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Abstract

One of the important discoveries in control theory is a topological obstruction
to continuous feedback stabilization for general nonlinear control systems. In
this note we describe another topological obstruction arising from a very differ-
ent control problem called the reach control problem. Motivated by a classical
topological obstruction for extending continuous maps on spheres, we introduce
the problem of extending continuous maps on simplices. It is shown that the
same condition as in the sphere case gives rise to the obstruction.
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1. Introduction

This paper regards the Reach Control Problem (RCP). The RCP seeks to
find a feedback control which drives the trajectories of an affine system initial-
ized in a simplex to reach and exit a facet of the simplex. We direct the reader
to [14, 27] and other cited works which regard the RCP for a more substantial
discussion. For the purposes of this introduction, it suffices to state that this
line of research is motivated by the desire to satisfy complex control specifica-
tions given in a constrained state space; this research thrust is also present, for
instance, in [10, 11, 19], although the settings and methods of those papers are
vastly different from the reach control setting.

The classical theory of controllability is largely focused on control strategies
in the Euclidean space, and the methods for dealing with control theory in
constrained spaces are still under development. While we make no claim to
provide an extensive discussion of such efforts within this paper, we direct the
reader to a vast discussion and body of references in [2]. We additionally note
that this work is related in spirit to results of [12, 13, 16, 17, 18], as well as other
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works which deal with controllability or reachability of systems with constraints.
In the interest of space we will not delve into a further discussion of these
papers. While the results in the current paper are motivated by similar lines of
inquiry as the previously mentioned works, the theoretical results obtained and
methods used to do so are invariably vastly different from the current paper.
We point the reader to those papers and the references contained therein for
more information on the control of systems with state and input constraints.
In this paper, we investigate an obstruction to solving the RCP via continuous
state feedback. Noteworthy is the analogy with the topological obstruction to
continuous feedback stabilization [5, 9].

The RCP has been extensively studied with emphasis on finding a complete
class of controls to solve the problem [6, 1, 7]. Affine state feedback has played
the dominant role, in analogy with linear state feedback to solve the stabilization
problem for linear systems [14, 27]. Under a special triangulation of the state
space, it has been shown that affine feedback and continuous state feedback are
equivalent with respect to solving the RCP [6]. Under the same triangulation,
piecewise affine feedback or time-varying affine feedback may be used when
continuous state feedbacks fail [7, 1]. However, determining a set of easily
verifiable sufficient and necessary conditions for the solvability of the RCP under
continuous state feedback solving the RCP has thus far remained elusive. The
recent research effort on the topic of a topological obstruction is an attempt to
obtain easily verifiable strong necessary, albeit not sufficient, condition for the
solvability of the RCP.

Our investigation of a topological obstruction has precursors in two specific
areas. The initial piece of motivation is given by [7], where we investigated
a situation when continuous state feedback fails under a special triangulation.
It was discovered that the failure arises from two conditions. First, the con-
trol system is underactuated, meaning there are not sufficient control inputs to
resolve the requirements of the RCP. Second, available control directions are
not adapted to the simplex so that even with high gain control, closed-loop
equilibria appear in the simplex using continuous state feedback, resulting in a
failure to solve the problem. The main tool to prove existence of equilibria was
Sperner’s lemma [6]. We use a similar proof method here. This paper can be
regarded as a generalization of [7] to the case of arbitrary triangulations.

The second precursor of this investigation is contained in [28, Theorem 1]. It
identifies a cone condition relating the available control directions to the geome-
try of the simplex as a necessary condition to solve the RCP by continuous state
feedback. The result was for single input systems only. Due to its reliance on
the intermediate value theorem, the proof cannot be easily extended to systems
with multiple inputs. The same cone condition again emerges in the present
work; however, now we work with multi-input systems.

The topological obstruction has already been investigated in [21, 22, 26, 25].
We now clarify the differences between the present paper and our previous
work. All three above papers use topological methods for establishing sufficient
and necessary conditions for the existence of a topological obstruction to the
solvability of RCP. The paper [22] treats the case of two- and three-dimensional
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simplices, [21] discusses systems with two inputs, and [26] and [25] assume
that an underlying affine system is controllable, and use that assumption to
provide the most general currently available characterization of the topological
obstruction problem. In this paper, we assume a special symmetric structure
on the set of possible equilibria in the simplex, which does not appear as a
requirement in either of the three above papers. This structure enables us to
use algebraic methods to show that the cone condition identified in [28] is a
necessary and sufficient condition for the existence of a topological obstruction,
under the assumptions of this paper. This condition is significantly simpler than
the conditions discovered in previous papers, at the expense of more restrictive
assumptions. The proof methods are also different. Specifically, [22] heavily
uses retractions, while [21], [26], and [25] use homotopy and extension theory.
In this paper, topological methods are mostly limited to our work on the sphere,
while the obstruction on a simplex is investigated using linear algebra and the
Knaster-Kuratowski-Mazurkiewicz (KKM) lemma.

We also note the recent work of [23] and [24], which opens the space for
connecting the problem of a topological obstruction to wider results in control
theory. In [23], the problem of the solvability of the RCP is related to the notion
of local controllability. However, this connection has not yet been formalized.
More significantly, [24] poses the RCP in terms of a problem on positive systems.
Hence, the results presented in this paper can be interpreted as results on the
existence of equilibria in the setting of positive systems. This will be further
briefly discussed in Section 2.

The contributions of the paper are as follows. In Section 4, we formulate
the problem of a topological obstruction on the sphere as an analogue to the
known question of a topological obstruction to the RCP on a simplex. Using
degree theory, that problem is then solved at the end of Section 4. In Section 5,
we go back to the problem of a topological obstruction on a simplex. We solve
the problem under certain additional assumptions on the structure of the set of
possible equilibria.

