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ABSTRACT

A F. Filippov has developed a theory of dynamical systems that are
governed by piecewise smooth vector fields [2]. It is mainly a local
theory. In this article we concentrate on some of its global and generic
aspects. We establish a generic structural stability theorem for Filip-
pov systems on surfaces, which is a natural generalization of Mauricio
Peixoto’s classic result [12]. We show that the generic Filippov system
can be obtained from a smooth system by a process called pinching.
Lastly, we give examples. Our work has precursors in an announcement
by V.S. Kozlova [6] about structural stability for the case of planar Fil-
ippov systems, and also the papers of Jorge Sotomayor and Jaume
Llibre [8] and Marco Antonio Teixiera [17], [18].

1 Partially supported by NASA grant NAG-2-1039 and EPRI grant EPRI-35352-
6089.
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1. INTRODUCTION

Imagine two independently defined smooth vector fields on the 2-
sphere, say X, and X_. While a point p is in the Northern hemisphere
let it move under the influence of X, and while it is in the Southern
hemisphere, let it move under the influence of X . At the equator,
make some intelligent decision about the motion of p. See Figure 1.
This will give an orbit portrait on the sphere. What can it look like?

FIGURE 1. A piecewise smooth vector field on the 2-sphere.

How do perturbations affect it? How does it differ from the standard
vector field case in which X, = X_7?7 These topics will be put in proper
context and addressed in Sections 2-7. In Section 8 we discuss the phe-
nomenon of Zeno trajectories and in Section 9 we discuss pinching.
Section 10 concludes with some examples from circuit theory, mechan-
ics, and control theory.

2. DEFINITIONS AND RESULTS

Throughout the paper we make the following Standing Assump-
tions.

e M is a smooth, orientable, boundaryless, compact surface.

e K C M is a fixed, smoothly embedded, finite 1-complex. The
angle between edges of K meeting at a vertex is non-zero. That
is, K has no cusps.

e The connected components of M \ K are denoted Gy, ..., Gy, and
those that abut across an edge of K are pairwise distinct. That
is, K locally separates M.

Definition 2.1. A piecewise C” vector field X on M, 1 <r < oo,
is a family {X;} where X; is a C" vector field defined on the closure
of the i" connected component G; of M\ K,i=1,...,k. The X; are
referred to as branches of X.

In this definition we have used the standard convention from smooth
analysis that for a function defined on a non-open domain D, being of



2 M.E. BROUCKE, C.C. PUGH, AND S.N. SIMIC

class C" means being extendable to a C” function defined on an open
set containing D). The same applies to vector fields. Thus X; extends
to a C" vector field defined on a neighborhood of G;. In fact, using a
smooth cutoff function one can extend X; to a C" vector field defined
on all of M. In the case of piecewise analytic vector fields the same
extension convention applies although X; need not extend to a global
analytic vector field.

Example. Suppose that T is a smooth triangulation of M and K
is the 1-skeleton of 7. The triangulation gives each 2-simplex 7; an
induced linear structure and we can choose an affine vector field X; on
it. This is a situation investigated by Leon Chua and Robert Lum [1].
See Figure 2.

f
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FIGURE 2. A piecewise affine vector field on a tetrahedral sphere.

It is pictorially clear that a piecewise smooth vector field X has
some kind of orbit portrait and structural stability should mean that
perturbing X leaves the orbit portrait unchanged topologically. We
proceed to spell this out.

A point g € K is of one of the following four types.

(a) ¢ is a vertex of K.

(b) g is a tangency point: it is not a vertex and at least one of
the two branches of X is tangent to K at ¢. (This includes the
possibility that a branch vanishes at q.)

(c) q is a crossing point: it is not a vertex, the two branches of X
are transverse to K at ¢, and both point to the same side of K.

(d) g is an opposition point: it is not a vertex and the two branches
of X oppose each other in the sense that they are transverse to
K at g but they point to opposite sides of K.

At an opposition point there is a unique strictly convex combination
X*(q) = AXi(q) + (1 = X)X;(q)
tangent to K at q.
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Definition 2.2. X™ is the sliding field. If X*(q) # 0, q is a sliding
point, while if X*(q) = 0, it is a singular equilibrium.

X* indicates the direction a point should slide along K. See Figure 3.
The sliding field is defined on a relatively open subset of K, which

bt rrT

FIGURE 3. Points ¢ slide along K from a to b under the
influence of X*.

includes neither the vertices of K, nor the points of K at which a
branch of X is tangent to K. For at a tangency point, the branches of
X do not oppose each other — transversality fails there.

Definition 2.3. A singularity of X is a singular equilibrium, a tan-
gency point, or a vertex of K.

Definition 2.4. A regular orbit of X is a piecewise smooth curve
v C M such that yNG; is a trajectory of X;, yN K consists of crossing
points, and v is maximal with respect to these two conditions. A
singular orbit of X is a smooth curve v C K such that - is either an
orbit of X™* or a singularity.

Evidently, M decomposes into the disjoint union of orbits, each being
regular or singular. They form the phase portrait of X. The only
periodic or recurrent orbits on K are equilibria.

Remark. Filippov takes a different point of view. He defines an X-
trajectory as an amalgam of what we call orbits (and what Kozlova
calls quasi-curves), the amalgamation of v to 8 at g being permitted
if v arrives at its forward endpoint ¢ in finite time, while 8 departs
from ¢ in finite time. (See also Section 5.) Amalgamation only occurs
at singularities. In Figure 3 there are many X-trajectories through gq.
One is the singular X-orbit (a, b) plus the tangency point {b} plus the
regular X-orbit from b to the focus c. A second is the regular X-orbit
from the regular source p to g plus the forward singular orbit [g, b) plus
{b} plus the regular X-orbit from b to c. In contrast, our convention is
that there is only one X-orbit through ¢, namely (a,b). Our principle
18 to amalgamate orbits as little as possible.
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The set of all piecewise C" vector fields on M is denoted X}%. It is a
Banach space with respect to the norm

[ X[lor = max|| Xs|or-

Definition 2.5. An orbit equivalence is a homeomorphism h : M —
M that sends X-orbits to X'-orbits where X, X’ € XJ.. The orbit
equivalence must preserve the sense (i.e., the direction) of the orbits
and send K to itself. If X has a neighborhood U C X} such that each
X' € U is orbit equivalent to X then X is structurally stable.

