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Abstract

We study the reach control problem for affine systems on simplices, and the focus is on cases when it is known that the problem
is not solvable by continuous state feedback. In previous work we used the reach control indices to construct a (discontinuous)
piecewise affine control that solves the problem. Here we investigate the extent to which time-varying feedbacks can be used.
A simple time-varying affine feedback is proposed and shown to solve the problem.

1 Introduction

This paper studies the reach control problem (RCP) on
simplices. The problem is to make the closed-loop tra-
jectories of an affine system leave a simplex through a
prespecified facet in finite time. The problem was intro-
duced in [7] and was further developed in [8], [9], [11],
[3], [4], [5], [6]. See [1] for a complementary approach.
Recently it was shown that under a certain choice of
triangulation, affine feedback and continuous state feed-
back are equivalent from the point of view of solvability
of RCP on simplices [3]. In [4,6] reach control indices
were proposed to expose how affine or continuous state
feedbacks may fail - such feedbacks induce closed-loop
equilibria in sub-simplices that are inherently starved of
sufficient inputs. Fortunately, the reach control indices
also give insight on how to overcome the problem of in-
sufficient inputs. In [5,6] we presented a subdivision pro-
cedure that triangulates the simplex into sub-simplices
with sub-reach control problems that are solvable by
affine feedback. The final outcome was that if the reach
control problem is solvable by open-loop controls, then it
is solvable by (discontinuous) piecewise affine feedback.

The objective of this paper is to explore whether other
types of controls can be used to solve the problem, in the
case when it is not solvable by continuous state feedback.
We are especially interested in controls that are not dis-
continuous in order to circumvent issues of chattering
due to measurement errors, and a natural choice is time-
varying feedback. Here we present a method inspired by
the information that is provided by the reach control
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indices. In particular, the indices indicate in which sub-
simplices equilibria appear when affine feedback is used.
This information is used to construct a compensator that
dynamically shifts the set of equilibria so that trajecto-
ries can effectively “roll around” equilibria in order to
exit the simplex.

Notation. The notation h · y denotes the dot product
of two vectors h, y ∈ R

n. The notation co{v1, v2, . . .}
denotes the convex hull of a set of points vi ∈ R

n. The
notation sp{y1, y2, . . .} denotes the span of vectors yi ∈
R

n. For a vector x ∈ R
n, the notation x ≻ 0 (x � 0)

means xi > 0 (xi ≥ 0) for 1 ≤ i ≤ n. The notation
x ≺ 0 (x � 0) means −x ≻ 0 (−x � 0). The notation 0
denotes the subset of Rn containing only the zero vector.

2 Reach Control Problem

Consider an n-dimensional simplex S with vertex set
V := {v0, v1, . . . , vn} and facets F0, . . . ,Fn (the facet is
indexed by the vertex it does not contain). Let hi be the
unit normal vector to the facetFi pointing outside of the
simplex. Facet F0 is called the exit facet of S. Define the
index set I := {1, . . . , n}. Define the closed, convex cones
Ci :=

{
y ∈ R

n | hj · y ≤ 0, j ∈ I \ {i}
}
, i = 0, . . . , n.

We write cone(S) := C0 since C0 is the tangent cone to
S at v0. We consider the affine control system

ẋ = Ax+Bu+ a , x ∈ S, (1)

whereA ∈ R
n×n, a ∈ R

n,B ∈ R
n×m, and rank(B) = m.

Let φu(t, x0) denote the trajectory of (1) starting at x0

under some control law u.

Problem 1 (Reach Control Problem (RCP))
Consider system (1) defined on S. Find a feedback con-
trol u(x) such that for every x0 ∈ S there exist T ≥ 0
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and γ > 0 such that: (i) φu(t, x0) ∈ S for all t ∈ [0, T ];
(ii) φu(T, x0) ∈ F0; and (iii) φu(t, x0) /∈ S for all
t ∈ (T, T + γ).

In the sequel we use the shorthand notation S
S

−→ F0 to
denote that (i)-(iii) of Problem 1 hold under some control
law. The following conditions guarantee that closed-loop
trajectories cannot leave S through a non-exit facet [8].
We say the invariance conditions are solvable if for each
vi ∈ V there exists ui ∈ R

m such thatAvi+Bui+a ∈ Ci.
Equivalently,

hj ·(Avi+Bui+a) ≤ 0 , i ∈ {0, . . . , n}, j ∈ I\{i} . (2)

Let B = Im(B), the image of B. Define O := { x ∈
R

n : Ax+ a ∈ B} and G := S ∩ O. Notice that closed-
loop equilibria can only appear in G. The primary con-
clusion of [3] was that if the state space is triangulated
so that G is either the empty set or a face of S, then RCP
is solvable by affine feedback if and only if it is solvable
by continuous state feedback. The goal of this paper is
to solve RCP in cases where continuous state feedback
cannot be used.

