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Abstract—We study the reach control problem for affine by the vertex not contained). Lét;, i = 0,...,n be the
systems on simplices, and the focus is on cases when it is knmow ynit normal vector to each facés; pointing outside of the

that the problem is not solvable by continuous state feedb&c  gimplex. Let ) be the target set iSs. Define the index
Using the reach control indices for affine systems on simplés, ts] — {1 A — I\ {i teln = ). E
we propose a subdivision algorithm and associated piecewis §e sl := { ""_7”} and I; := I'\ {i} (note I, = I). For
affine feedback. The main result is that if the reach control ¢ € I U {0}, define the closed, convex cone
problem is solvable by open-loop controls, then it is solvdb .
by piecewise affine feedback. Ci={yeR" : hj-y<0,jel}.

. INTRODUCTION We'll write con€(S) := Cy, since(y is the tangent cone to

This paper studies theach control problenon simplices. § atvy. We consider the affine control system &n

The problem is for an affine system defined on a simplex to &= Az +a+ Bu, z €S, (1)
reach a prespecified facet of the simplex in finite time. The

problem has been developed in [3]-[10]. The significance d¥here4 € R"™*", a € R", B € R**™, and rankB) = m.
the problem stems from its capturing the essential featuré§t u(f, #) denote the solution of (1) starting from under
of reachability problems for control systems: the presefce & control lawu.

state constraints and the notion of trajectories reachijmph ~~ Definition 2.1: We say thenvariance conditiongre solv-

in a guided and finite-time manner. See [2] for motivationgble if there existi, .. ., u, € R™ such thatdvi+a+Bu; €
and an alternative approach. Ci. Equivalently,
In [3] it was shown that affine feedback and contlnuoushj (Av; +a+ Buy) <0, ic{0,...n}.jel. (2

state feedback are equivalent from the point of view of L ] o
solvability of the reach control problem (RCP). In [4] we. Dgf|n|t|on 2'2'. We say a stgte feedbackz) satisfies the
invariance conditions if for alj € I andx € F;,

developed reach control indices which expose how affine or
continuous state feedbacks may fail - such feedbacks induce h; - (Az + Bu(z) +a) <0. (3)
closed-loop equilibria in sub-simplices that are inhejent  proplem 2.1 (Reach Control Problem (RCP3onsider

starved of sufficient inputs. Fortunately, the reach cdntrgystem (1) defined o8. Find a feedback contral(z) such
indices also give insight on how to overcome the problem ghat:

insufficient inputs. We present here a subdivision prooedur E S th ST > q h
that triangulates the simplex into sub-simplices with sub- 0 hor EVeryzo € Stf ere"eX|s > 0andy > 0 suc
reach-control problems. The approach generalizes a subdiv ;nadtzu((? xo)) ¢€S f(?rrjl ttee([jq’;];%)(ﬂ z0) € Fo,
sion method for hypersurface systems (hawving 1 inputs) (i Thereue)éisz)Ss > 0 such that f(;r all ’Ye. S, Az +
first presented in [8]. It enables a reassigment of contmls t + Bu(z)| > o ’ r

the effect that the shortage of inputs can be overcome. The. ¢ i & . . .

final outcome is that if the reach control problem is soIvabIeg") Feedbacku(z) satisfies the invariance conditions (3)

by open-loop controls, then it is solvable by piecewise affin ) n '_FO' ) _
feedback. Definition 2.3: A point xg € S can reachF, with

. . . . . S
Notation. The notation0 denotes the subset dk® constraint inS with control classU, denoted byzo — Fo,

containing only the zero vector. The notation{eg,v,,...}  if there exists a controk of classU such that properties
denotes the convex hull of a set of pointse R™. Symbol (i)-(iii) of Problem 2.1 hold. We writeS 5, Fo by control

U represents a control class such as open-loop, continuatlgssU if for every z € S, zo S, Fo with control of class
state feedback, affine feedback, etc. For a veetar R", T{.

the notationz < 0 (z < 0) meansz; < 0 (z; < 0) for Theorem 2.1:[7], [10] Given the system (1) and an affine
L<i<n. feedbacku(z) = Kz + g, where K € R™*", g € R™,
Il. BACKGROUND and ugp = u(vg),...,un = u(vy), the closed-loop system
. S . .
Consider am-dimensional simples§ with vertex set/ .=  SatisfiesS — Fq if and only if
{vo,v1,...,v,} and facetsFy, ..., F, (the facet is indexed (a) The invariance conditions (2) hold.