Remark. Filippov and Kozlova define structural stability in terms of
X-trajectories, i.e., amalgamated orbits. This gives a stronger require-
ment on the equivalence homeomorphism, so in principle Filippov and
Kozlova get fewer structurally stable systems than we do. However, it
is easy to see that the orbit equivalence we construct respects amalga-
mation and hence their definition of structural stability is equivalent
to ours for surfaces. It seems likely that the two definitions are always
equivalent.

Definition 2.6. An orbit v(¢) departs from ¢ € K if lim;_,o+ v(¢) = g.
Arrival at ¢ is defined analogously.

Definition 2.7. An unstable separatrix is a regular orbit such that
either

e its a-limit set is a regular saddle point, or
e it departs from a singularity of X.

A stable separatrix is defined analogously. If a separatrix is simulta-
neously stable and unstable it is a separatrix connection. If unstable
separatrices arrive at the same point of K they are related.

Proposition 2.8. The branches of the generic X € X}, have the fol-
lowing properties:

(a) They are Morse-Smale.

(b) None of them vanishes at a point of K.

(c) They are tangent to K at only finitely many points, none of which
1s a vertex of K, and distinct branches are tangent to K at distinct
points.

(d) They are non-colinear except at a finite number of points, none of
which 1s a vertez.

(e) Properties (a)-(d) are stable (i.e., robust) under small perturba-
tions of X.

See Section 3 for the proof. Here are our main results about struc-
tural stability of piecewise smooth systems.
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Theorem A. The generic X € X} s structurally stable.

Theorem B. The following conditions characterize structural stability
of X € X%

The conditions listed in Proposition 2.8.

e Hyperbolicity of all periodic orbits.

e No separatriz connections or relations.

e Only trivially recurrent orbits.

See Section 7 for the proofs of Theorems A and B. Note that the
orbits referred to in Theorem B include those that cross K.

3. PROOF OF PROPOSITION 2.8.

To prove Proposition 2.8 and to analyze generic singularities we in-
troduce a smooth coordinate chart ¢ in M along an edge £ C K such
that ¢(F) is an interval on the z-axis, say ¢(F) = [—1,1]. In this
coordinate system the branches X;, X, are expressed as vector fields
defined on the closed upper half plane and closed lower half plane. On
the z-axis we have

. Xi(2,0) = 1) (5,) + 9 (5,
1
X,(2.0) = £i@) (5) + 910) (5,

Definition 3.1. A function f : [a,b] — R has generic zeros if

(a) f(a) #0# f(b), and
(b) f(z) = 0 implies f'(x) # 0.

Lemma 3.2. The generic C" function f : [-1,1] — R has generic
zeros.

Proof. This is a special case of the Thom Transversality Theorem, for
(b) is equivalent to 0 being a regular value of f. O

Proof of Proposition 2.8. Peixoto’s Genericity Theorem, applied on the
surface with smoothly cornered boundary Gj;, states that the generic
X; is Morse-Smale, which is assertion (a) of Proposition 2.8.

As above, introduce a smooth coordinate chart ¢ in which an edge
of K is [—1,1] on the z-axis. Express the branches of X as in (1).

Elaboration of Lemma 3.2 shows that the generic pair of C” functions
[—1,1] — R has no common zero. This implies that the generic X has
no zeros on K, which is assertion (b) of Proposition 2.8. For the generic
X, gi(z) = 0 at only a finite number of points, all of them different from
+1, and at these zeros, g(z) # 0. Further, g; and g; have no common
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zeros. This means that generically X; and X; are tangent to K at only
finitely many points, none of them vertices, and never are they tangent
to K at a common point, which is assertion (c¢) of Proposition 2.8.

Consider any zo € [—1,1]. By (c), either g;(x¢) # 0 or g;(xo) # 0,
say it is the latter. There is an interval I C [—1, 1] containing zy on
which g; # 0. That is, X; is not tangent to K there. Using a flowbox
chart for X; at I, we may assume that f;(z) =0 and g;(z) > 0 for all
z € I. (In the flowbox coordinates, X; points straight upwards.) Then
colinearity of X; and X; occurs when f;(z) = 0. By Lemma 3.2, for
the generic X this happens only finitely often, never at an endpoint
of I, which is assertion (d) of Proposition 2.8 on the subinterval I.
Compactness of [—1, 1] completes the proof of (d).

Assertion (e), stability of (a) - (d) under small perturbations of
X, follows from openness of Morse-Smale systems and openness of
transversality. O

4. SINGULAR EQUILIBRIA

The sliding field X * is defined at non-vertex points ¢ € K where X,
X oppose each other. These opposition points form a relatively open
set in K. With respect to the smooth chart ¢ as in Section 3 and the
expression for X;, X; along K in (1), we see that g; and g; are non-zero
and have opposite signs. Since the sliding field is the unique strictly
convex combination

X* =X+ (1= NX;
tangent to K, its vertical component Ag;(z)+ (1 —\)g;(x) is zero. This
gives
9;(z)
(2) A= ———2——,
9;(2) — gi(x)
Note that this denominator is never zero at opposition points.

Proposition 4.1. The sliding field X™ is of class C". For the generic
X, the zeros of X* are hyperbolic sources or sinks along K.

Proof. The expression for A given in (2) is C" so X™ is C". Zeros of X*
occur when X; and X are colinear. Changing the chart ¢ to a flowbox
chart ¢ for X; makes f; = 0. Then colinearity occurs if f;(z) = 0. For
the generic X, Lemma 3.2 states that f/(z) # 0 when f;(z) = 0. Thus,
with respect to the chart v, a zero of X* is a hyperbolic source when
fi(z) > 0 and a hyperbolic sink when f/(z) < 0. O

Proposition 4.2. For the generic X, a singularity is either
e a singular saddle,
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a singular sink,

a singular source,

a singular saddle node,
a singular grain,

a vertex of K.

(See the proof for the definitions.) The singularities are finite in num-
ber and stable (robust) under small perturbations of X.

Proof. Let ¢ € K be a singular equilibrium or tangency point of X.
By Proposition 2.8 genericity implies that at least one branch of X is
transverse to K at ¢. Say it is X;. In the lowbox chart as in the proof
of Proposition 2.8, f; =0, g; = 1, and we may take ¢ = (0, 0).