3 Reach Control Indices

The results of [3] tell us that RCP is not solvable by con-
tinuous state feedback under the following assumptions.

Assumption 2 Simplex S and system (1) satisfy the
following conditions:

(D1) G = co{v1, . . . , vκ+1}, 0 ≤ κ < n.
(D2) B ∩ cone(S) = 0.
(D3) B ∩ Ci 6= 0, i ∈ IG , where IG := {1, . . . , κ+ 1}.
(D4) The maximum number of linearly independent vec-

tors in any set {b1, . . . , bκ+1 | bi ∈ B ∩ Ci} (with
only one vector for each B ∩ Ci, i ∈ IG) is m̂ with
1 ≤ m̂ ≤ κ.

Since m̂ ≤ κ, there exists p ≥ 1 such that m̂+p = κ+1.
Evidently there are not enough independent vectors in
B to resolve all invariance conditions for vertices in G.
The reach control indices provide a means to bookkeep
those vertices vi ∈ G that share degrees of freedom in
B, and they capture the strong restrictions placed on B
imposed by (2).

Theorem 3 ([4,6]) Suppose Assumption 2 holds. Then
there exist integers r1, . . . , rp ≥ 2 and decomposition of
B such that w.l.o.g. (by reordering indices) for all k =
1, . . . , p and i = mk, . . . ,mk + rk − 1,

B ∩ Ci ⊂ Bk := sp{bmk
, . . . , bmk+rk−1} , (3)

where bi ∈ B ∩ Ci, m1 := 1, and mk := r1 + · · · +
rk−1 + 1, k = 2, . . . , p. Moreover, for each k = 1, . . . , p,

{bmk
, . . . , bmk+rk−2} are linearly independent and

bmk+rk−1 = cmk
bmk

+ · · ·+ cmk+rk−2bmk+rk−2, (4)

with ci < 0, i = mk, . . . ,mk + rk − 2.

We observe that due to (4) the lists (3) have the property
that any vector in a list on the right is dependent on
all the other vectors in its list. Also, if any vector is
removed from a list, the remaining vectors are linearly
independent. In particular, the kth list contains rk − 1
linearly independent vectors in B, so dim(Bk) = rk −
1. The integers {r1, . . . , rp} are called the reach control
indices of system (1) with respect to simplex S. Based
on Theorem 3, we require an additional assumption that
was proved to be necessary for solvability of a slightly
stronger version of RCP [6].

Assumption 4 Simplex S and system (1) satisfy As-
sumption 2 and the following condition.

(D5) Bk 6⊂ H0 := {y ∈ R
n | h0 · y = 0} , k = 1, . . . , p.

Finally, we summarize the algebraic consequences of the
reach control indices. Proofs are provided in the Ap-
pendix. Let Hp,q := [hp · · ·hq] and Yp,q := [bp · · · bq],
where the bi’s come from (3). Let Mp,q := HT

p,qYp,q. We
say a matrix M is a Z -matrix if the off-diagonal ele-
ments are non-positive; i.e. mij ≤ 0 for all i 6= j. A Z -
matrixM is a nonsingular M -matrix if every real eigen-
value of M is positive [2]. Since bi ∈ B ∩ Ci, i ∈ IG , each
Mp,q is a Z -matrix. Define r := r1 + · · · + rp and for
k = 1, . . . , p define IGk

:= {mk, . . . ,mk + rk − 1} and
Gk := co{vmk

, . . . , vmk+rk−1}.

Lemma 5 ([4,6]) Suppose Assumption 4 holds. Then
for each k = 1, . . . , p, hj · bi = 0 for i ∈ IGk

, j ∈ I \ IGk
.

Lemma 6 Suppose Assumption 4 holds. Then for each
k = 1, . . . , p,

(i) Each principal submatrix of Mmk,mk+rk−1 is a non-
singular M -matrix.

(ii) Matrix Mmk,mk+rk−1 ∈ R
rk×rk is irreducible.

(iii) Matrix Mmk,mk+rk−1 is a singular M -matrix.