The authors are with the Department of Electrical and Coep#in- (b) There is no eqUI_“b“um 5. .
gineering, University of Toronto, Toronto, ON M5S 3G4, Cdaa(e- Let B =Im(B), the image ofB. Define
mail: broucke@control.utoronto.ca). Supported by theuNdtSciences and
Engineering Research Council of Canada (NSERC). O={zeR"” : Az+a € B}.



Notice that the vector fieldlx + Bu + a on O can vanish IV. PIECEWISE AFFINE FEEDBACK
for an appropriate choice af, so O is the set of all possible

e . . In this section we investigate the extent to which piecewise
equilibrium points of the system. Define 9 P

affine feedback can solve RCP, in cases when continuous
G:=8n0O. state feedback cannot. We construct a triangulation of the
simplexS comprised of sub-simplices such that a sub-RCP
is solvable for each sub-simplex. Noteworthy is the way we
‘exploit the reach control indices. According to [4], thedlea
control indices are defined under the following assumptions

Assumption 4.1Simplex § and system (1) satisfy the
following conditions.

Associated with G is its vertex index setlg :=
{i | v; € VN G}. We make an important assumption con
cerning the placement a with respect toS. The reader
is referred to [3] for the motivation for and a method of
triangulation of the state space that achieves it.
Assumption 2.1Simplex S and system (1) satisfy the
following condition: if G # 0, then G is a x-dimensional (P1) G = cofur, ..., vs1}, wherel < k <mn.
face of S, where0 < k < n. (P2) B condsS) = 0. R
Theorem 2.2 ( [3]): SupposeG = 0. If the invariance Egi; g%zcszibév > -_7me| bi € BNC;}, wherem <k + 1.
" S . i , 1Elg.
fc;;;jt;gc;nks (2) are solvable, thes — o by affine Condition (P3) encodes the fact that there is a preferred ba-
Theorem 2.3 ( [3]): Suppose Assumption 2.1 holds andSis th.a}t Is maximal with respeciﬁ)in the sense of (A3).. By
G +# 0. If the invariance conditions (2) are solvable and°ndition (P1), we have+1 = in-+p for somep > 1. Using

BN condS) # 0, thenS -2+ F, by affine feedback. (P4), if we select any sebs 41, - .., bxt1 | bi € BNC;} and

The primary conclusion of [3] is that RCP is solvable bywe_use{bl, ;b } as in (P3).’ therp denotes the number
) : B . of linearly dependent vectors in the sgt, ..., b1}
affine feedback if and only if it is solvable by continuous™ Theorém 4.1 ( [4]): Suppose Assumption 4.1 hold. Then
state feedback. The goal of this paper is to solve RCP ihere exist integers;,...,r, > 0 and a decomposition of
cases where continuous state feedback cannot be used. fvénto p subsets such that w.l.o.g. (reordering indices)
consider the following assumptions. BNC;i C Bi:=5p{bmy,-- -, by gy —1} i =m1,. .., mi+r—1,
Assumption 2.2Simplex S and system (1) satisfy the @
following conditions. BOCi C Bz i=5p{bmy, - bmytry—1},0=ma2, . ymz =1 (5)
(Al) G=co{vy,...,Uet1}, With 0 < kK < n. :
(A2) BncondS) = 0. BNCi C By :=50{bm,, bmptrp-1},i="mp,...,mp+1p—1. (6)