We write a matrix to describe the singularity at ¢ as

fi(O) gi(O)

fi(0) gi(0)

Observe that ¢;(0) < 0, or if g;(0) is positive then X; and X; both
point upwards across the z-axis at ¢, and ¢ is regular, not singular.
Genericity implies that the first row of S contains exactly one 0, and
neither column is a zero column. Using the symbols —, 0, +, &+, * to
denote an entry that is negative, zero, positive, non-zero, or one whose
sign is irrelevant, we get four topologically distinct cases for S. See
Figure 4.

Case 1.5 =

S:

0
+
colinear at ¢ and there is a unique X;-orbit that arrives at the origin
from above. Since f/(0) is positive this gives a singular saddle with
regular stable separatrices.

Case 2. [E :} The fact that f;(0) = 0 implies that X;, X, are

:} . The fact that f;(0) = 0 implies that X;, X; are

colinear at ¢ and there is a unique X;-orbit that arrives at the origin
from above. Since f/(0) is negative this gives a singular sink with
regular stable separatrices. See Figure 4.

Case 3. Since ¢;(0) = 0 and g.(0) is positive, we get a

!
4|
singular saddle node with three regular separatrices, two stable and
one unstable. The sign of f;(0) only affects whether the arrows point

right or left.
Case 4. [:*t E] Since g;(0) = 0 and g.(0) is negative, we get a

singular grain with one regular stable separatrix. The sign of f;(0)
only affects whether the arrows point right or left.
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singular saddle singular sink

NS 2. =N
PTTer fIm

singular saddle node singular grain

FIGURE 4. The four generic non-vertex singularities. The
heavy lines are X *-orbits.

Four homeomorphic pictures, but with the orientations of all orbits
reversed, are achieved by starting with the field X; pointing straight
down instead of straight up. Finiteness of the singular equilibria and
tangency points is a consequence of (c), (d) in Proposition 2.8. Stability
under perturbation of X follows from openness of transversality. [

5. SINGULAR SECTORS

The qualitative behavior of the generic X at a vertex of K involves
concepts from the Poincaré-Bendixson Sector Theorem. See Chapter 7

of [5].

Definition 5.1. Let v be a vertex of K. A base orbit of X at v is
an orbit, singular or regular, that arrives at v or departs from v, but is
not v itself.

By definition, a vertex is an orbit, but because we do not amalgamate
orbits, it is not part of the base orbit.

Remark. Hartman uses the term “base solution” in much the same
way when analyzing the sector structure at an isolated fixed point of a
planar flow [5]. In the flow case, the base solution converges to the fixed
point as time tends to +oo, in contrast to arriving to it or departing
from it in finite time.
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Proposition 5.2. The generic X has at least one base orbit at each
vertex v. One of the following two possibilities occurs.

(a) There exists no singular base orbit, in which case X has a singu-
lar focus at v: all orbits near v are regular and either all arrive
at v or all depart from v.

(b) There exists a singular base orbit, in which case there exist at most
2n base orbits at v, where n is the number of edges of K at v.

Proof. Because K locally separates M, n > 2. We draw a small circle
C around v and refer to the component of G; inside C' as the corner
Viof G;, i = 1,...,n. (In this section we reserve the term “sector”
mainly for dynamically defined regions at v.) The angle between the
edges of V; at v is the aperture of V;. We choose C' small — it encloses
no singular equilibria or tangency points, and the edges of K at v are
arcs from C to v.

Suppose that the aperture of some corner V; is > m. Generically
X;(v) is non-zero and is parallel to neither edge of V;. This gives a
base orbit as shown in Figure 5.

FIGURE 5. Generically, a base orbit exists in a corner with
aperture > .

From now on we assume that the aperture of all corners is < 7. In
particular, n > 3.

Proposition 2.8 states that the generic X is not tangent to an edge
of K at v. Thus, when the circle C' is small and 1 < ¢ < n, either

(c) X; points inward across both edges of V;, or points outward across
both edges.

(d) X; points inward across one edge of V; and outward across the
other.

Thus, each corner contains at most one base orbit in its interior. See
Figure 6.

Assume that there is no singular base orbit at v. Then X; never
opposes X;;1 across the common edge V; N V;,;, and we get an arc o
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c c

FIGURE 6. X; is transverse to the edges of V;.

of a regular X-orbit that starts at a € E;, an edge of V; and continues
through each of the corners at v until it comes back to Ei, say at the
point a’.

The vectors X;(v) are fixed, and so are the apertures of the corners
V;. The arc « is an amalgam of nearly straight segments, ay, ..., a,.
The exterior angle 6; between «; and «; 1 tends to a definite non-zero
limit ©; as the circle C shrinks to v. Generically © = > " | ©; # 2,
and thus the points at which a crosses E; are distinct. If © > 27 then
a' lies closer than a to v along E;. In fact, for a constant ¢ < 1,

la" —v| < cla —v|.

The same constant ¢ works for all a sufficiently close to v. See Figure 7.
The length of time it takes for a to make the circuit through the corners

ba

FIGURE 7. A singular focus.

at v is proportional to |a — v|. For X;(z) tends to the non-zero vector
X;(v) as z = v in V;. Thus the X-orbit through a arrives at v (in finite
time), and is a base orbit. In fact the local orbit portrait at v is that
of a focus where all orbits arrive at v.

If © < 27 it is the opposite. All orbits near v depart from v. This
completes the proof of assertion (a), lack of a singular base orbit implies
a singular focus.

Now assume that there is at least one singular base orbit . It is
an edge of adjacent corners V;, V;;; such that X; and X;.; oppose



STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS 11

each other across 8. No base orbit can spiral around v because it is
blocked by 8. Thus, the only possible base orbits are the n edges of
K at v (they would be singular base orbits) plus n regular base orbits,
one interior to each corner. See Figure 6. This completes the proof of
assertion (b), the existence of one singular base orbit implies there are
at most 2n base orbits at v. O

Definition 5.3. A singular sector is a region S bounded by an arc
of the small circle C' at v together with two consecutive base orbits. S
must contain no other base orbits.

Corollary 5.4. The orbit portrait for the generic X inside a singu-
lar sector is either singular hyperbolic, singular parabolic, or singular
elliptic.

Proof. The proof amounts to inspecting Figure 8. See also [5], Chapter
7, section 8.

K
: 44» : « - -
R A AT AT
) ) N N
K

FiGURE 8. Singular sectors: hyperbolic, elliptic, and parabolic.