Lemma 7 ([4,6]) Suppose Assumption 4 holds. For
each k = 1, . . . , p, there does not exist β ∈ B such that
{bmk

, . . . , bmk+rk−2, β} are linearly independent and

hj · β ≤ 0 , j ∈ I \ IGk
. (5)

4 A Flow-like Condition

We begin our exploration of time-varying feedback to
solve RCP in cases when it is not solvable by continu-
ous state feedback. The development is divided into two
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parts. First we establish that a flow-like condition holds
on S which has desirable properties relative to the sub-
simplices Gk, k = 1, . . . , p. By a flow-like condition we
mean a condition of the form: ξ∗ · (Ax+Bu(x)+a) ≥ 0,
x ∈ S, where 0 6= ξ∗ ∈ R

n. Second, we propose a time-
varying compensator whose role in essence is to dynam-
ically shift the set of equilibria generated by affine feed-
back in a direction opposite to the direction indicated
by the flow-like condition. In this section the flow-like
condition is developed.

Define B̂ =
[
b1 · · · bm1+r1−2 · · · bmp

· · · bmp+rp−2

]
∈

R
n×(r−p) and let B̂ = Im(B̂). Note that the columns of

B̂ are ordered according to Theorem 3 and that vectors
bmk+rk−1, k = 1, . . . , p, do not appear in the columns

of B̂. Also, velocity vectors associated with vi, i = r +
1, . . . , κ+ 1 are not yet defined, so they do not appear.
By Theorem 3, dim(Bk) = rk − 1 and B1, . . . ,Bp form

a family of independent subspaces, so rank(B̂) = r − p.
The next result gives a specially selected vector used
to strongly separate at least two vertices in each Gk,
k = 1, . . . , p.

Lemma 8 Suppose Assumption 4 holds. For each k ∈
{1, . . . , p} there exists βk ∈ Ker(B̂T ) such that

(i) βk = dmk
hmk

+ · · ·+ dmk+rk−1hmk+rk−1, di < 0.
(ii) βk · (vi − v0) = 0, i ∈ I \ IGk

.
(iii) βk · (vi − vj) = 0, i, j ∈ IG \ IGk

.

PROOF. Let k ∈ {1, . . . , p}. By Lemma 6(ii) and
(iii), Mmk,mk+rk−1 is a singular, irreducible M -matrix;
therefore, so is MT

mk,mk+rk−1. By Theorem 6.4.16(2) of

[2], there exists d ≺ 0 such that MT
mk,mk+rk−1d = 0.

Define βk := Hmk,mk+rk−1d. This gives the form

(i). Next we show βk ∈ Ker(B̂T ). First, we have
MT

mk,mk+rk−1d = Y T
mk,mk+rk−1Hmk,mk+rk−1d =

Y T
mk,mk+rk−1βk = 0. That is, βk · bi = 0, i =

mk, . . . ,mk + rk − 1. Also from Lemma 5, βk · bi = 0,
i = 1, . . . ,mk−1 + rk−1 − 1,mk+1, . . . , r. We conclude

β ∈ Ker(B̂T ). The statements (ii) and (iii) follow from
Lemma 4.4 of [3].

Lemma 9 SupposeAssumption 4 holds. ThenKer(B̂T ) =
sp{β1, . . . , βp, hr+1, . . . , hn}.

PROOF. By constructionβk ∈ sp{hmk
, . . . , hmk+rk−1},

so by Lemma 4.4 of [3], {β1, . . . , βp, hr+1, . . . , hn}

are linearly independent. From Lemma 5, B̂ ⊥
sp{hr+1, . . . , hn}. Thus, hr+1, . . . , hn ∈ Ker(B̂T ).

Also from Lemma 8, β1, . . . , βp ∈ Ker(B̂T ). Now

rank(B̂T ) = r − p, so dim(Ker(B̂T )) = n− r+ p. Thus,

{β1, . . . , βp, hr+1, . . . , hn} is a basis of Ker(B̂T ).

The next result shows that for each k = 1, . . . , p, vector
βk can be used to strongly separate at least two vertices
in Gk.

Lemma 10 Suppose Assumption 4 holds. Consider
β1, . . . , βp from Lemma 8. For each k ∈ {1, . . . , p}, there
exist ik, jk ∈ IGk

such that βk · (vik − vjk) 6= 0.

PROOF. Let k ∈ {1, . . . , p} and suppose by way

of contradiction that for every β ∈ Ker(B̂T ) and
i, j ∈ IGk

, β · (vi − vj) = 0. This implies (vmk+1 −

vmk
), . . . , (vmk+rk−1 − vmk

) ∈ B̂. Suppose w.l.o.g.
that vmk+1 − vmk

= b′ + b′′, where b′ ∈ Bk and
0 6= b′′ ∈ sp{bm1

, . . . , bmk−1+rk−1−1, bmk+1
, . . . , br}.