(A3) The maximum number of linearly independent vectors
in any set{by,...,b.11 | b; € BNC;} (with only one wheremy, :== ry + -+ 1,1 + 1 for k=1,...,p and
vector for eachB N C;) is m with 1 < m < k + 1. TI=T1H Ty
Assumption (A1) rules out the application of Theorem 2.2, The importance of the reach control indices stems from
and it enforces that, ¢ ©. The latter requirement is becausetheir ability to isolate closed-loop equilibria when using
whenwv, € O and (A2) holds, then RCP is not solvable.continuous state feedback. Define for=1,...,p
Assumption (A2) rules out the application of Theorem 2.3. S, = co{v o _1}_
Finally, (A3) introduces a new condition in terms of the T I
variable m, which necessarily satisfie® < x -+ 1. When In [4] it was shown that eacks, contains a closed-loop
x =m — 1, an affine feedback solves RCP, as stated belowquilibrium when using continuous state feedback. We now
The remaining cases when> m are the topic of this paper. show a control method that breaks up the dependenciBs in
Theorem 2.4 ( [3]): Suppose Assumption 2.2 holds. If theto remove these equilibria.

inva;iance conditions (2) are solvable afid= « + 1, then Assumption 4.2Simplex S and system (1) satisfy (P1)-
S — Fy by affine feedback. (P4) and also the following conditions.
I1l. N ECESSARYCONDITIONS (P5) 3 {ry,...,rp} such that (4)-(6) hold.

gpe) Be ¢ Ho={yeR" | ho-y=0}, k=1,...,p.

In this section we summarize necessary conditions fg . . :
solvability of RCP using open-loop controls. (Some proof ondition (P5) comes directly from Theorem 4.1 while the

in the paper are supressed due to space constraints). We gggessity of (P6) is s;ated below.

that a functionu : [0, c0) — R™ is anopen-loop controif emma 4.1:If § — F, by open-loop controls, then

it is bounded on any compact interval and it is measurabl8x ¢ Ho for eachk =1,...,p.

By Caratheodory’s theorem solutions of (1) using open-loop Definition 4.1: Given a state feedbaekz), we sayu is a

controls exist and are unique. piecewise affine feedbadkthere exists a triangulatiofi’ of
Theorem 3.1:Suppose there exist open-loop controls suckt such that for each (full-dimensiona$), € T, there exist

that condition (i) of RCP holds. Then the invariance condiX: € R™*™ and g; € R™ such thatu(z) = Kz + gi,

tions (2) are solvable. x € S;.
Theorem 3.20f S -5 Fo by open-loop controls, then This definition of piecewise affine feedback allows for dis-

, continuities at boundaries of simplices. discrete super-
BNC; #0, ielg. visory controllerwill be introduced later to resolve which



control value must be used at points lying in more than one
simplex, thus ensuring the feedback is well-defined.

We now explain in general terms an inductive procedure
for subdividing S in order that RCP can be solved by
piecewise affine feedback. First, an immediate consequence
of (P6) stated in Lemma 4.2 is that each subsimgxfor
k =1,...,p, has a vertex (amon@u,,, , ..., Um,+r.—1})
with b; € B n C; pointing out of S. By convention, we
reorder indices so this vertex is the first one in each list
{Vmys -« s Ump+r,—1 - We make a subdivision & by plac-
ing a new vertex’ along the edgévy, v, ). In particular, at
the first iteration we would have’ € (vg, v1), and we form
two sub-simplicesS! and S’ as in Figure 1. Lemma 4.4
shows that becauds,, € BNC,,, points out ofS at v,,,
and because the invariance conditions foare solvable at
Vg, @ Convexity argument gives that can be p|aced a|ong See Figure 1. The fO||0Wing lemma proVideS a formula for
(v0,Um, ) SO thatBNcondS?) # 0. Then in Lemma 4.5 one the normal vector” of 5.

Fig. 1. Subdivision into two simplices’ and S.

applies Theorem 2.3 to obtain that RCP is solved $r Lemma 4.3:Supposéyy = _/71h1_ — = Tnhn V\llit_h ¥i >
EssentiallyS! can be removed from further consideration0- Then the normal vector t@; pointing out ofS™ is
and the induction step is repeated withreplaced by the W =~ (1 = A)hy — Mo . 8)

remainderS’. To guarantee that the induction is sound, one Lemma 4.4:Suppose Assumption 4.2 holds. There exists
must show thatS’ inherits the relevant properties o, ' € (vo,v1), such thatB N condS') # 0. Moreover, one

especially condition (P6). This is done in Lemma 4.6. can choosé’ € BN condS?) such thath’ - o' < 0.