6. SEPARATRIX CONNECTIONS

In this section we examine various forms of separatrix connections,
and in particular we show how to break some of them. Examples of
separatrices are shown in Figure 4. Note that a singular sink ¢ has
stable separatrices — they are the unique regular orbits that arrive at
q. Likewise a singular source has unstable separatrices. A base orbit is
also a separatrix.

Remark. It is easy to see that structural stability fails if there are
separatrix connections or separatrix relations. Also, singular orbits
never connect singular saddles, so there is no need to exclude them by
a genericity argument. See Proposition 6.4 and Figure 9.
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N

- -— K
singular saddle i

node

FiGure 9. Why there are no singular saddle connections:
a singular saddle node intervenes along K.

Proposition 6.1. For the generic X, no separatrix connections or re-
lations occur in a neighborhood of K. Moreover there are restrictions
on how the equilibria appear along K.

Proof. The separatrices are regular, finite in number, and locally leave
the neighborhood of K. Thus they have no local connections or rela-
tions.

The restrictions are as follows. The generic X has a finite set S of
singularities, so K \ S is divided into finitely many relatively open seg-
ments, each of which consists of regular points or is an X *-orbit. The
endpoints of the regular segments can be any combination of vertices,
singular nodes, and singular grains, but can not be singular saddles,
singular sources, or singular sinks.

The endpoints of an X *-orbit x can be any of the seven kinds of
singularities, but not all combinations are possible. For example if the
a-limit of p is a singular saddle then it can arrive at a vertex, a singular
sink, or a singular saddle node, but it cannot arrive at a singular saddle,
a singular source, or a singular grain. O

Definition 6.2. An unstable separatrix is tame if its w-limit set is
a regular point sink, a regular periodic orbit sink, or if it arrives at
a sliding point. Time reversal gives the corresponding definition for
stable separatrices.

Proposition 6.3. If a separatriz is tame then it stays tame under
small perturbations of X.

Proof. This is clear enough.

Proposition 6.4. A separatriz connection between a singularity and a
stngularity or reqular saddle point can be broken by a small perturbation
of X. (The two new separatrices are tame.) Also, separatriz relations
can be broken by small perturbations of X, and once broken, they stay
broken under subsequent sufficiently small perturbations of X .
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Proof. This is easy because it is essentially local. See Figure 10.

N
W

FI1GURE 10. Breaking the separatrix v which connects the
regular saddle p to the singular saddle node gq.

Remark. A separatrix connection that joins regular saddles can also
be broken, but, as in the case of flows, the robustness is harder to prove
because the situation is global.

Corollary 6.5. The generic X has no separatriz connection between
a singularity and a singularity or reqular saddle point. This remains
true for small perturbations of X.

7. PROOF OF THEOREMS A AND B

We follow the presentation of Peixoto’s Genericity Theorem in [11]
and [12]. The key issue is non-trivial recurrence. The idea is that if
X has recurrent orbits then you can keep connecting separatrices until
there are no more left to connect, and then you can tame one more
separatrix. Induction finishes the proof except in the special case in
which there are no separatrices to connect. This case arises for the
torus with an irrational or a Denjoy flow.

Proposition 7.1 (Existence of a Circle Transversal). Assume that the
X-orbit through p is non-trivially recurrent. Then it is reqular and
through p there passes a smooth Jordan curve J everywhere transverse

to X.

Proof. Singular orbits are singularities or sliding curves. They are not
non-trivially recurrent. The existence of J is proved in the same way as
for flows. See [11], page 145. Although the orbit arc from p to a closest
return may have a few corners where it crosses K, the construction is
unaffected. O
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The first return or Poincaré map P, is naturally defined by the X-
orbit that leaves J at y and next returns to J at P(y). Transversality
implies that the domain of definition of P is an open subset D C J. It
consists of open intervals I or it equals J. The X-orbits through I are
regular, and we get an open-sided strip from I to P(/). Let a be an
endpoint of I. Its orbit does not return to J but it does stay on the
boundary of the strip. Thus the forward orbit of a ends at a point a'.
For the generic X, a’ can be a regular saddle point, a singular saddle
node, or a vertex. Thus a lies on a separatrix that does not return
to J after leaving a. There are only finitely many separatrices and
therefore D is either J or a finite union of intervals I whose endpoints
lie on stable separatrices that leave J and go directly to regular saddles,
singular saddle nodes, or vertices.

Proposition 7.2. Assume that the Poincaré map s defined on the
whole closed transversal J and some points of J are non-trivially re-
current. Then M 1is the torus, all points are reqular non-equilibria, and
a small perturbation of X produces a periodic orbit.

Proof. The proof is purely topological. See [11], pages 145-146. O

Proposition 7.3. Assume that the Poincaré map is defined on D #
J and a point p € D 1is non-trivially recurrent. Then there exists a
reqular unstable separatriz that accumulates at p. There exists a small
perturbation that leaves all existing separatriz connections intact and
produces one more.

Proof. See [11], pages 141 and 147. O

Proposition 7.4. If X has only trivial recurrence then the w-limit set
of an orbit of X is either empty (the orbit arrives at a singularity or
sliding point in finite time), or is a reqular equilibrium, or is a finite
graphic cycle that consists of separatriz connections.

Proof. This is the same as Proposition 2.3 of [11], page 139. O

Proposition 7.5. A graphic cycle that is the w-limit of an unstable
separatriz o can be perturbed to produce a reqular periodic orbit that
tames o.

Proof. This is the same as the flow case since none of the separatrices
is singular. 0

Proof of Theorems A and B. Applying the preceding propositions
repeatedly eventually tames all the separatrices and eliminates non-
trivial recurrence. Then the periodic orbits are perturbed to become
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hyperbolic without introducing new recurrence or separatrix connec-
tions. This gives an X that satisfies the conditions in Theorem B. It is
structurally stable by the same considerations as in [11] and [13].

On the other hand, if X violates one of the conditions in Theorem B
then it can be approximated by an X’ for which all the conditions are
true and, as for flows, this gives a contradiction to orbit equivalence.

O

Remark. David Wallwork, a graduate student at Berkeley in the 60’s,
pointed out that Peixoto’s treatment of the non-orientable case of struc-
tural stability is incomplete. To this day, the best results in that di-
rection are due to Carlos Gutiérrez [4], who shows that if the non-
orientable surface is the projective plane, the Klein bottle, or the torus
with a cross cap then Peixoto’s theorem is true. Our Theorems A and
B remain true in these cases.