Then by Lemma 4.4 of [3] and by Lemma 5, 0 =
hj · (vmk+1 − vmk

) = hj · b′ + hj · b′′ = hj · b′′,
j ∈ I \ IGk

. By construction {bmk
, . . . , bmk+rk−2, b

′′}
are linearly independent. This contradicts Lemma 7.
Thus, b′′ = 0. This argument can be repeated
for each vmk+i − vmk

, i = 1, . . . , rk − 1 to get
(vmk+1 − vmk

), . . . , (vmk+rk−1 − vmk
) ∈ Bk. By

Lemma 4.4 of [3], {(vmk+1−vmk
), . . . , (vmk+rk−1−vmk

)}
is a basis for Bk, so Bk ⊂ H0. This contradicts As-
sumption (D5). We deduce that there exist ik, jk ∈ IGk

and β ∈ Ker(B̂T ) such that β · (vik − vjk) 6= 0.

By Lemma 9, β ∈ Ker(B̂T ) can be expressed as
β = α1β1 + · · · + αpβp + αr+1hr+1 + · · · + αnhn,
αi ∈ R. By Lemma 8(iii) and Lemma 4.4 of [3]
0 6= β · (vik − vjk) = αkβk · (vik − vjk) implying that
βk · (vik − vjk) 6= 0.

In light of Lemma 10, we assume without loss of gen-
erality (by reordering the indices within each group
IGk

) that for k = 1, . . . , p, vmk
∈ argmaxi∈IGk

βk · vi
and vmk+rk−1 ∈ argmini∈IGk

βk · vi. We also define

the sets E0 := co
{
vm1

, vm2
, . . . , vmp

}
and E∞ :=

co
{
vm1+r1−1, vm2+r2−1, . . . , vmp+rp−1

}
. In the next re-

sult we pick a single hyperplane that strongly separates
the two sets E0 and E∞.

Lemma 11 Suppose Assumption 4 holds. Consider

β1, . . . , βp ∈ Ker(B̂T ) from Lemma 8. Define

ξ1 := ξ11β1 + · · ·+ ξ1pβp , ξ1i ∈ R , (6)

and H := {x ∈ R
n | ξ1 · (x − v0) = 1}. There exist

ξ11 , . . . , ξ
1
p > 0 such thatH strongly separates E0 and E∞.

PROOF. Let x ∈ E0 and y ∈ E∞. Then there exist
αi ≥ 0,

∑p

i=1 αi = 1, and γi ≥ 0,
∑p

i=1 γi = 1 such that
x = γ1vm1

+ · · · + γpvmp
and y = α1vm1+r1−1 + · · · +

αpvmp+rp−1. For k = 1, . . . , p define Πk := βk ·(vmk
−v0)

and πk := βk · (vmk+rk−1 − v0). By Lemma 8(i) we may
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write βk = dmk
hmk

+· · ·+dmk+rk−1hmk+rk−1 with di <
0. By Lemma 4.4 in [3] we have that βk · (vi − v0) =
dihi · (vi − v0) > 0, i ∈ IGk

. In particular, πk > 0. By
Lemma 10 we know that Πk 6= πk; thus, 0 < πk < Πk,
k = 1, . . . , p. Select ξ1k ∈ ( 1

Πk
, 1
πk

) 6= ∅ for k = 1, . . . , p.

Then using Lemma 8(ii) ξ1 · (x− v0) = γ1ξ
1
1β1 · (vm1

−
v0)+ · · ·+γpξ

1
pβp ·(vmp

−v0) = γ1ξ
1
1Π1+ · · ·+γpξ

1
pΠp ≥

mink{ξ1kΠk} > 1. Similarly, ξ1 ·(y−v0) = α1ξ
1
1π1+ · · ·+

αpξ
1
pπp ≤ maxk{ξ1kπk} < 1. Thus, H strongly separates

E0 and E∞.

The next result, based on a standard argument of con-
vex analysis, shows that the open-loop system naturally
drifts in some fixed direction for points away from G.

Lemma 12 Suppose Assumption 4 holds. Let P :=
co{v0, vκ+2, . . . , vn}. There exists ξ2 ∈ Ker(BT ) such
that

ξ2 · (Ax + a) > 0 , x ∈ P . (7)

The following is the main result on a flow-like condition
on S.