Notation. Let X and Y be sets. The direct sum of X and Y is denoted by
X ⊕ Y. If X is contained in a topological space, notation X ◦ denotes the
(relative) interior of X , while X denotes its (relative) closure, and ∂X denotes
its (relative) boundary. Notation idX : X → X represents the identity map.
The symbol for an n-dimensional unit ball is Bn, and for an (n−1)-dimensional
unit sphere is Sn−1. Notations co{v1, . . . , vk} and span{v1, . . . , vk} denote the
convex hull and vector subspace generated by points v1, . . . , vk, respectively.

2. Reach Control Problem

In this section we introduce the control problem which gives rise to our
study of a topological obstruction. We consider an n-dimensional simplex S :=
co{v0, . . . , vn}, the convex hull of n + 1 affinely independent points in Rn. Let
its vertex set be V := {v0, . . . , vn} and its facets F0, . . . ,Fn. The facet will
be indexed by the vertex it does not contain. Equivalently, the facet Fi is the
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convex hull of vertices v0, . . . , vi−1, vi+1, . . . , vn. Without loss of generality, we
assume that v0 = 0. Let hj , j ∈ {0, . . . , n}, be the unit normal vector to each
facet Fj pointing outside of the simplex. Facet F0 is called the exit facet. Let
I := {1, . . . , n} and define I(x) to be the minimal index set among {0, . . . , n}
such that x ∈ co{vi | i ∈ I(x)}. For x ∈ S define the closed, convex cone

C(x) :=
{
y ∈ Rn | hj · y ≤ 0, j ∈ I \ I(x)

}
. (2.1)

(Note that h0 never appears and C(x) = Rn for x ∈ S◦.) Figure 1, modified
from [20], illustrates our notation for a 2D simplex.

v1 v2

v0

O

h0

h2 h1

C(v0)

C(v1) C(v2)

F0

F2 F1

S

Figure 1: A simplex S = co{v0, v1, v2} with vertices V = {v0, v1, v2} and facets F0, F1, and
F2. The unit normal vector of each Fi pointing out of S is hi. The cones C(vi) are shown
attached at each vi.

We consider the affine control system on S:

ẋ = Ax+Bu+ a , x ∈ S , (2.2)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m. Let B = Im(B), the
image of B. Let φu(t, x0) denote the trajectory of (2.2) starting at x0 under
control input u. We are interested in studying reachability of the exit facet F0

from S.

Problem 1 (Reach Control Problem (RCP)). Consider system (2.2) defined
on S. Find a feedback u(x) such that: for each x0 ∈ S there exist T ≥ 0 and
δ > 0 such that

(i) φu(t, x0) ∈ S for all t ∈ [0, T ],

(ii) φu(T, x0) ∈ F0, and

(iii) φu(t, x0) /∈ S for all t ∈ (T, T + δ).

The RCP says that trajectories of (2.2) starting from initial conditions in S
exit S through the exit facet F0 in finite time, while not first leaving S. In order
for a feedback u(x) to solve Problem 1, Ax+Bu+ a cannot have any equilibria
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in S. We observe that Ax + Bu + a can vanish for an appropriate choice of u
only if x ∈ O where O := { x ∈ Rn | Ax+ a ∈ B}. Thus, if u(x) is a continuous
state feedback, then equilibria of the closed-loop system can only appear in

G := S ∩ O .

Additionally, to solve the RCP we require conditions that disallow trajecto-
ries to exit from the facets Fi, i ∈ I. We say that a state feedback u(x) satisfies
the invariance conditions if

Ax+Bu(x) + a ∈ C(x) , x ∈ S . (2.3)

The invariance conditions are necessary conditions to solve the RCP [7].
We wish to investigate when there exists a continuous u(x) satisfying (2.3)

such that there are no closed-loop equilibria in G. Because Ax+Bu+a ∈ B for
all x ∈ O, u ∈ Rm, it suffices to study existence of maps F : G → B without
specific reference to the system (2.2). Further, using a straightforward linear
algebra argument, one can show that either O = ∅ or O is an affine space with
m ≤ dim(O) ≤ n. Throughout the paper we assume G 6= ∅. We can now state
the main problem of a topological obstruction to solving the RCP by continuous
state feedback.

Problem 2. Given S and O, find checkable conditions on B such that there
exists a boundary map f : ∂G → B satisfying (2.3) that is extendible to a non-
vanishing continuous map F : G → B.

As discussed above, Problem 2 is a necessary condition for the solvability of
Problem 1. More precisely, if there exists a feedback u(x) satisfying Problem 1,
then the restriction of Ax+Bu(x)+a to ∂G will be extendible to a non-vanishing
map F : G → B, again defined by F (x) = Ax+Bu(x) + a.

The central result of this paper is Theorem 21, which solves Problem 2
under certain assumptions on the geometry of G and B. In order to preserve
the narrative of this paper, these assumptions, denoted by (A2’) and (A3), are
formally presented and discussed at a later point in the paper. However, we
provide a short description of them at this point.

Assumption (A2’) concerns the geometry of the set B. It states that, if
o1, . . . , oκ+1, κ ≥ m, are vertices of G, then there exists an r ∈ {2, . . . ,m + 1}
such that B has a basis of vectors b1, . . . , br−1, br+1, . . . , bm+1 with bi ∈ C(oi)
and B ∩ C(or) ⊂ span{b1, . . . , br−1}.

Assumption (A3) concerns the geometry of the set G. It imposes a certain
symmetry on G, by stating that, if o1, . . . , oκ+1 are vertices of G, and I(oj) is
the smallest set of vertex indices such that oj ∈ co{vi | i ∈ I(oj)}, then each
I(oj) has one index which does not appear in any other I(oj), and all indices
that are shared between at least two I(oj)’s are shared between all.

The following theorem provides a necessary condition for the solvability of
Problem 1. It is derived directly from the foregoing discussion and the claim of
Theorem 21, which will be proved at the end of this paper.
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Theorem 3. Suppose there exists κ, m ≤ κ ≤ n − 1, such that G is a κ-
dimensional simplex. Additionally, suppose assumptions (A2’) and (A3) hold.
If there exists a continuous feedback u(x) which solves Problem 1, then

B ∩ cone(G) 6= 0 .