Lemma 4.2:Suppose Assumption 4.2 holds. Then w.l.o.gProof:  Observe that co&') = {y € R" | b/ -y <
(by reordering indicesho - b, >0 for k=1,...,p. 0,hj-y <0, je€{2,---,n}}. We show there is an interval
Proof: We prove the result fol. = 1. If for any j € Of values for\ such that) # b, € BN condS*), whereb,
{1,...,71}, ho - b; > 0, then the proof is finished. InsteadiS provided by Lemma 4.2. First, sinbg € 5NC, we know
suppose that for all € {1,...,r1}, ho - b; < 0. Using (P6) hj-b1 < 0forj € {2,...,n}. We must only show that there
and by reordering the indices. .., r;, assumeig - b,, < 0. €XistsA € (0,1) such thath’ - b; < 0. From Lemma 4.3 we

By Lemma 18 of [4] there exists; € BNy such that have
h/'blz’}/l(l—A)hl'bl—)\ho'bl. (9)
b1202b2+"'+cr1br17 Ci#oa i:2,...7T1,

) ) Sincehy - by > 0 (becausa3 N condS) = 0) andhg - by >
and {by,...,b,} are linearly independent. Let := ( (hy Lemma 4.2), it is clear from (9) that we can select
(c2,...,¢p,). Define matrices! = [ho---hyy] @andY =\ — "\ sufficiently close tol such thath’ - b; < 0. Setting
[by -+ -br,]. Sinceby € Cy, it satisfies the invariance condi- ;v — \ry; + (1 — M)ug, we getb; € BN condS?). n
tions: Lemma 4.5:Suppose Assumption 4.2 holds. If the invari-

T T
H by = HYe=0. ance conditions fo§ are solvable, thes* S—1> Fo by affine

By (P2) and Lemma 6.4 of [3JH”Y is a non-singular#- feedback.
matrix. By Theorem 2.3 (cas¥sg) of [1], this impliesc < 0.  Proof: By Lemma 4.4, we havéS N condS') # 0. We
Sincec; # 0, we have moreover < 0. Thus we obtain show that the invariance conditions are solvableSbrFirst,

consider the vertex’. By assumption there exist control

inputsug, u; € R™ such that the invariance conditions for
m S atvy andv; are satisfied, i.e.

ho - b1 :ho-(Cng-i--"-‘rCleﬁ) ZCﬁhO'brl >0.

Following Lemma 4.2, suppose thatsatisfieshg-b; > 0. Yo = Avg+ Bug+ a € CON&S)
We consider any point’ in the open segmertiy, v1). That y1 = Avi+Bui+acBnC .
is, let A € (0,1) and define ‘
In particular,h; -y; < 0fori =0,1andj = 2,...,n.

v = v+ (1= Ao (7)) Now by Lemma 4.4, there exists € (0,1) such that with
Now define the following sub-simplices &: v = v + (I = Mg, ¥ - by < 0 andhy;-b; < 0 for
, , j =2,...,n. Letw; be such thab; = Bw;. Sete; > 0
S = cofvo, v, v2,..., v} and letu’ := Au; + (1 — MNug + eqw;. Then
St = co{v,v1,va,...,0n}.

y' == AV + Bu' +a=Xy1 + (1 — Nyo + €1b1 .

Also define the new exit facet fa8’ b -
! W ex y Thus,h;-y’ <0forj=2,...,n and fore; > 0 sufficiently

Fbo=co{v,va,...,vn}. large,h’ - 3/ < 0. That is, the invariance conditions fei!



are solvable at’. 5) SetSrtl:.=S.

e e o . LEtA ol k) drate e ot fcet . The
o ! ! ULy ' ~~ triangulation generated by the algorithm has the propédy t
by assumption solvable, the former are also solvable. ijnal
consider vertices;, i = 2, ...,n. There exist control inputs Sknskt =k, k=2,....,p+1,

i € R™ such that . .
“ and closed-loop trajectories follow paths through sub-

yi = Av; + Bu; +a simplices with decreasing indices. Thus, S, F s
satisfy b - y; < 0 for j = 2 i 1li41 n. As achieved by implementing affine controllers that achieve
iy < =2,..., , yenes T