Theorem 13 Suppose Assumption 4 holds. Let u(x, t)
be a time-varying affine feedback such that for all t ≥ 0

Avi +Bu(vi, t) + a ∈ Ci , i = 0, r + 1, . . . , n (8a)

Avi +Bu(vi, t) + a ∈ B̂ , i = 1, . . . , r . (8b)

Then there exists 0 6= ξ∗ ∈ Ker(B̂T ) such that for t ≥ 0

ξ∗ · (Ax +Bu(x, t) + a) ≥ 0 , x ∈ S , (9)

and such that H∗ strongly separates E0 and E∞ where

H∗ := {x ∈ R
n | ξ∗ · (x− v0) = 1} . (10)

PROOF. Let t ≥ 0, and consider ξ1 from by Lemma 11
and ξ2 from Lemma 12. Define

ξ∗ := (1− λ)ξ1 + λξ2 , λ ∈ (0, 1). (11)

Since βk = Hmk,mk+rk−1d with d ≺ 0 and by (8a) we
have for each k = 1, . . . , p, βk · (Avi+Bu(vi, t)+a) ≥ 0,
i = 0, r + 1, . . . , n. Therefore from (6)

ξ1 ·(Avi+Bu(vi, t)+a) ≥ 0 , i = 0, r+1, . . . , n . (12)

Using (7), that ξ2 ∈ Ker(BT ), and that r ≤ κ + 1, for
i = 0, κ+2, . . . , n, ξ∗ · (Avi+Bu(vi, t)+a) = (1−λ)ξ1 ·
(Avi + Bu(vi, t) + a) + λξ2 · (Avi + Bu(vi, t) + a) > 0.
Similarly, for i = r+1, . . . , κ+1, ξ∗ · (Avi +Bu(vi, t) +
a) = (1 − λ)ξ1 · (Avi + Bu(vi, t) + a) ≥ 0, where we
use (12), ξ2 ∈ Ker(BT ), and Avi + a ∈ B, i = r +

1, . . . , κ+1. Finally, since ξ1 ∈ Ker(B̂T ), ξ2 ∈ Ker(BT ),

and Ker(BT ) ⊂ Ker(B̂T ), then ξ∗ ∈ Ker(B̂T ). Thus,
by (8b), ξ∗ · (Avi + Bu(vi, t) + a) = 0, i = 1, . . . , r. By
convexity of Ax+Bu(x, t)+a in x, ξ∗ ·(Avi+Bu(x, t)+
a) ≥ 0 for all t ≥ 0, x ∈ S, and λ ∈ (0, 1), which proves
(9).

Let x ∈ E0 and y ∈ E∞, and let γi and αi be as in the
proof of Lemma 11. Then ξ∗ · (x− v0) = (1−λ)ξ1 · (x−
v0)+λξ2 ·(x−v0), ξ

∗ ·(y−v0) = (1−λ)ξ1 ·(y−v0)+λξ2 ·
(y−v0), and from the proof of Lemma 11, ξ1 ·(x−v0) > 1
and ξ1 · (y − v0) < 1. Since functions ξ1 · (x − v0) and
ξ2 ·(x−v0) are continuous, they achieve a minimum and
maximum on each compact set E0 and E∞. This means
we can select λ ∈ (0, 1) close enough to 0 such that

ξ∗ · (y−v0) < 1 < ξ∗ · (x−v0) , x ∈ E0, y ∈ E∞ . (13)

With this choice of λ, H∗ strongly separates E0 and E∞.

5 Time-varying Compensator

The time-varying compensator will be constructed so as
to exploit the flow-like condition (9) and the separation
property of H∗ in (10). First, we define two affine feed-
backs u0(x) and u∞(x) that place equilibria at E0 and
E∞, respectively. Then we define a compensator u(x, α)
with additional state α ∈ R. This compensator simply
interpolates between u0(x) and u∞(x) as α varies from
0 to 1. By construction when α = 0, all closed-loop equi-
libria are in E0. When α = 1, they are in E∞. Thus,
as α varies from 0 to 1, the set of closed-loop equilibria
crosses from one side of H∗ to the other in a direction
with decreasing ξ∗ component. Informally, we can say
that trajectories flow downstream according to (9) while
equilibria flow upstream, so that no trajectory can be
“stuck” at an equilibrium. Ultimately, this enables all
trajectories to exit S, as shown in Theorem 16.