Similarly, if 7 is a non-trivially recurrent orbit of the Filippov system
X through p then X can be C! approximated by an X’ having a pe-
riodic orbit through p, for the Poincaré map on which the proof relies
is a local C! diffeomorphism since no singular orbits are involved. The
corners that the regular orbits experience as they cross K do not make
the Poincaré map piecewise C'. Rather, it is completely C*! because it
is merely the composite of the Poincaré map from J to K and from K
to J. Thus the C" closing lemma proof in [14] goes through word for
word. The rest of the proofs of Theorems A and B in the non-orientable
C? case are the same as in [15].

Remark. Finally, consider the situation in [1]. The surface M is tri-
angulated and the Filippov system is affine on each simplex. It is easy
to see that piecewise affine Filippov systems exhibit all the behavior
of the generic smooth nonlinear Filippov systems, at least at K, and
that their genericity properties at K are the same. It seems likely that
this continues to hold for the global genericity properties, including
structural stability.

8. ZENO TRAJECTORIES

A Zeno trajectory is an amalgamated orbit (a trajectory in the
sense of Filippov) whose tangent field undergoes an infinite number of
vector field switches in a finite length of time.

Theorem 8.1. Generically, Zeno trajectories occur only at the ver-
tices of K, and they do so because of only two phenomena:

e singular foci

e singular elliptic sectors.
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Proof. Let ((t) be a Zeno trajectory, 0 < t < b, and let X (t) be the
branch of X or the sliding field tangent to ( at time t. There is a
succession of times 0 < t; < t9 < .-+ < b such that

e ((ty) € K and t, — b as k — oo.
e X(t) changes branches or sliding fields at ¢t = t; and only then.

Continuity implies that
v = lim {(?)

t—b

exists, and that v is either a singular equilibrium or a vertex. Infinite
switching does not occur in the neighborhood of a generic singular
equilibrium. (In contrast, the Fuller phenomenon [3, 7] in which all
trajectories are Zeno occurs in the degenerate case of two non-distinct
tangency points.) So v is a vertex.

If v is a singular focus then there is nothing to prove, so we may
assume that v has base orbits.

Consider an X-orbit that departs from v. It is an unstable base orbit.
If it is singular then it either absorbs nearby orbits as ¢ increases, or it
emits them. See Figure 11. Thus there exists a minimum return time

regular unstable
base orbit

FIGURE 11. An unstable, singular base orbit absorbs or
emits nearby orbits.

7 > 0 for X-trajectories that depart from v along regular unstable base
orbits or singular absorbing base orbits. Since ( is a Zeno orbit, it must
contain infinitely many disjoint arcs « contained in emitting, singular
base orbits departing from v. Such an a quickly amalgamates to a short
emitted, regular X-orbit # that then amalgamates to a short, stable,
absorbing, singular base orbit w. Furthermore, since 7 > 0 is fixed,
eventually ( consists entirely of a succession of such short 3-legged
elliptic X-trajectories afw in singular elliptic sectors at v. O

Theorem 8.2. Generically, a singular elliptic sector E has aperture
< 7 and s contained in a larger sector of aperture < m bounded by
edges of K or reqular base orbits.
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Proof. After a smooth change of coordinates we can assume that F is
the sector shown in Figure 12. A subsequent linear change of variables

K K

FIGURE 12. A symmetric representation of the singular
elliptic sector F.

lets us assume that the branch Xz of X in F is 9/0x.

The branch of X to the right of E, Xg, points down and into F.
Thus, there is a regular base orbit of X in the upper half plane to the
right of F/, or some edge of K intervenes. Similarly there is a regular
base orbit or edge of K in the upper half plane to the left of F. O

The multiplicity of K at v is the number of edges ending there.

Theorem 8.3 (Non-existence of Zeno trajectories). The generic X has
no Zeno trajectories if either

(a) X has only two branches and is defined on the 2-sphere,
(b) X has no singular foci and at each vertex of K the multiplicity of
K plus the number of reqular base orbits is < 5.

Proof. (a) Suppose not: there exists a Zeno trajectory ¢ on S? where
the complex K is a Jordan curve dividing the S? into the two re-
gions G1, G5 that support the branches of X. The complex K contains
finitely many vertices and is the common boundary of G; and G5. Since
X is generic, it is not tangent to K at the vertices, and there is at least
one regular base orbit at each vertex. Thus there are no singular foci.

By Theorem 8.1 there is a singular elliptic sector. By Theorem 8.2
we can assume it lies in a larger sector S of aperture < m bounded by
regular base orbits or edges of K. Since the multiplicity of K at v is
2, there are no edges of K which can intervene, and it must be the
case that S is bounded by regular base orbits, say of branches Xz and
X, to the right and left of E. These branches have conflicting 9/9z -
components, which implies the existence of a third edge of K at v, a
contradiction.

(b) Suppose not: there is a Zeno orbit { at a non-focus vertex v,
and the multiplicity of K at v plus the number of regular base orbits
there is < 5. As in part (a) there is a singular elliptic sector E at v
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which is responsible for the Zeno behavior of {, and it is contained in
a larger sector S of aperture < 7, bounded by regular base orbits or
edges of K. The sector complementary to S has aperture > 7 and
therefore contains a regular base orbit or an edge of K. In either case
this implies that the number of edges of K at v plus the number of
regular base orbits there is > 5, a contradiction. O

Corollary 8.4. The generic Filippov system on the 2-sphere investi-
gated in [17] has no Zeno trajectories.

Proof. The assumption in [17] is that K is the equator. O

9. PINCHING

In this section we show that the generic X € X} can be obtained
from some X' € X% by collapsing a neighborhood of K to K. We call
the process pinching.

Definition 9.1. P: M — M is a pinching map to K if

e P is a continuous surjection.

e There exist open sets G C G’ C G such that both G’ and G”
have k connected components, one in each G;, and P sends G’
diffeomorphically onto G.

e P is the identity map on G”.

e P is a retraction of M \ G’ onto K.

Definition 9.2. P pinches a smooth vector field X’ € X" to a Filip-
pov vector field X € X} if it is a pinching map and

e P is a topological equivalence between X'|c and X|g,

e for each X *-orbit y there is an arc 7' of an X’-orbit, called its par-
ent, such that P sends 7' homeomorphically onto -, preserving
the orientation.