We remarked in the introduction that the RCP was recently [24] posed as a
problem in positive systems. In particular, if S is the “corner” of the positive
orthant (i.e., v0 = 0 and vi, i ∈ {1, . . . , n} are the unit vectors on coordinate
axes), then the above invariance conditions are equivalent to an affine system
with a given feedback control is positive. Thus, Theorem 3 can be posed as a
necessary condition for a positive system to lack equilibria in S. As this paper
primarily focuses on the RCP, we do not explore this connection further.

3. Mathematical Background

This paper employs an interplay of results from degree theory regarding maps
in spheres, combinatorial results centered on the KKM lemma, and results from
linear algebra on M -matrices. This section gives the required background on
degree theory and the KKM lemma. Degree theory is used for the proof (in the
Appendix) of the main result of Section 4 on a topological obstruction on the
sphere. The KKM lemma is used for the proof of the main result of Section 5.

3.1. Degree Theory

The degree of a continuous map is a multi-dimensional analogue of a winding
number; that is, it gives the number of times a continuous map wraps around a
manifold. We forego a rigorous definition since it involves homology theory and
since we only use the properties of the degree; see [15] for an excellent overview.
The following facts about degree are well-known.

Lemma 4.

(i) The degree of idSn is 1.
(ii) The degree of a constant map (i.e., f : Sn → Sn defined by f(x) = x0 for

all x ∈ Sn) is 0.
(iii) Let f : Sn → Sn be the antipodal map f(x) = −x. Then deg(f) =

(−1)n+1.

The notion of homotopy regards when one map can be continuously deformed
into another and is closely related to degree theory.

Definition 5. Let X and Y be topological spaces, and let f, g : X → Y
be continuous functions. Functions f and g are homotopic if there exists a
continuous function H : X × [0, 1]→ Y such that H(·, 0) ≡ f and H(·, 1) ≡ g.

Analogously to the notion of homotopy of maps, we can investigate when
spaces can be continuously deformed into one another. In this paper, we forgo
more complicated concepts and merely remind the reader of the notion of a
homeomorphism:
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Definition 6. Let X and Y be topological spaces. If there exists a continuous
function f : X → Y which contains a continuous inverse, then X and Y are
homeomorphic (denoted by X ∼ Y).

In the sense of topology, homeomorphic spaces are understood to be es-
sentially the same, and all topological properties of a space are invariant to
homeomorphisms.

Lemma 7. Continuous functions f : Sn → Sn and g : Sn → Sn are homotopic
if and only if deg(f) = deg(g).

Corollary 8. A continuous function f : Sn → Sn is homotopic to a constant
map if and only if deg(f) = 0.

The following result will be of particular interest to us. The proof is not
difficult, and is a special case of the known result for functions on a sphere with
no fixed points (for more detail, see, e.g., [15]).

Lemma 9. Suppose a continuous function f : Sn → Sn satisfies x · f(x) ≤ 0,
x ∈ Sn. Then deg(f) = (−1)n+1.

The central question of this paper regards one of the basic problems of
algebraic topology, the extension problem: given a continuous map defined on
the boundary of a topological space, when can it be continuously extended to a
non-vanishing map in the interior of the set? The following well-known result
answers this question, and is the main result of this section.

Theorem 10 (Extension Theorem). A continuous map f : Sn → Sn extends to
a map F : Bn+1 → Sn if and only if deg(f) = 0.

3.2. Knaster-Kuratowski-Mazurkiewicz Lemma

We use degree theory to study continuous extensions of maps defined on
spheres. These results do not carry over naturally when we study simplices.
As such, we draw upon the literature of fixed point theory and particularly the
KKM lemma to resolve the question of extensions of functions on simplices. We
employ the following variant of the KKM lemma.

Lemma 11 (Knaster-Kuratowski-Mazurkiewicz [4]). Let P = co{w1, . . . , wn+1}
be an n-dimensional simplex. Let {Q1, . . . ,Qn+1} be a collection of sets covering
P. Consider the conditions:

(P1) Vertex wi ∈ Qi and wi 6∈ Qj for j 6= i.

(P2) If x ∈ co{wi1 , . . . , wil} for some 1 ≤ l ≤ n+ 1, then x ∈ Qi1 ∪ · · · ∪ Qil .

If (P1)-(P2) hold, then
⋂n+1

1=1 Qi 6= ∅.

An illustration of Lemma 11 is provided in Figure 2.
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w1 w2

w3

Q3

Q1

Q2

Figure 2: An illustration of Lemma 11. We note that Q1, Q2 and Q3 intersect at a single
point.

4. Topological Obstruction on the Sphere

Our search for checkable conditions on B to solve Problem 2 begins with an
exploration of the analogous problem posed on the sphere so that standard tools
of algebraic topology, particularly Theorem 10, can be brought to bear. Thus, in
this section rather than working on the simplex S, we consider instead Bn, the
closed unit ball in Rn. Its boundary is Sn−1 = ∂Bn. Other elements of Problem
2 remain the same. Let B ⊂ Rn be a subspace of dimension 1 ≤ m < n, and let
O be a subspace of dim(O) = κ with m ≤ κ < n. Define the set

G = O ∩ Bn

and define the boundary spheres ∂G := O∩ Sn−1 ∼ Sκ−1 and B1 := B ∩ Sn−1 ∼
Sm−1. Consider a continuous map F : G → B and define the boundary map
f = ∂F : ∂G → B. Suppose f satisfies

f(x) 6= 0 , x ∈ ∂G (4.1)

x · f(x) ≤ 0 , x ∈ ∂G . (4.2)

The second condition means f(x) points inside the unit ball along its boundary,
in analogy with the invariance conditions (2.3) for the simplex.

Example 12. Figure 3 illustrates the situation for n = 3, κ = 2, and m = 2.
The affine space O is a horizontal plane cutting the sphere S2 along the circle
∂G. The set G = O ∩ B3 is a closed ball. Condition (4.2) is illustrated for
representative points along ∂G. The subspace B is shown attached to several
points in ∂G. The (blue) vectors attached at x ∈ ∂G depict f(x). They lie in
the subspace B as well as point inside the sphere S2.