Suppose the invariance conditions for S are solvable;
thus, there exist inputs u0

0, . . . , u
0
n ∈ R

m such that (2)
hold. Let y0i := Avi + Bu0

i + a, for i = 0, . . . , n. We
choose u0

1, . . . , u
0
κ+1 ∈ R

m such that

y0i = 0 , i ∈ {m1,m2, . . . ,mp} (14a)

y0i = bi , i ∈ IG \ {m1,m2, . . . ,mp} , (14b)

where bi ∈ B̂ ∩ Ci, i = 1, . . . , r, are provided by Theo-
rem 3; and bi ∈ B∩Ci, i = r+1, . . . , κ+1, are selected so
that m̂ independent directions in B are associated with
G, as per (D4). Finally, construct the associated affine
feedback u0(x) = K0x+g0, and let φ0(t, x0) denote tra-
jectories of the closed-loop system. Note that the closed-
loop system has equilibria at vm1

, . . . , vmp
.

Next we define a symmetrical controller u∞(x) which
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is identical to u0(x) except that it places equilibria at
vmk+rk−1, k = 1, . . . , p. Let y∞i := Avi + Bu∞

i + a, for
i = 0, . . . , n. First set u∞

i = u0
i , i = 0, r+1, . . . , n. Then

we choose u∞
1 , . . . , u∞

r ∈ R
m such that

y∞i = 0 , (15a)

i ∈ {m1 + r1 − 1,m2 + r2 − 1, . . . ,mp + rp − 1}

y∞i = bi , i ∈ {1, . . . , r}\ (15b)

{m1 + r1 − 1,m2 + r2 − 1, . . . ,mp + rp − 1} ,

where again bi ∈ B̂ ∩ Ci, i = 1, . . . , r, are provided by
Theorem 3. Finally, construct the associated affine feed-
back u∞(x) = K∞x+ g∞, and let φ∞(t, x0) denote tra-
jectories of the closed-loop system. Note that this closed-
loop system has equilibria at vmk+rk−1, k = 1, . . . , p.
The next result argues that, away from equilibria, tra-
jectories do exit S.

Lemma 14 There exist ξ0, ξ∞ ∈ R
n such that

ξ0 · (Ax +Bu0(x) + a)> 0 , x ∈ S \ E0 , (16)

ξ∞ · (Ax +Bu∞(x) + a)> 0 , x ∈ S \ E∞ . (17)

PROOF. We consider only (16), since the proof for (17)
is analogous. First, we claim Ax + Bu0(x) + a 6= 0 for
all x ∈ S \E0. Suppose not. Then there exists x ∈ S \E0

such that Ax+Bu0(x)+a = 0. Since necessarily x ∈ G,
there exist λ1, . . . , λκ+1 ≥ 0 with

∑
λi = 1 and not all

λi, i ∈ IG \ {m1, . . . ,mp} equal to zero such that x =∑κ+1
i=1 λivi. By convexity of y0(x) := Ax + Bu0(x) + a

and the fact that y0(vi) = 0 for i = m1, . . . ,mp, we have

0 = y0(x) =
∑κ+1

i=1 λiy
0(vi) =

∑
i∈IG\{m1,...,mp}

λibi,

with not all λi’s equal to zero. The set {bi | i ∈ IG \
{m1, . . . ,mp}} consists of κ + 1 − p = m̂ vectors in B.
The first r − p vectors are selected from the r vectors
in (3), except that one vector has been removed from
each group {bmk

, . . . , bmk+rk−1}, k = 1, . . . , p. The re-
maining r − p vectors are linearly independent accord-
ing to Theorem 3. The last m̂ − (r − p) vectors in the
set {bi | i ∈ IG \ {m1, . . . ,mp}} are selected to fulfill
(D4). In sum, {bi | i ∈ IG \ {m1, . . . ,mp}} are linearly
independent. Thus, we reach a contradiction. Now let
P := 0 and S ′ := co{vi | i ∈ {0, . . . , n}\{m1, . . . ,mp}}.
Since y0(x) is affine, P ′ := {y0(x) | x ∈ S ′} is com-
pact and convex. By the argument above P ∩ P ′ = ∅,
so by Corollary 11.4.2 of [10], there exists ξ0 ∈ R

n

such that ξ0 · (Ax + Bu0(x) + a) > 0, x ∈ S ′. Let
x ∈ S \ E0. That is, there exist λ0, . . . , λn ≥ 0 with∑

λi = 1 and not all λi, i ∈ {0, . . . , n} \ {m1, . . . ,mp}
equal to zero such that x =

∑n

i=0 λivi. By convexity of
y0(x) we have ξ0 · y0(x) =

∑n

i=0 λiξ
0 · y0(vi). Since not

all λi, i ∈ {0, . . . , n} \ {m1, . . . ,mp} are equal to zero,
ξ0 ·y0(vi) > 0 for vi ∈ S ′, and ξ0 ·y0(vi) = 0 for vi ∈ E0,
we get ξ0 · y0(x) > 0, as desired.