If P pinches X’ to X we refer to X’ as a resolution of X.

In the previous definition, by an orbit of X'|s we mean the maximal
arc of an X'-orbit (in M) which is contained in G’. Similarly for X|s.

Definition 9.3. A local resolution of X is a resolution of X|;, where
U is a neighborhood of some p € M and G, G', G"”, K are replaced by
their intersections with U.

We can now state the main result of this section.

Theorem 9.4. For the generic X € Xy, there exists a resolution. Sin-
gularities of X are resolved as follows.

e a singular saddle becomes a saddle;
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a singular sink becomes a sink;

a singular source becomes a source;

a singular saddle node becomes a collection of reqular orbits;
a singular grain becomes a collection of reqular orbits,

a vertex of K becomes a degenerate equilibrium point.

Proof. In outline, we construct local resolutions of X along K and glue
them together. First we treat non-vertex singularities.

Suppose that p is a singular saddle of X € X}. Introduce smooth
zxy-coordinates at p in which K is the z-axis, the separatrix is the y-
axis, and X has saddle type boundary behavior at the boundary of the
square B, as shown in Figure 13.

/ \

\ /

FiGure 13. Resolving a singular saddle in a pinching box.

We refer to B as a pinching box. We scale the coordinates so that
the pinching box corresponds to [—1,1] x [—1,1] and p is the origin.
Fix a diffeomorphism ¢ : [0,1] — [1/3,1] such that 1(y) = y for all
y > 2/3 and ¢'(y) = 1 for all y near 0. Define a retraction
¢ : [_1) 1] X [07 1] - [_1a 1] X [1/37 1]
(z,y) = (2,9(y))-

Then ¢xX is a smooth vector field X on [—1,1] x [1/3,1], and it has
saddle type boundary behavior there. On the rectangle [—1, 1]x[2/3, 1],
X = X*. The same construction done below the z-axis produces a

vector field X .
Figure 13 shows how to extend X~ U X to a smooth vector field
X' locally resolving X. The pinching map is essentially ¢ !, namely,

(z, 97 (y)) if1/3<y<1
P(z,y) = | (z,0) if —1/3<y<1/3
(z,—y7'(~y) if —1<y<-1/3.
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In keeping with the G, G’, G"” notation we refer to
B'={(z,y) €B:ly| >1/3}  B"={(z,y) € B:|y| >2/3}.

Then P sends the interior of B’ diffeomorphically to B \ K, and it
leaves B" pointwise fixed.
Figure 14 shows how to resolve a singular sink.

FI1GURE 14. Resolving a singular sink.

Resolution of a singular source is the same with arrows reversed.
Figure 15 shows how to resolve a singular saddle node, and Figure 16
shows how to resolve a singular grain.

F1GURE 15. Resolving a singular saddle node.

Before treating vertices, we consider sliding segments ¢ between con-
secutive pinching boxes along K. The X-orbits near ¢ form a singular
flowbox, which we resolve as a smooth flowbox. See Figure 17.

There is the possibility that X points across a segment ¢ on K
between two pinching boxes. This is also a singular flowbox, and we
resolve it to a smooth flowbox as shown in Figure 18.

Note. We can choose the pinching map on the flowbox to agree
with the adjacent pinching maps and thus extend them smoothly to a
tube along K.
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FI1GURE 17. Resolving a singular flowbox along a sliding
orbit. Note that the X*-orbit remains an X’-orbit, so it
has a parent.

FIGURE 18. Resolving a singular flowbox along a cross-
ing segment of K.

Now we turn to a vertex v of K.

Introduce smooth polar coordinates in a pinching disc D at v such
that the edges of K at v are rays. For the generic X € X, we can
assume there are no singularities other than v in D. Thus, in D the
branches of X are never zero, and never in direct opposition at K.
The pinching disc divides into finitely many closed sectors S; each is
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bounded by adjacent edges of K at v and an arc of dD. In each S we
draw the bisector 3, and subsectors S” C S’ C S as shown in Figure 19.
(We make the subsectors nearly equal to S.)

B

S\S

(Y

FIGURE 19. Subsectors of S.

There is a diffeomorphism ¢ : S — S’ that leaves S” pointwise fixed.
(Since S is closed, a diffeomorphism is actually defined on some open
set that contains S.) The existence of ¢ is clear from Figure 19 and can
also be verified explicitly with some effort, using the polar coordinates.

We define X; on S’ as ¢x(X?°), where X is the appropriate branch
of X restricted to S. We define P on S’ as ¢ !. By construction P is a
topological conjugacy from Xj|ar to X |p\x, where A’ is the union of S’
sectors. It remains to extend X7 to the rest of D so that sliding orbits
have parents. To do so, the following differential topology lemmas are
useful.

Lemma 9.5. Every smooth, non-vanishing vector field defined on the
boundary of a disc D extends to a smooth vector field on D that vanishes
exactly once.

Proof. Let Y, be the given vector field defined on 0D. Extend it to a
smooth vector field Y; defined on a neighborhood of 0D. Let A be an
annular neighborhood of 9D in D. If A is thin, Y; does not vanish on A.
Pinch the inner boundary Aq of A to a point. Since A/Ag ~ D\ 0, this
gives a smooth vector field Y3 on D \ 0 with the prescribed boundary
value Yp. If A : D — [0, 1] is smooth, positive on D \ 0, equal to 1 in
a neighborhood of 9D, and sufficiently flat at 0 then Y = AY; is the
extension of Yy that we sought. O
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The next lemma, lets us prescibe some “base solutions” too.

Lemma 9.6. Let Yy be a smooth non-vanishing vector field defined
on 0D, and suppose that Ry,..., Ry are smooth arcs in D from 0 to
21y ..., 2k tn OD such that

e Except at 0, the R; are disjoint.
e Except at zj, R; is interior to D.
o At z;, Yy is tangent to R; and transverse to 0D.

(Ezcept at z;, 0D need not be smooth.) Then there is a smooth exten-
ston'Y of Yo on D that vanishes only at 0 and Ry, ..., Ry are Y -orbits.