In order to invoke results from degree theory, we define the map

y(x) :=
f(x)

‖f(x)‖
, x ∈ ∂G .
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V2 V1

S3

SIG1

Figure 3: Graphic for Problem 13.

If f(x) 6= 0 on ∂G, this map is well-defined. Observe that y : ∂G → B1 is a map
on spheres and by (4.2),

x · y(x) ≤ 0 , x ∈ ∂G . (4.3)

We want to know when y can be extended to a continuous map Y : G → B1.
By Theorem 10 this is possible if and only if deg(y) = 0. Suppose that F is non-

vanishing. Then we can define an extension of F by Y (x) = F (x)
‖F (x)‖ . Therefore,

if y cannot be extended, the defect must be that there exists x ∈ G such that
F (x) = 0. In other words, there exists a topological obstruction to finding a
non-vanishing continuous map satisfying the inward pointing condition (4.2).

Problem 13. Given O, find conditions on B such that there exists a continuous
map y : ∂G → B1 satisfying (4.3) that is continuously extendible to a non-
vanishing map Y : G → B1.

Remark 14. While Problem 2 and Problem 13 are similar in flavour, there is
no direct connection between the solutions to the two problems. Problem 2 forms
a necessary condition for the solvability of the RCP. On the other hand, the role
of Problem 13 is, in the context of the problem dealt with in this paper, purely
motivational.

Now we give our main idea to solve this problem. We know according to
Theorem 10 that for y to be extendible, it must be homotopic to a constant
map. Informally, it seems reasonable then to impose conditions on B such that
a constant map can satisfy the inward pointing conditions (4.3) simultaneously
at every point on the sphere ∂G. In other words, the answer is positive if there
exists a direction in B that points inside Bn at every point in G. That is,

B ∩
⋂
x∈G

TxBn 6= 0 ,
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where TxBn is the Bouligand tangent cone to Bn at x [8]. Define the cone

cone(G) :=
⋂
x∈G

TxBn =
{
y ∈ Rn | x · y ≤ 0 , x ∈ ∂G

}
. (4.4)

More formally, the next result shows that indeed the proposed condition
provides the solution to Problem 13. The proof is provided in the Appendix.

Theorem 15. Consider subspace B, affine space O, and set G = O∩Bn. There
exists a continuous map y : ∂G → B1 satisfying (4.3) that can be continuously
extended to a map Y : G → B1 if and only if

B ∩ cone(G) 6= 0 . (4.5)

5. A Topological Obstruction on the Simplex

In this section we exploit the main idea of the previous section to resolve
the topological obstruction on the simplex. Rather than using a degree the-
ory argument as for the sphere, we use a combinatorial argument often used
in mathematical economics [4] which is generally based on the KKM lemma,
Sperner’s lemma, Scarf’s lemma, or some variant of these.

b

v1 v2

v0

v3

o1 o2

o3

G

(a)

v1 v2

v0

v3

o1

o2

o3

o4
G

(b)

Figure 4: (a) G satisfies (A1), and B ∩ cone(G) = B ∩ C(v0) contains b 6= 0. (b) G violates
(A1).

As in Section 2, we consider an n-dimensional simplex S = co{v0, . . . , vn}
with vertex set V := {v0, . . . , vn}, facets F0, . . . ,Fn, and outward normal vectors
h0, . . . , hn. Let C(x), x ∈ S, be as in (2.1). Let B, O, and G be as in Section 2.
We will additionally be making use of the following two assumptions:

(A1) There exists κ with m ≤ κ ≤ n−1 such that G is a κ-dimensional simplex.

(A2) There exist b1, . . . , bi ∈ Rn such that bi ∈ C(oi) for all i ∈ {1, . . . ,m} and
B = span{b1, . . . , bm | bi ∈ C(oi)}.
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If assumption (A1) is satisfied, the vertices of G will be denoted by o1, . . . , oκ+1.
The geometry that arises from the intersection of the affine space O with

the simplex S is considerably more complex than the intersection of an affine
space with a ball, which always results in a ball. Condition (A1) allows us to
contain the geometric complexity of G, and it can be guaranteed by a correct
triangulation of the constrained state space. An illustration of (A1) is provided
in Figure 4, modified from [20, 22].

Let the set of vertices of G be VG := {o1, . . . , oκ+1}. Condition (A2) says
that B does not have sufficiently high dimension to allow an assignment of
linearly independent vectors at the vertices of G. The motivation for this as-
sumption is that if G is a simplex and there exists a linearly independent set
{b1, . . . , bκ+1 | bi ∈ C(oi)}, then trivially, 0 6∈ co{b1, . . . , bκ+1}, so one can con-
struct an affine feedback u(x) so there are no equilibria on G. In essence, when
the system is sufficiently actuated, the topological obstruction does not arise.

Define the cone
cone(G) :=

⋂
x∈G
C(x) . (5.1)

This definition is inspired by our studies on the sphere, but due to the properties
of the simplex and our index convention, a more explicit characterization is now
available.

cone(G) =

κ+1⋂
i=1

C(oi) =

κ+1⋂
i=1

{
y | hj · y ≤ 0 , j ∈ I \ I(oi)

}
=

{
y | hj · y ≤ 0 , j ∈ I \ [I(o1) ∩ · · · ∩ I(oκ+1)]

}
.(5.2)

Now consider a vertex map f : VG → B and suppose that

f(oi) ∈ C(oi) , i = 1, . . . , κ+ 1 . (5.3)

Given S and O, we want to find conditions on B such that there exists a vertex
map f : VG → B satisfying (5.3) that is extendible to a non-vanishing continuous
map F : G → B satisfying

F (x) ∈ C(x) , x ∈ G . (5.4)

Clearly, this problem is equivalent to Problem 2: if there exists a vertex map
f : VG → B that is extendible to F : G → B, then the map ∂F : ∂G → B given
by the restriction of F to ∂G is also extendible to F : G → B.

