that the collection {%i, i ∈ I} may be selected such
that

∏

i∈I %i < 1. Let γ̃ denote the segment of the closed-loop trajectory under
a complete cycle. Clearly γ̃ steers v1 to to (

∏

i∈I %i) v1, and it easily follows
that the closed-loop trajectory converges asymptotically to the origin. Since,
by linear scaling every x ∈ R

2
∗

satisfies λx ∈ γ̃ for some λ > 0, it follows that
the closed-loop system is asymptotically stable. �

Remark 22 As seen in Example 18, even if every pair (Ai, bi) is controllable,
the system might not be stabilizable by state feedback. This connects directly
to the stability analysis. Despite the fact that the eigenvalues of the closed
loop system Ai + bik

T

i can be selected to have any negative values desired, thus
making the coefficients αi as negative as desired, this process also affects the
gains βi in a manner that might always result in an unstable system.
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