Proof. The construction in the proof of Lemma 9.5 gives an extension
Y, of Yy for which there is a trajectory 7} joining 0 and z;. Thus,
{Ri,..., Ry} and {T1,..., Ty} are webs of smooth arcs in D \ 0 such
that R; and T} are tangent to Y, at D. From this data alone, it follows
that there is a diffeomorphism h : D\ 0 — D \ 0 carrying the T-web
to the R-web, and preserving Yy. The vector field Y3 = hxY5, when
multiplied by a sufficiently flat A, is the extension of Yy we sought. [J

Now we return to the pinching disc D, and the sub-disc D’ obtained
by excising its S’-subsectors. Define a vector field Y, on 0D’ as follows.
On the boundaries of the S’-subsectors, let Y, be X;. The rest of 9D’
consists of arcs I'; = a;b; of 0D crossed by edges F of K. See Figure 20.

If T; N E = z; and z; is a sliding point, set Yy(z;) = X*(z;), and
define Y, on the rest of I'; by smooth interpolation between the values
Xj near aj, X*(zj), and the values of X; near b;. If 2; is not a sliding
point, define Y; on I'; by smooth interpolation between the values of
X, near a; and b;. Since X is generic and D contains no singularities
except v, this produces a smooth non-vanishing vector field Yy on 9D'.

If z; is a sliding point let R; be the ray of K from v to z;. Applying
Lemma 9.6 gives a smooth extension of Yy on D' that vanishes only at v
and has base solutions R;. Together with X; as previously constructed
off D', this gives a smooth vector field X’ on D that pinches to X, and
each sliding orbit in D has a parent X’-orbit.

Finally we glue together the local resolutions as follows. Along an
edge of K we have made local resolutions of X in pinching boxes. Be-
tween them are segments of sliding orbits of X and segments transverse
to X. These we resolve as flowboxes.

Let G” be the complement of all pinching boxes and pinching discs.
It is an open subset of M, and its closure is disjoint from K. As noted
above, because we can adjust the definition of the local pinching map
inside pinching flowboxes, we can make the union of the local pinching
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FIGURE 20. Defining the field Y, on I'; = a;b;.

maps, P, smooth. Its domain of definition is
G = Interior(UB; u B, u s, u G”),
P o Sy

where p ranges through the non-vertex singularities of X, o ranges
through the segments of K between the pinching boxes and the pinch-
ing discs, v ranges through the vertices of K, and S! ranges through
the S’-subsectors of the pinching disc at v. Under P, G’ is sent diffeo-
morphically onto M \ K, and X'|g-orbits are sent to X|g-orbits. By
construction, P leaves G” pointwise fixed and every X*-orbit has an
X' parent. O

Remark. A strengthening of Theorem 9.4 would assert that there is a
resolution X' of X such that every X-orbit, not merely every X|g-orbit,
has a parent X’-orbit. This would require local resolutions to respect
the X-Poincaré maps defined between the boundaries of the pinching
boxes. For that is how to show that X-orbits, such as periodic orbits
which cross K, have X'-parents.

10. FIiLIPPOV AUTOMATA

Piecewise smooth dynamical systems arise in applications in com-
puter science, mechanics, and control theory. In this section we describe
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FIGURE 21. Switched circuit with dynamics on SO(3).

a model that captures non-smooth phenomena, and we give several ex-
amples.
A Filippov automaton is a dynamical system defined by the triple

H = (M, K, D)
M and K are as before. Let I = {1,... ,k}. Themap D : I — X"

assigns a C" vector field to each G;. There is one location of the
automaton for each ¢ € I. The set of edges ' C I X1 of H is determined
by K. There exists an edge e = (4,i') € E if G; intersects Gy at a non-
vertex. This intersection is referred to as the enabling condition of
edge e.

10.1. Switched Circuits. Consider the example depicted in Figure
21 of a switched circuit whose dynamics evolve on the Lie group SO(3)
[16]. The switch is used to transfer energy from one inductor to another.
Let u be the switch position taking values {0,1}. The dynamics are
given by

& = fz)+g(z)u

f o= 0 0
= w.’L'anl wx18m2
+w(@r + 3) 0 0
= —wry— tw(r; +23)— — wro—
g 28:101 1 3 91 28x3’
where z; = v/LI; for i = 1,3, z, = v/CV, and
1

VLC

One can show that the stored energy F = %x
flow, so that for unit norm initial conditions, the state evolves on SZ.

Ty is an invariant of the
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FIGURE 22. Vector fields X, and X; on S2.

For v = 0, the vector field is Xo = f. For u = 1, the vector field is
0 0

X, = wmga—@ — w:cza—xg).
The orbit portraits are shown in Figure 22.

Suppose that we want to obtain an energy transfer between the in-
ductors while keeping the capacitor voltage constant. This can be
achieved using a piecewise smooth vector field. We define a 1-complex
K that lies in the circle zo = k, k € (—1,0) and consists of the points
p; and arcs [, for j = 1,... ,4, as depicted in Figure 23(a). We know
that the sliding field on arc [; is given by

X*=2Xo+ (1= N)X;.
Using the fact that X™* must be tangent to I; we obtain
W [ 0 0 }

T
T1+ 23

*
X0 = 3 8$1 18.’[!3
The resulting piecewise smooth flow is depicted in Figure 23(a). Ver-
tices p; and ps are singular grains while p, and p, are singular saddle
nodes. Edges [; and I3 consist of sliding points while edges l> and I4
consist of regular points. There is a separatrix connection between p;
and ps by a regular orbit which is a base orbit of p; and ps; there is
a separatrix connection between p, and itself by a regular base orbit
(hence, a homoclinic connection), and there is a separatrix connection
between p, and p,. There are also two regular equilibria at the north
and south pole which are centers. The system is clearly not structurally
stable.

Suppose that we perturb the flows X, and X; so that instead of two
centers, each has one regular source node and one regular sink node;
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(a) Non-structurally stable (b) Structurally stable

FIGURE 23. Piecewise smooth flows on S?
namely,

Xo = (wry—1173)— — (WTq + Tox3)— + (1 — 23

oz, or, ) oz

0 0
Xy = (1- x?)a—xl + (wzs — ﬂfliﬂz)a—gc2 — (wzz + 551333)8—%-
Using the same 1-complex K as before, we obtain the sliding vector
field on I; and I3 given by

(1+ w?)zs o 0
1.385171 $18x3

Vertices p; and p3 are singular grains while p, and p, are singular
saddle nodes as before. Edges [; and I3 are sliding points and edges
ly and l4 are regular points, as before. There are no longer separatrix
connections between p; and p3, between p, and itself, and p, and py.
All regular equilibria are generic. Hence this system is structurally
stable.