Consider the cone B ∩ C(om+1). Clearly, B ∩ C(om+1) ⊂ span{b1, . . . , bm}.
Moreover, assuming B∩C(om+1) 6= 0, there exists an integer 2 ≤ r ≤ m+1 such
that without loss of generality (by reordering indices 1, . . . ,m), B ∩ C(om+1) ⊂
span{b1, . . . , br−1} and span{b1, . . . , br−1} is the smallest subspace generated by
basis vectors among {b1, . . . , bm} that contains the cone B ∩ C(om+1). Indeed
it can be shown that such a minimal subspace is unique [7]. In order to have
consecutive indices, it is useful to renumber the vertices of G to effectively swap
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the indices m+ 1 and r, so we get

B ∩ C(or) ⊂ span{b1, . . . , br−1} . (5.5)

Because of the index swap between r and m+ 1, a basis for B is

B = span{b1, . . . , br−1, br+1, . . . , bm+1 | bi ∈ C(oi)} . (5.6)

The restatement of Assumption (A2) along the lines of the previous para-
graph, i.e., such that (5.5) and (5.6) hold, will be denoted as assumption (A2’).
We emphasize that this is essentially the same assumption as (A2), with a mere
reordering of vertices for easier notation.

The next result says that there exists a vector in the cone B ∩ C(or) that
depends on all the vectors {b1, . . . , br−1}.

Lemma 16 ([7]). Suppose (A1) and (A2’) hold. There exists br ∈ B ∩ C(or)
such that

br = c1b1 + · · ·+ cr−1br−1 , ci 6= 0, i = 1, . . . , r − 1 . (5.7)

The arguments to follow will involve manipulations with the index sets I(oi).
To that end, for each i = 1, . . . , κ+ 1 define E(oi) ⊂ I(oi) to be the set of non-
zero exclusive members of I(oi) given by

E(oi) :=
{
k ∈ I(oi) | k 6∈ I(oj),∀j 6= i

}
\ {0} .

We also define S to be the set of non-zero shared vertices given by

S =
[κ+1⋃
i=1

I(oi)
]
\
[κ+1⋃
i=1

E(oi)
]
.

Observe that S ∩ E(oi) = ∅ for i ∈ {1, . . . , κ + 1} and E(oi) ∩ E(oj) = ∅ for
i 6= j.

Lemma 17. Suppose (A1) and (A2’) hold. Let br ∈ B∩C(or) be given by (5.7).
If B ∩ {y ∈ Rn | hj · y ≤ 0, j ∈ I \ S} = 0, then ci < 0, i = 1, . . . , r − 1.

Proof. For ease of notation, let br := br. First we show 0 ∈ co{b1, . . . , br}. Since
by (5.7), {b1, . . . , br} are linearly dependent, there exist αi 6= 0 such that

α1b1 + · · ·+ αrbr = 0 . (5.8)

If all αi < 0 or all αi > 0, then it easily follows that 0 ∈ co{b1, . . . , br}, as
desired. Otherwise there must be 1 ≤ q ≤ r − 1 such that without loss of
generality α1, . . . , αq < 0 and αq+1, . . . , αr > 0. Define

η = −α1b1 − · · · − αqbq = αq+1bq+1 + · · ·+ αrbr .
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Since bi ∈ B ∩ C(oi), i = 1, . . . , κ+ 1, we have

hj · η = hj · (−α1b1 − · · · − αqbq) ≤ 0 , j = I \ I(o1) ∩ · · · ∩ I \ I(oq)

hj · η = hj · (αq+1bq+1 + · · ·+ αrbr) ≤ 0 , j = I \ I(oq+1) ∩ · · · ∩ I \ I(or) .

Now we observe I(o1) ∪ · · · ∪ I(oq) ⊂ S ∪ E(o1) ∪ · · · ∪ E(oq). Thus I \ [S ∪
E(o1) ∪ · · · ∪ E(oq)] ⊂ I \ I(o1) ∩ · · · ∩ I \ I(oq). Similarly, I \ [S ∪ E(oq+1) ∪
· · · ∪E(or)] ⊂ I \ I(oq+1) ∩ · · · ∩ I \ I(or). Also because [E(o1) ∪ · · · ∪ E(oq)] ∩
[E(oq+1) ∪ · · · ∪ E(or)] = ∅,(

I \ (S ∪ E(o1) ∪ · · · ∪ E(oq))

)⋃(
I \ (S ∪ E(oq+1) ∪ · · · ∪ E(or))

)
= I \

[
(S ∪ E(o1) ∪ · · · ∪ E(oq)) ∩ (S ∪ E(oq+1) ∪ · · · ∪ E(or))

]
= I \ S .

Thus, I \ S ⊂ [I \ I(o1) ∩ · · · ∩ I \ I(oq)] ∪ [I \ I(oq+1) ∩ · · · ∩ I \ I(or)]. We
conclude η ∈ B ∩

{
y | hj · y ≤ 0 , j ∈ I \ S

}
, so η = 0. Then

0 =
αq+1bq+1 + · · ·+ αrbr

αq+1 + · · ·+ αr
∈ co{b1, . . . , br} ,

as desired. As a consequence, we can assume without loss of generality that
αi > 0 in (5.8). Hence,

br = −α1

αr
b1 − · · · −

αr−1
αr

br−1 . (5.9)

Comparing (5.9) with (5.7) and again using the fact that {b1, . . . , br−1} are
linearly independent, we get ci = − αi

αr
< 0, i = 1, . . . , r − 1, as desired.

Lemma 18. Suppose (A1) and (A2’) hold. If B ∩ {y ∈ Rn | hj · y ≤ 0, j ∈
I \ S} = 0, then for any βr ∈ B ∩ C(or),

hj · bi = 0 , i = 1, . . . , r − 1 , j ∈ [I \ I(o1)] ∩ · · · ∩ [I \ I(or)]

hj · βr = 0 , j ∈ [I \ I(o1)] ∩ · · · ∩ [I \ I(or)] .

Proof. Using (5.7) we have

hj ·
(
br − c1b1 − · · · − cr−1br−1

)
= 0 , j ∈ I \ [I(o1) ∪ · · · ∪ I(or)] .