Sk
above letw; be such thab; = Bw;. Sete; > 0 and let Sk.—f Fi for k =1,...,p+1. In order to guarantee that
v, == u; + e;w;. Then the closed-loop vector field féf at  switching occurs in the proper sequence (with decreasing

K2

v; is simplex indices), and to avoid chattering caused by mea-
yi = Av; + Bu, +a = y; + €1b1 . surement errors, a supervisor should accompany the imple-
mentation of the piecewise affine feedback. The supervisor

Thus,h;-y; <0forj=2,...,i—1,i+1,...,nand for pas two functions:

e1 > 0 sufficiently large,h’' - y; < 0. That is, the invariance _ . _ _
conditions forS! are solvable av;. In sum, we can app|y (I) Once the plecewise affine controller has switched to

Theorem 2.3 to obtain thag! S—]> Fo by affine feedback. simplex S*, then all affine controllers fos’, j > k,
- are disabled.

Lemma 4.6:Suppose Assumption 4.2 holds. If the invari- (i) The affine controller fors’ is released a7~ only
ance conditi.oﬁs foS are solvable then' ' after the closed-loop trajectory exit$’. Thus, at a

_ o B point z € &7 N &7, the controller for the simplex
(i) The invariance conditions faﬁ’ are solvable. with the higher index is used.

(i) (=) bm, >0, k=2, . .
Proof:  First we prove (i). By assumptlon the invariance 'N€orem 4.2:Suppose Assumption 4.2 hOIdS If the in-
conditions are solvable fos, and since the invariance variance conditions foS are solvable, thews > F, by
conditions forS’ are identical (the only facet that changedPiecewise affine feedback.

for S’ is Fy, which plays no role in invariance conditions),Proof: Form the triangulatio{ S, ..., SP*!} of S based

they are also solvable fas'. on the Subdivision Algorithm. To show th&t %> 7, by

Next we prove (ii). Sincé,,, € BN Cp,, we haveh; - piecewise affine feedback, we first show st S5 Fk by
bm, <0,fork=2,...,p. Also by Lemma 4.2}¢-b,,, > 0, affine feedback fok — 1. .

. ,o.,p+ 1.
for ki =2,....p. Thus, using (8), fok =2,..., p we have Lemmas 4.4 and 4.5 depend on two propertiesSof
(=1) by, = =71(1 = Ay - by, + Ao - by, > 0. condition (P6) and solvability of its invariance conditgn
Let
u Sk := cofvg, V¥, ... vF}.

We have demonstrated the first step of a triangulation
procedure that partitionsS into sub-simplices on which ThenS* ¢ S* and S* takes the role of5 in Lemmas 4.2,
sub-reach control problems are solvable. Now we presetd, and 4.5. Thus, we must verify th&" inherits the
a triangulation algorithm that iterates on the presentegeeded properties of. However, Lemma 4.6 guarantees
subdivision method. It consists gf iterations, one for by an inductive argument that for each successSby the
each set{v,,,,...,Um,+r -1}, kK = 1,...,p. The nota- invariance conditions remain solvable afeh®) - b, > 0
tion S* = co{v',v1,...,v,} is understood to mean thatfor k =2,...,p. The latter statement means that Lemma 4.2
all n + 1 vertices of S¥ are assigned simultaneously inapplies to eacks® (with h* representing théth iterate of
the order presented The vertices &§f are later identi- £’); and this, in turn, means Lemmas 4.4 and 4.5 also apply

fied as{v%,...,vE}. The algorithm generates subsimplicegg S* — S*. We concludeS*® -S-s st 2, Fk by affine feedback
St...,8sptt startmg from the given simple&. At the kth  for k = 1,.

iteration, the current declaration &f is split into a lower Next conS|derSP+1 By Lemma 4.6, the invariance con-
simplexS* and an upper simplex. The lower simplex is therditions for S?*! are solvable §7** and S share the same
“thrown away” and the remainder is declared to evith  invariance COﬂdItIO?S slnce1 they only differ in their exit
vertices called{v, .. ., v, } (overloading the vertices of the facets). Now legr*! := SP*1 N O. Then by the algorithm,

pl’eVIOUSS). gp+1 = CO{UQ7 sy Umg—1,Umg+1y - -+ s Ump—1, Ump41s -« -5 UK+1} .