X* =

WT3 — T1T2 + W1 + T2X3

10.2. Pendulum with Nonlinear Friction. Consider a pendulum
that has positive damping when it rotates in one direction and negative
damping in the other. If # is the angle the pendulum makes with the
vertical then we have the dynamics

0 + sgn(6)[a + b6] + ¢ = 0.

a, b, and c are positive constants. The state space of the system is a
cylinder. We choose the 1-complex K to lie in the circle § = 0 and
consist of the end points (0,0) and (7,0) and the two half-circles that
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FIGURE 24. Piecewise smooth flow X on the cylinder.

connect them. Fixing a,b,c > 0 we obtain a vector field in the upper
half cylinder with a stable equilibrium point at (5, 0), while the vec-
tor field in the lower half cylinder has an unstable equilibrium point
at (3,0). (Thus, these points are half foci for X, not singular grains.)

The situation is depicted in Figure 24. The open segment 0 € (-7, %),

6 = 0 consists of sliding points. A base orbit which is also a separatrix
arrives at the points (—7%,0) and at (5,0). Figure 24 shows trajecto-
ries in the negative 0 half-cylinder that never reach the sliding field.
This corresponds to the pendulum swinging in the negative direction
increasingly fast. Trajectories that start in the positive 0 half-cylinder
eventually reach K, and this corresponds to the pendulum switching
to swinging in the negative direction. Some of them reach the sliding
field and others continue in the negative 6 direction. The system is not
structurally stable, since it fails the conditions for genericity, namely
regular equilibria in K. We can perturb the system by moving the

regular foci away from K to obtain a structurally stable system.

10.3. Control theory. A control system is an ODE & = f(z, u) where
the control parameter u varies in R™ and the space variable x varies in
R™. Hence, it is an m-parameter family of ODE’s. The set

f710) = {(z,u) € R*™ | f(z,u) = 0},

is called the equilibrium set of the control system. A control system is
said to be continuously stabilizable at (z*,u*) € f71(0) if there exists
a continuous function v = wu(z) such that u(z*) = v*, and z* is a
globally asymptotically stable (g.a.s.) equilibrium point of the closed-

loop system & = f(z,u(z)). We give examples showing how a piecewise



STRUCTURAL STABILITY OF PIECEWISE SMOOTH SYSTEMS 29

—-hll

~
Vi < AY
1 Gy

2
1?#% Ploos—=3'p2
G

FiGURE 25. Non-structurally stable control system. The
complex K is depicted with dotted lines.

smooth control that gives rise to a piecewise smooth vector field can
be used to render an equilibrium point g.a.s.

Suppose that, given a control system with n = 2 and m = 1, we select
two continuous controls u; and us such that we obtain the vector fields

0

om,

0 0
We want to find a 1-complex K such that the trajectories of the Fil-
ippov system corresponding to (Xg, X1, K) go to a disk around the
origin. We propose the complex K shown in Figure 25 consisting of
points p1, ... ,ps and the segments [y,... ,lg. Segments [3 connecting
p1 and ps, and lg connecting ps and p, are not labeled. Note that the
definition of a complex is generalized to include segments that go to
infinity. X, is applied in components G; and G5 while X; applies ev-
erywhere else. Because all points of K are tangency points the system
is not structurally stable.
If we modify the vector fields:

XOZ

Xo = ———-01—

0 0
1 2
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FIGURE 26. Structurally stable control system.

we obtain the phase portrait of Figure 26. Points p; and pg are singular
grains and pg is a singular source. Points on [; to the right of pg, on [;
between p; and pg, on l5 to the left of pg, and on [, are sliding points.
Points on [; to the left of p;, on l5 to the the right of pg, and on I, and
l3 are crossing points. This system is structurally stable.

A topological obstruction to global stabilizability arises when the
graph of a continuous feedback (z,u(z)) stabilizing the system has at
least two points of intersection with the equilibrium set [9]. Consider
the system [10]

0 0
X = sin(z? + 22)— + u—.
sin(z] + x2)8x1 + uagl32
The equilibrium set is
{(z1,22,u) :u=0,27 + 23 =nm,n=0,1,2,... }.
If we apply the control u(z) = —z, derived using the linearization of

the system at the point (1/7,0), the graph (z, u(z)) intersects the circle
of radius /7 at the point (—4/7,0) as well.

To overcome the obstruction, rather than insisting on a continuous
control, we use a piecewise continuous control. We define the 1-complex
K as depicted in Figure 27 and define u to be a continuous function in
each component GG;. K consists of the points py, ps2, p3, and p4 lying in
the circle of radius /7 and the arcs that connect them, and similarly
for the the circles of radius y/nm, n = 2,3,.... All points on the arcs
are sliding points except singular saddle nodes left of p3 and left of py.
The point ps is a singular source and p; is a singular sink. The system
is not structurally stable because there is a singular separatrix between

p2 and p;.
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FIGURE 27. Piecewise smooth control system.

Consider the inverted pendulum

0 0
X = zg— + (—si 7
x28:c1 + ( smat:l-l—u)aac2

We want to make the point pg = (7, 0) globally asymptotically stable.
After linearizing the system about pg, we choose a linear controller
u(z) = —zy. The equilibrium set is

{ (z1,22,u) : 3 = 0,sinz; = u }.

The graph (z,u(z)) intersects the equilibrium set at the points (n,0),

n=20,1,2,... so pe is not g.a.s. Instead we use a piecewise continuous
control
( % T € [O,ﬂ'), To € [0,1)
0 T € [O,ﬂ'), Tg € (—1,0)
w4 -1  z1€(—m0), z€(—1,0)
0 =z €(—m0), z2€][0,1)
-2 T2 Z 1
\ 2 ) S -1

Associated with this control is the one-complex K, shown in Figure 28
consisting of the points py, ... , pg and the segments that connect them.
There are three tangency points: t; is a singular saddle node, and
ty and t3 are grains. Points on the segments between p; and t; and
between py and p, are sliding points. Points between ¢, and t3 are
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FI1GURE 28. Inverted pendulum with piecewise continuous control.

singular equilibria, and all others are regular points. The system is not
structurally stable because of the segment of singular equilibria. The
point pg has been rendered g.a.s. because all trajectories arrive in a
neighbhorhood of pg at which point the locally asymptotically stable
linear controller can be used.
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