Expanding the product on the left side, every term −cihj · bi in the sum is
non-positive because bi ∈ B ∩ C(oi) and −ci > 0 by Lemma 17. Additionally,
hj · br ≤ 0 because br ∈ B ∩ C(or). Thus,

hj · bi = 0 , i = 1, . . . , r − 1 , j ∈ I \ [I(o1) ∪ · · · ∪ I(or)] . (5.10)
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Now take any βr ∈ B ∩ C(or). By (5.5) and (5.10) we have

hj · βr = 0 , j ∈ I \ [I(o1) ∪ · · · ∪ I(or)] .

In order to mimic as closely as possible the topological obstruction on the
sphere, we now introduce an assumption on the geometry of the intersection of
O with S. It is captured in terms of the index sets I(oi). Let E(oi) be the set
of non-zero exclusive vertices of oi for i = 1, . . . , κ + 1, and let S be the set of
non-zero shared vertices. We assume the following:

(A3) For each i ∈ {1, . . . , κ+ 1}, there exists ei ∈ {1, . . . , n} such that E(oi) =
{ei}. Moreover, S = [I(o1) ∩ · · · ∩ I(oκ+1)] \ {0}.

This assumption on the index sets has several implications which we now
spell out. First

[I \ I(o1)] ∪ · · · ∪ [I \ I(oκ+1)] = I \ [I(o1) ∩ · · · ∩ I(oκ+1)] = I \ S . (5.11)

Therefore, under (A3)

cone(G) =
{
y ∈ Rn | hj · y ≤ 0 , j ∈ I \ S

}
. (5.12)

Second, for all 1 ≤ p ≤ r we have(
[I \ I(o1)] ∩ · · · ∩ [I \ I(op)]

)⋃
{e1, . . . , ep} = I \ S . (5.13)

Our main result relies on properties of Z -matrices and M -matrices. We
say a matrix M is a Z -matrix if the off-diagonal elements are non-positive; i.e.
mij ≤ 0 for all i 6= j. A Z -matrix M is a nonsingular M -matrix if every real
eigenvalue of M is positive [3]. Define the matrices

H :=
[
he1 · · · her−1

]
, Y :=

[
b1 · · · br−1

]
, M := HTY . (5.14)

Lemma 19. Suppose (A1), (A2’), and (A3) hold. Also suppose B∩cone(G) = 0.
Then M is a nonsingular M -matrix.

Proof. First, we show M is a Z -matrix. Observe that since {e1, . . . , er−1} \
{ei} ⊂ I \ I(oi),

hj · bi ≤ 0 , j ∈ {e1, . . . , er−1} \ {ei} . (5.15)

The inequalities (5.15) imply M is a Z -matrix.
Next we show that M is nonsingular. Suppose there exists c ∈ Rr−1 such

that HTY c = 0. Let y := Y c. Then hj · y = 0, j = 1, . . . , r − 1. Also by
Lemma 18, hej · y = 0, j ∈ [I \ I(o1)]∩ · · ·∩ [I \ I(or)]. However, [I \ (o1)]∩ · · · ∩
[I \ I(or)] = I \ [S ∪{e1, . . . , er}]. We conclude that hj · y = 0, j ∈ I \ [S ∪{er}].
Now if her · y ≤ 0, then hj · y ≤ 0, j ∈ I \ S. Then by (A3) and (5.12), we get
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y ∈ B ∩ cone(G); otherwise if her · y > 0 we get −y ∈ B ∩ cone(G). Then by
assumption, y = 0. However, y = c1b1 + · · · + cr−1br−1 and {b1, . . . , br−1} are
linearly independent, so c = 0. We conclude that M is nonsingular.

Finally, we show M satisfies case (Q50) of Theorem 6.2.3 of [3]. Suppose
there exists c ∈ Rr−1 with c 6= 0 and c � 0 such that Mc � 0, where �
and � denote component-wise relations: i.e., every coordinate component of
c is greater than or equal to 0 (analogously, less than or equal to 0). Define
the vector y := Y c ∈ B. Note that y 6= 0 because {b1, . . . , br−1} are linearly
independent. Then Mc = HTY c = HT y � 0 implies hej ·y ≤ 0, j = 1, . . . , r−1.
Also, since ci ≥ 0 and bi ∈ B ∩ C(oi),

hj · y =

r−1∑
i=1

ci(hj · bi) ≤ 0, j ∈ I \ I(o1) ∩ · · · ∩ I \ I(or−1) .

Combining the previous two inequalities and using (5.13), we get hj · y ≤ 0,
j ∈ I \ S. This implies 0 6= y ∈ B ∩ cone(G), a contradiction. Therefore, M
has the property that the only solution of the inequalities c � 0 and Mc � 0
is c = 0. In sum, M is a nonsingular Z -matrix satisfying Theorem 6.2.3, case
(Q50) of [3], so M is a nonsingular M -matrix.

Now let F : G → B be a map. In light of (A2’),

F (x) = c1(x)b1 + · · ·+ cr−1(x)br−1 + β(x) , x ∈ G (5.16)

where ci : G → R for i = 1, . . . , r−1, β : G → R, and β(x) ∈ span{br+1, . . . , bm+1}.
Since G is a simplex by (A1), we can define the simplex, a face of G, as

Ĝ := co{o1, . . . , or} . (5.17)

Lemma 20. Suppose (A1), (A2’), and (A3) hold and B ∩ cone(G) = 0. Let
F : G → B be a map of the form (5.16) and suppose F satisfies (5.4). Then

β(x) = 0, x ∈ Ĝ.

Proof. By assumption, F (x) ∈ C(x), x ∈ G. For all x ∈ Ĝ, I(x) ⊂ I(o1) ∪
· · · ∪ I(or). Thus, hj · F (x) ≤ 0, j ∈ I \ [I(o1) ∪ · · · ∪ I(or)]. Using (5.16) and

Lemma 18, for all x ∈ Ĝ, hj ·F (x) = hj ·β(x) ≤ 0, j ∈ [I \I(o1)]∩· · ·∩ [I \I(or)].