Subdivision Algorithm: We can see that the algorithm has removed jheertices

1) Setk :=1. V1, Um,, -+, Um, and this has the effect to break up the

2) Selectv’ € (vo,vm,) such thatB N condS*) # 0, dependencies of3 associated withG. There remainm
whereS* := co{v/, v1, ..., vn} linearly indepedent vectors i¥ associated withG,1 (an

3) SetS := CO{Ug, V1, - s Uy 1,V s Uy t1s - - - s Un ). (m — 1)-dimensional simplex) given by

4) If k< p, setk:=k+1 and go to step 2. {b2, .., bma—1,bmat1,- s bmp—1,bmp 1, bey1}



Th(Jerrlefore, we can apply Theorem 2.4 to obtain! ‘ﬂ
FUT.

Next we verify conditions (ii) and (iii) of RCP. Condition
(ii) follows immediately because there are a finite humber
of affine feedbacksu®(z) each defined on a compact
set S* that does not contain an equilibrium. For (iii) we
must verify that the invariance conditions f&t hold on
the vertices of Fy. The exit facet ofSP*! is }‘5’“ =

CO{U&, Um1+17 L) 7Um1+7‘1—11 LY avga vmp+la LY 7U7‘7U7‘+1! \

...,u,}. The invariance conditions faf?*! are identical 08 06 04 0z 0 0z 04 05 08 1

to those forS and the controller folSP*! takes precedence

over controllers for simplices with lower index. This imgsi Fig. 2. Closed-loop vector field using affine feedback.

that the invariance conditions & hold at all vertices of
FPL The only vertices ofF, that are not inFit" are
UmysUms, - -, Um,. FOI these vertices we have,,, € St
Uy € STNS?,. 00, € STN---NSP. We use the controller
for the simplex with the highest index. Now the invarianc
conditions forS* at vm, are precisely those faf. We can VI. EXAMPLES
see this because the invariances conditionsvfgr do not
include the normal vectok”.

Finally, we must prove that trajectories progress throug
sub-simplices with decreasing indices (thereby guaramee
that the supervisor cannot block). Consider w.l.og. thendeu
ary betweenS! and §? given by 7} = co{v/,va, ..., v, 1}, ) 0 1 0 0
and letu = K x + g be the affine feedback obtained for r= [ 0 0 } T+ [ 1 ] ut { 0 } ’
S'. We must show that for any, € S \ F¢, closed-loop Wi

: . 1 T e have
trajectories do not reaclt;. This can be deduced from the O={z| =0}
proof of Lemma 4.5 where it is shown that the controls 2 '

{v,usa,...,u,} can be selected so that HenceSNO = G = co{vy,v2}, K = 1, andm = 1. Also we
, , , note thatBNcondS) = 0. By the results of [3] the problem

W (Av + Bu'+a) < 0 is not solvable li(y zzontinugus state feedb([;\c]k. Fopr example,

h'-(Avi + Bu; +a) < 0, 1=2,...,m. suppose we choose control values at the vertices to satisfy

) . " S - N
By convexity,h/-(Az+B(K1z+g1)+a) < 0 forall z € FL, the invariance conditionsyy = —3, u1 = —1, anduy = 1.
from which the result easily follows. |

k=1,...,p. Thus, all conditions of Assumption 4.2 hold.
éBy Theorem 4.2S S, Fo by piecewise affine feedbacll

A. Example 1

h Consider a simplexS determined by vertices), =
(—=1,1), v1 = (1,0) andve = (0,0), and consider the affine
system

This yields an affine feedback

=| -2 -=3.75 1.
V. MAIN RESULT “ [ }x+
Simulation of the closed-loop system is shown in Figure 2.
® he vector field satisfies the invariance conditions; howeve
there exists an equilibrium point gh= co{v;, v2}. Now we

Theorem 5.1:Suppose Assumption 2.1 holds. Then th
following statements are equivalent:

1) S 5, Fo by piecewise affine feedback. show the problem is solvable by piecewise affine feedback.
2) S -5 F, by open-loop controls. According to the Subdivision Algorithm, we choose=
Proof: (1) = (2) is obvious. (0.5,0.25) so that B N condS') # 0. Then §% =