Now we extend the state x by an additional state α ∈ R

with dynamics α̇ = −cα+cwith α(0) = 0 and c > 0 a to-
be-determined constant. Construct the extended state
vector xe := (x, α) and define a multiaffine feedback

u(x, α) := (1− α)u0(x) + αu∞(x) . (18)

Clearly the role of u(x, α) is to interpolate from u0(x)
to u∞(x) as α varies from 0 to 1. Define the closed-loop
system y(x, α) := Ax+Bu(x, α) + a.

Remark 15 The function α(t) = 1− e−ct has been cho-
sen for its simplicity. Any monotone function increasing
from 0 to 1 with sufficiently small derivative may also be
used.

Theorem 16 Suppose Assumption 4 holds and suppose
the invariance conditions (2) for S are solvable. There

exists c > 0 sufficiently small such that S
S

−→ F0 using
u(x, α) defined in (18).

PROOF. To construct u(x, α) in (18), we define u0(x)
and u∞(x). For i ∈ IG , assign u0(vi) according to (14a)-
(14b). For i ∈ {1, . . . , r} assign u∞(vi) according to
(15a)-(15b). For i ∈ {r + 1, . . . , κ+ 1} assign u∞(vi) =
u0(vi). For i ∈ {0, κ+ 2, . . . , n}, assign u0(vi) = u∞(vi)
so that Avi +Bu0(vi)+ a ∈ Ci. Let u0(x) and u∞(x) be
the associated affine feedbacks. By construction u0(x)
and u∞(x) satisfy (8a)-(8b) of Theorem 13. Now con-
sider H∗ given by (10). Define the compact, convex sets
P− := {x ∈ S | ξ∗ · (x − v0) ≤ 1} and P+ := {x ∈
S | ξ∗ · (x − v0) ≥ 1}. From (13), E0 ⊂ P+, E∞ ⊂ P−,
P− ⊂ S \ E0, and P+ ⊂ S \ E∞. First we discuss
the behavior of trajectories using u0(x) and u∞(x). By
Lemma 14, a flow condition holds on P− using u0(x).
Since P− is compact, by a standard argument all trajec-
tories φ0(t, x0) exit P− in finite time. Since the invari-
ance conditions hold using u0(x), trajectories only exit
P− via F0 or H∗. Similarly, by Lemma 14, a flow con-
dition holds on P+ using u∞(x). Since P+ is compact,
all trajectories φ∞(t, x0) exit P+ in finite time. Since
the invariance conditions hold using u∞(x), trajectories
only exit P+ via F0 or H∗. Because u∞(x) satisfies (9),
trajectories φ∞(t, x0) cannot exit throughH∗. Hence all
trajectoriesφ∞(t, x0) starting inP+ exit S in finite time.

Now we consider the controller u(x, α) with associated
trajectories φ(t, x0). Abusing notation, it can be rewrit-
ten as a time-varying affine feedback

u(x, t) = e−ctu0(x) + (1 − e−ct)u∞(x) .

It is easily verified using convexity that u(x, t) satisfies
(8a), and by construction it satisfies (8b); therefore (9)
holds. For c > 0 sufficiently small, u(x, t) is sufficiently
close to u0(x) for a sufficiently long time interval [0, τ1]
so that (16) holds on P− and all trajectories φ(t, x0)
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initialized in P− either exit S or enter P+ in a finite
time τ < τ1. Trajectories initialized in P+ either exit S
or they remain in P+ (since they cannot cross over to
P− by (9)). There exists τ2 > τ1 when all trajectories
remaining in S are in P+ and u(x, t) is sufficiently close
to u∞(x) such that the flow condition (17) takes effect
on P+. Thus, all trajectories must exit P+, and they do
so through F0 and not H∗, again, because of (9). Thus,

S
S

−→ F0 using feedback u(x, t) (equivalently u(x, α)).
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A Appendix

PROOF. [Proof of Lemma 6] (i) We consider only
k = 1 and the submatrix M1,r1−1. The other cases are
analogous. First, we know M1,r1−1 is a Z -matrix be-
cause hj ·bi ≤ 0, j 6= i, so the off-diagonal entries are non-
positive. Second, we show M1,r1−1 = HT