Now we argue that β(x) = 0, x ∈ Ĝ. Suppose not. Then there exists x ∈ Ĝ and
β := β(x) 6= 0 such that

hj · β ≤ 0 , j ∈ [I \ I(o1)] ∩ · · · ∩ [I \ I(or)] . (5.18)

Consider M = HTY where H and Y are defined in (5.14). By Lemma 19,
M is a nonsingular M -matrix. By Theorem 6.2.3, case (I28) of [3], there exists
c′ � 0 such that Mc′ ≺ 0. Define b′r := Y c′. Then Mc′ = HT b′r ≺ 0; that is,

hej · b′r < 0 , j = 1, . . . , r − 1 . (5.19)
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From Lemma 18,

hj ·b′r = hj ·[c′1b1+· · ·+c′r−1br−1] = 0 , j ∈ [I\I(o1)]∩· · ·∩[I\I(or)] . (5.20)

However, analogous to the calculation for (5.13),

[I \ I(o1)] ∩ · · · ∩ [I \ I(or)]
⋃ {

e1, . . . , er−1

}
= I \ (S ∪ {er}) = I \ I(or).

Hence, b′r ∈ B ∩ C(or). Now consider b′′r := b′r + αβ, where α > 0 is a constant.
Using (5.18)-(5.20) we can choose α > 0 sufficiently small such that either

hj · b′′r = hj · (b′r + αβ) = hj · β ≤ 0, j ∈ [I \ I(o1)] ∩ · · · ∩ [I \ I(or)] ,

or
hej · b′′r < 0 , j = 1, . . . , r − 1 .

Combining these two inequalities, hj · b′′r ≤ 0, j ∈ I \ I(or). That is, b′′r ∈
B ∩ C(or). Moreover, with β 6= 0 and β ∈{ br+1, . . . , bm+1}, we have b′′r 6∈{
b1, . . . , vr−1}. Therefore, {b1, . . . , br−1, b′′r} is a linearly independent set. This
contradicts (5.5) that B ∩ C(or) ⊂ span{b1, . . . , br−1}. The conclusion is that

there does not exist x ∈ Ĝ such that β(x) ∈ span{br+1, . . . , bm+1} and β(x) 6=
0.

The following is the main result of the paper.

Theorem 21. Suppose (A1), (A2’), and (A3) hold. There exists a vertex map
f : VG → B satisfying (5.3) that can be extended to a continuous, non-vanishing
map F : G → B satisfying (5.4) if and only if

B ∩ cone(G) 6= 0 . (5.21)

Proof. Suppose there exists a vertex map f : VG → B satisfying (5.3) that can
be extended to a continuous, non-vanishing map F : G → B satisfying (5.4), but

B ∩ cone(G) = 0. Define Ĝ as in (5.17). By Lemma 20 we have that

F (x) = c1(x)b1 + · · · cr−1(x)br−1 , x ∈ Ĝ .

Because F (x) is continuous and {b1, . . . , br−1} are linearly independent, ci :

Ĝ → R are continuous functions. Define the sets

Qi :=
{
x ∈ Ĝ | hei · F (x) > 0

}
, i = 1, . . . , r . (5.22)

Now we verify the conditions of Lemma 11.
First we claim that {Qi} cover Ĝ. For suppose not. Then there exists x ∈ Ĝ

such that hej · F (x) ≤ 0, j = 1, . . . , r. By (5.4) we also have that hj · F (x) ≤ 0,
j ∈ I \ I(x). Since x ∈ co{o1, . . . , or}, I(x) ⊂ I(o1) ∪ · · · ∪ I(or). Thus,
hj · F (x) ≤ 0, j ∈ I \ [I(o1) ∪ · · · ∪ I(or)]. Using (5.13) and (A3), this implies
F (x) ∈ B ∩ cone(G), so F (x) = 0, a contradiction to F being non-vanishing on
G.
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Second we verify property (P1). We claim that for each i = 1, . . . , r, oi ∈ Qi.
For suppose not. Then by (5.4) and the assumption, hj · F (x) ≤ 0, j ∈ [I \
I(oi)] ∪ {ei}. But [I \ I(oi)] ∪ {ei} = I \ S. Hence, F (oi) ∈ B ∩ cone(G),
so F (oi) = 0, a contradiction. Next we claim oi 6∈ Qk, k 6= i. By (5.4),
hj · F (oi) ≤ 0, j ∈ I \ I(oi) and by definition of E(ok), ek ∈ I \ I(oi), k 6= i.
Hence, hek · F (oi) ≤ 0, which means oi 6∈ Qk.

Third we verify property (P2). Suppose without loss of generality (by re-
ordering the indices {1, . . . , r}) x ∈ co{o1, . . . , op} for some 1 ≤ p ≤ r. We
claim x ∈ Q1 ∪ · · · ∪ Qp. For suppose not. Then by (5.4) and the assump-
tion x 6∈ Qi, i = 1, . . . , p, hj · F (x) ≤ 0, j ∈ (I \ I(x)) ∪ {e1, . . . , ep}. How-
ever, as we argued above, I(x) ⊂ I(o1) ∪ · · · ∪ I(op). Then using (5.13),
I \ S ⊂ (I \ I(x)) ∪ {e1, . . . , ep}. Hence, F (x) ∈ B ∩ cone(G), so F (x) = 0,
a contradiction to F being non-vanishing on G.

We have verified (P1)-(P2) of Lemma 11. Applying the lemma, there exists
x ∈

⋂r
i=1Qi such that hei · F (x) ≥ 0, i = 1, . . . , r. Now by Lemma 20, F (x) =

c1(x)b1 + · · · + cr−1(x)br−1. Hence, by Lemma 18, hj · F (x) = 0, j ∈ I \
[I(o1) ∪ · · · ∪ I(or)]. Using again (5.13) and (5.12), we conclude that −F (x) ∈
B ∩ cone(G), so F (x) = 0, a contradiction.
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Appendix A.