(2) = (1) SupposeS N Fo by open-loop controls. C?{Uovvle}’ Sti= 00{1{/701702}3 Fo = CO{U'702}; and
By Theorem 3.1, the invariance conditions are solvable. L&t = (—0.25,0.5). To satisfy the invariance conditions for
G:=SNO.If G =0, then by Theorem 2.25 s, Fo by S? we choose control inputs at the vertices touye= —%,
affine feedback. Supbose inste@gz . If BncondS) # 0, w = —1, andus; = 1. To satisfy invariance conditions for

1 i i —
then by Theorem 2.35 -2+ F, by affine feedback. Suppose 51 l"e_‘l:hgzZigoitri)ll|nﬁﬁésp?égg\iizgrg;ie:et?edeﬁg;aci,is
instead 5 N condS) = 0. From Theorem 3.2y ¢ G, ' '

so by reordering indicesg = co{vi,...,v.41}, Where u— 0 0]z—1, re St
0 < k < n. Define B = sp{by,...,bs | bi € BNC;} —-2.0833 —-3833 |z+1, ze€8?.
where{bi,...,bs} is @ maximal set with respect ©. By  1he ¢losed-loop vector field is shown in Figure 3, where it

Theorem 3.2B8NC; # 0 fori € Ig. If k < m, then
by Theorem 2.4 =5, Fo by affine feedback. Suppose
insteadx > 7. Then Assumption 4.1 holds. The reachB- Example 2

control indices can be defined, yielding a decomposition Consider the simplexs in R* defined by the vertices
of B into By,...,B,. Lemma 4.1 givesB, ¢ Ho for vy = (0,0,0,0), v; = (1,0,0,0), va = (0,1,0,0), v3 =

is clear that RCP is solved.



127 feedback law to solve RCP afl. It is clear thatb, - h{, >
0 and therefore we can choos¢ € (vp,v4) such that
BN condS?) # 0. One choice isv” := (0,0,0,0.8). Let
83 = cofvg,v1,v",v3,v"} and S? = co{v”, v1,v,v3,v4}.
It can be verified that3 N condS?) # 0. In order to satisfy
the invariance conditions fof? the control inputs at the
vertices ofS? can be chosen as follows:” = (—4,0.6),
uU21 = (—5,—1), u’ = (—1,—2), U23 = (—57—1), U24 =
(=3,1). In order to satisfy the invariance conditions for
TR T §3 the control inputs at the vertices &f can be chosen
as follows: ug = (0,0), us; = (—1,0), v’ = (-1,-2),
uss = (0,—1), andu” = (—4,0.6). This yields a piecewise
affine feedback
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Fig. 3. Closed-loop vector field using piecewise affine fewitb

(0,0,1,0), andvy = (0,0,0,1). Consider also the affine 0 —133 0 2 -1

dynamics onS _ ) N
For 82 the invariance conditions are solvable amdn

-3 -3 -3 1 0 -2 1 condS?) # 0, so RCP onS? is solvable. ForS® we have
i = 0 0 0 -2 T+ 0 1 u+ 1 Gs = 83N O = co{vy,v3}. Sincexs = 1 andm = 2, RCP
-3 =3 =3 1 -2 0 1 is solvable by affine feedback. Indedd;, b3 | b; € BNC;}
0 0 0 -2 1 0 1 is a linearly independent set associated with
We have VIl. CONCLUSION
O={z |z +r2+a3+24—1=0}. The paper studies the reach control problem on simplices,

Thus, G = F,, and we note thak = 3, m = 2, andB N End Wetllnvestlg?t? c]:’;\sedsbwhkenltthe r;]roblertr;] |? t?]Ot slolvabI?

condS) = 0. By the results of [3], RCP is not solvable by y con_muo:rs s?edt()ee K ack. ﬁ.'s. shown Ia he Ca‘:’ 0

continuous state feedback. Now we show it is solvable bﬁl:ecemse amne feedbacks 1S su icient to solve the problem
all cases of interest; namely, those cases when the pnoble

piecewise affine feedback. : vable b | trol
First we examine the structure ¢ to reveal the reach 'S SO'Vabie by open-loop controis.
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