1,r1−1Y1,r1−1 is

nonsingular. Suppose there exists c ∈ R
r1−1 such that

HT
1,r1−1Y1,r1−1c = 0. Let y := Y1,r1−1c. Then hj · y =

0, j = 1, . . . , r1 − 1. Also by Lemma 5, hj · y = 0,
j = r1 + 1, . . . , n. Thus, either y ∈ B ∩ cone(S) or
−y ∈ B ∩ cone(S). By Assumption (D2), y = 0. How-
ever, y = c1b1 + · · · + cr1−1br1−1 and {b1, . . . , br1−1}
are linearly independent, so c = 0. We conclude that
M1,r1−1 is nonsingular. Now we show M1,r1−1 satisfies
case (Q50) of Theorem 6.2.3 of [2]. Suppose there exists
c ∈ R

r1−1 with c 6= 0 and c � 0 such that M1,r1−1c � 0.
Define the vector ȳ = Y1,r1−1c ∈ B. Note that ȳ 6= 0
because {b1, . . . , br1−1} are linearly independent. Then
M1,r1−1c = HT

1,r1−1Y1,r1−1c = HT
1,r1−1ȳ � 0 implies

hj · ȳ ≤ 0 for j = 1, . . . , r1 − 1. Also, since ci ≥ 0 and

bi ∈ B ∩ Ci, hj · ȳ =
∑r1−1

i=1 ci(hj · bi) ≤ 0, j = r1, . . . , n.
This implies 0 6= ȳ ∈ B∩cone(S), a contradiction. There-
fore, M1,r1−1 has the property that the only solution of
the inequalities c � 0 and M1,r1−1c � 0 is c = 0. In
sum, M1,r1−1 is a nonsingular Z -matrix satisfying The-
orem 6.2.3, case (Q50) of [2], so M1,r1−1 is a nonsingular
M -matrix.

(ii) Suppose not. Then by the definition of reducibil-
ity there exists a permutation matrix P such that

PMmk,mk+rk−1P
T =

[
M1 0

⋆ M2

]
where M1 ∈ R

ρ×ρ

and M2 ∈ R
(rk−ρ)×(rk−ρ) for some 1 ≤ ρ ≤ rk − 1.

Without loss of generality suppose we have re-
ordered the indices {mk, . . . ,mk + rk − 1} in accor-
dance with the permutation matrix P . This means
HT

mk,mk+ρ−1Ymk+ρ,mk+rk−1 = 0, or hj · bi = 0,
i = mk + ρ, . . . ,mk + rk − 1, j = mk, . . . ,mk + ρ − 1.
Combining with Lemma 5 we get hj · bi = 0, i =
mk+ρ, . . . ,mk+rk−1, j ∈ I\{mk+ρ, . . . ,mk+rk−1}.
Consider Mmk+ρ,mk+rk−1. Since every principal sub-
matrix of a nonsingular M -matrix is a nonsingular M -
matrix, by Lemma 6(i) it is a nonsingular M -matrix. By
Theorem 6.2.3 case (I28) of [2], there exists c ∈ R

rk−ρ,
c 6= 0, such that c � 0 and Mmk+ρ,mk+rk−1c ≺ 0.
Let y := Ymk+ρ,mk+rk−1c. Note that y 6= 0 since
{bmk+ρ, . . . , bmk+rk−1} are linearly independent for any
ρ ≥ 1 by Theorem 3. Then we have Mmk+ρ,mk+rk−1c =
HT

mk+ρ,mk+rk−1Ymk+ρ,mk+rk−1c = HT
mk+ρ,mk+rk−1y ≺

0. That is, hj · y < 0, j = mk + ρ, . . . ,mk + rk − 1. Also
from above, hj ·y = 0, j ∈ I \{mk+ρ, . . . ,mk+ rk−1}.
We conclude 0 6= y ∈ B ∩ cone(S), a contradiction.

(iii) By Lemma 4.4 of [3], rank(Hmk,mk+rk−1) = rk.
Also we know rank(Ymk,mk+rk−1) = rk − 1. Therefore,
rank(Mmk,mk+rk−1) ≤ rk − 1, so it is clearly singular.
Now we prove that Mmk,mk+rk−1 is an M -matrix. By
Lemma 6(i), each principal submatrix of Mmk,mk+rk−1

is a nonsingularM -matrix. By Theorem 6.2.3 case (D16)
of [2], every real eigenvalue of a nonsingular M -matrix
is positive. Therefore, every real eigenvalue of each prin-
cipal submatrix of Mmk,mk+rk−1 is positive. By Theo-
rem 6.4.6 case (A2) of [2],Mmk,mk+rk−1 is anM -matrix.
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