Proof of Theorem 15. (⇐=) Suppose (4.5) holds. Pick 0 6= z ∈ B∩cone(G) and
define Y : G → B1 as the constant map Y (x) := z

‖z‖ . Clearly Y (x) is continuous

and by definition of cone(G), it satisfies (4.3).
(=⇒) Suppose there exists a continuous map y : ∂G → B1 satisfying (4.3)

that can be extended to a continuous map Y : G → B1 but suppose B∩cone(G) =
0. Without loss of generality, we can rotate the sphere as needed so that the
affine space O is horizontal. See Figure A.5. Then we can choose coordinates
so that the following definitions can be made:

p0 := (0, . . . , 0, α) , α ∈ (0, 1]

p1 := (0, . . . , 0,
1

α
)

V = {x ∈ Rn | xκ+1 = · · · = xn = 0} = Rκ × {0}n−κ

O = p0 + V .
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p1

p0

0

x y(x)

S2

G O

Figure A.5: Illustration for the proof of Theorem 15.

Point p0 is the center of the ball G and p1 has been selected to achieve a certain
tangency property on the boundary of G, as will be explained below. The sub-
space V is a parallel translate of O. Additionally, we take a subspace orthogonal
to V

W := {x ∈ Rn | x1 = · · · = xκ = xn = 0} = {0}κ × Rn−κ−1 × {0} ,

so that V ⊕W = Rn−1 × {0}. Now there are two cases. First, suppose α = 1
so p0 = (0, . . . , 0, 1). This means that G = {p0} and cone(G) = {y | p0 · y ≤ 0},
which is a closed-half space. However, by (4.3), y(p0) ∈ B∩ cone(G) = 0. Thus,
y(p0) = 0. This is a contradiction since y : ∂G → B1 and 0 /∈ B1.

Second, suppose α < 1. We note that for each x ∈ G, the n-th coordinate of
x−p1 equals α− 1

α 6= 0. Thus, for each x ∈ G, Rn = (Rn−1×{0})⊕span{x−p1}.
Thus, for each x ∈ G,

Rn = V ⊕ span{x− p1} ⊕W . (A.1)

Let x = (x1, . . . , xκ, 0, . . . , 0, α) ∈ G. It can be verified by direct computation
that x · (x− p1) = ‖x‖2 − 1, so

x · (x− p1)

{
= 0 , x ∈ ∂G
≤ 0 , x ∈ G . (A.2)

As shown in Figure A.5, the first part of (A.2) says that the ray from p1
through any point x in the boundary of G is orthogonal to x. Now, let v =
(0, . . . , 0, vκ+1, . . . , vn−1, 0) be any point in W. Again by direct computation

x · v = 0 , x ∈ G , v ∈ W . (A.3)

20



Combining (A.2) and (A.3) we have

x · y = 0 , x ∈ ∂G , y ∈ span{x− p1} ⊕W . (A.4)

Using (A.1) one obtains a unique decomposition of Y (x) as

Y (x) = Y t(x) + Y r(x) + Y c(x) (A.5)

where Y t : G → V, Y r(x) ∈ span{x−p1}, and Y c : G → W. The component Y r

has the form Y r(x) = λ(x)(x− p1), where λ is a scalar function. Since Y t and
Y c have their last coordinate equal to 0, then the last coordinate of Y satisfies
Yn(x) = Y rn (x) = λ(x)(α−1α ). Since Y is continuous, Yn is also continuous, and
so is λ(x) = α

α−1Yn(x). We conclude Y r(x) = λ(x)(x − p1) and Y − Y r are

continuous functions. Now Y t(x) and Y c(x) are obtained by projecting Y −Y r
to V and W, respectively (in fact, for Y t(x) we take the first κ coordinates of
Y (x)− Y r(x), and for Y c(x) we take the n− κ− 1 coordinates after that). By
an argument analogous to the one above, we can show both Y t and Y c are also
continuous.

Now suppose Y t(x) 6= 0 for all x ∈ G. Let G0 := V∩Bn and ∂G0 := V∩Sn−1.
The set G is a ball with center p0; let its radius be r. Then G and G0 are
homeomorphic with the homeomorphism h : G0 → G given by

h(z) = rz + p0 , z ∈ G0 .

In other words, G0 can be taken to be a ball as well. Then we can define a
continuous map Ỹ t : G0 → ∂G0 by

Ỹ t(z) :=
Y t(h(z))

‖Y t(h(z))‖
, z ∈ G0 .

Let ỹt = ∂Ỹ t : ∂G0 → ∂G0 be the boundary map. For z ∈ ∂G0, let x := h(z) ∈
∂G. From (4.3) and (A.4)

z · ỹt(z) =
(x− p0) · Y t(x)

r‖Y t(x)‖
=
x · Y t(x)

r‖Y t(x)‖
=

x · Y (x)

r‖Y t(x)‖
≤ 0 , z ∈ ∂G0 .

By Lemma 9, deg(ỹt) = (−1)κ, and by Theorem 10, ỹt is not extendible to a

continuous map Ỹ t : G0 → ∂G0. This gives a contradiction.
We conclude there exists x ∈ G such that Y t(x) = 0. Using (A.5), Y (x) =

Y r(x) + Y c(x). By definition, Y (x) ∈ B.
Using (A.2) and that (x · x′) ≤ 1 for all x, x′ ∈ G from the Cauchy-Schwartz

inequality, we have that for all x ∈ ∂G

x · (x− p1) = x · (x− x) + x · (x− p1)

= (x · x)− 1

≤ 0 . (A.6)
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Now suppose
Y r(x) = c(x− p1) , c ≥ 0 .

Using (A.6) and (A.3), we get

x ·
(
Y r(x) + Y c(x)

)
= x · Y (x) ≤ 0 , x ∈ ∂G .

From (4.4) we conclude Y (x) ∈ B ∩ cone(G). Alternatively, if c < 0, then the
argument is repeated to get −Y (x) ∈ B∩cone(G). By assumption B∩cone(G) =
0, so Y (x) = 0. This is a contradiction since Y : G → B1 and 0 /∈ B1.
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