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In automated traffic vehicles perform a sequence of ac-
tivities that are implemented through vehicle control
laws. The characteristics of the control law are ab-
stracted in a flow model by the space-time of the ac-
tivity. The space-time abstraction is used to set an
upper limit on the density of traffic flow. If all vehicles
perform an activity o and the space-time for this ac-
tivity is A(a) = s- 7, with s in meters and 7 in seconds

then the maximum density is k = 1. The activity flow

model [1] addresses the case when ’s, 7, and the choice

of activity a are variable.

Activity Model The highway is divided into sections
indexed ¢ which are one lane wide and of length L(%).
Sections j and k are to the right and left, respectively,
of section ¢, and section 7 + 1 is downstream of section
i. Time is discretized with a time period of T" seconds.
Flow types, indexed 6, distinguish the destination and
vehicle body type. The states of the model are n(z, ¢, 8),
the number of vehicles in section 7 at time ¢ and of flow
type 6, and v(é,t), the average velocity in 7 at time
t. The control inputs are vq(7,t), the desired average
speed, f(4,t), the volume of entry flow, and = (a, ¢,¢,6),
the proportion of vehicles of type # in section ¢ at time
t that will perform activity a. u(t) = [n(t), v(2), £(2)]
is called a Traffic Management Center (TMC) plan.

The activity model uses a conservation of vehicles law
and velocity dynamics equation to update the states.
The conservation law consists of two steps: lateral mo-
tion of vehicles doing a lane change activity, followed
by longitudinal motion. We let o, (o) denote the
set of activities that turn right (left) and =, (m) be
the proportion of vehicles that turn right (left). m,
is the proportion of vehicles that go straight. (Note
wr(,8,0) + m (i, t,0) + 7,(i,t,6) = 1 for each i,t,6.)
7 and m represent successful lane changes. Consider-
ing vehicles that go straight, we define p(7,t) to be the
fraction of vehicles in section 7 at time ¢ that remain in
the section at time ¢ + 7T". Assuming a uniform spatial
distribution of vehicles of the same flow type within a
section we have:
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Let nyong(4,t,0) be the number of vehicles in section ¢
at time ¢ of type § after lane changes are done, given

p(i,t) :=1-

by:

Mong(i,1,0) = n(i,t,0)m, (4,1, 0)+
n(j, ¢, 0)n-(4,%,0) + n(k,t,0)m(k,t,0). (2)

Then, the conservation of vehicles law is:

n{t,t + T,8) = niong (s, t,0)p(3, 1)+
Nong (i — 1,2,0)[1 — p(i — 1,8)] + f(i,¢,6). (3)

The velocity in a section ¢ is limited by the space avail-
able in the downstream section. Let v,(%,1) be the max-
imum speed in section ¢ so as not to exceed the space
available in section 7 + 1. Then the speed achieved in
a section can be no larger than v4(4,t) and v,(4,t) and
the velocity law gives the average speed over period ¢
as

v(i,t) = max{0, min{vy(7,1), v,(7,1)}} . 4)

Finally, the flows and activities are constrained by the
maximum available space-time in a section over one
period. The space-time for an activity can be computed
using a specification of the space as a function of time,
given by s(t), and the duration of the activity, given by
7. The space-time is

-
Ma) = / s(t)dt
0
in section 7 over period ¢. The space-time constraint is

L) - T > (5)
> n(it, 0)m(a, i t,0)A(a) +
a 4

2D n(,t,0)m(e, ,t, 007 (a) +
N> n(k,t, 0)7(a, k,t,0)N(a).
a4

Control It is necessary to develop adaptive TMC poli-
cies as typically the demanded input flows are not sta-
tionary and congestion can develop when, for example,
many automated vehicles have the same exit at the
same time.

We consider a single lane with sections ¢ = 1,...7 and
simplify notation by eliminating indices for # and o.
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Define n(é) = 3, n(¢,6), the total number of vehicles
in section ¢, and m(e, ¢}, the proportion of vehicles per-
forming activity a by

> a7 a,z,0 (¢,6)
2en(i,0)

Then A(%), the average space-time used per vehicle in
section i, is A(Z) = Y., Ma)m(a,i). A(f)n() is the
space-time used by vehicles in section ¢. The maximum

number of vehicles in a section is N (i) = —/\(%21 Conse-

quently, the maximum flow for section i is ¢(¢) = )‘\/(?; ,

where V is the maximum speed, and the link or lane
capacity is ¢* = min; ¢(¢). We assume ¢(I) = ¢

(6)

m(a,i) =

A maximum throughput, minimum time policy is one
that achieves ¢(7) = ¢* and v(¢,t) = V for all 4. In this
case, n(i,t) must satisfy

¢*L(i)

n(i,t) < 52 = NG,

To ensure section i does not exceed N*(7) we artificially
increase A(2) to A* = %(% = %’- Applying a ¢*-filling

velocity policy for vg results in [1]:

vg{i — 1 ) = (7)
. L(i)L(i-1) v(i,t)Tyn(it)L(i—1
min{V, n(i=1,0)A° —-[t- (L(tz)) ] r(z(i—)-l,(t)T)}}'

The entry flow policy is:

) = L/S) _ "(; t) U(l’zt;)(rigl’t)~ ®

Theorem 1 Using a ¢*-filling policy (7), (8) and as-
suming v(I) = V,Vt, then for every t,1, either v(i,t) =
V,or ¢(i,t) > ¢".

Proof In [1} . O

The theorem suggests an adaptive approach for esti-
mating ¢*, particularly when it suddenly drops to an
unknown value. If vehicles observe v(¢,t) < V, then at
some time ¢(i, ) > ¢*. Let ¢* be the kth guess of ¢*.

Lemma 1 Using a ¢*-filling policy, ¢* < ¢*, and
v(I,t) = V,Vt, then v(i, t) converges to V in finite time,
for all ¢.

Proof The ¢*-filling policy uses )\" = K{— and sub-

stituting in (3) and (4), gives n* —(%T Vi. By
induction, assume v(i,t) = V, somet Substltutmg

n* (i), and A* in (7) we obtain v(i — 1,t) = V. m]

Lemma 2 Using a ¢*filling policy, ¢* > ¢*, and
k

v(I,t) = V,Vt, then v(i,t) converges to 37V in finite

time, for all ¢ < [I.

Proof Apply the same steps as in Lemma 1. O

In principle, assuming steady-state conditions, vehicles
could estimate ¢* = % Since this approach is not
robust we employ an adaptive scheme. To add real-
ism to the model, we assume X has (discrete) dynamics
given by

ML) = (1 = Tr)NF(3) 4+ T, (d) 9)

where 7(sec) is the time constant, T < 7 and \,, is the
steady-state value.

Theorem 2 Using a ¢*-filling policy, ¢* > ¢*,
v(I,t) = V, V¢, and adaptation rule A,,(3) = Ak(i);;%,
the system (3), (4), (7), (8) converges to the equilib-
rium solution )\(z) = M +e(i), ¢ = ¢* v(d) =V,
n(t) = TN (4), in a finite number of steps, Vi < I.

Proof Substituting A,,(¢) in (9),

Vo k.
FN 0.
Consider section I — 1. Since v(I) = V and
A1) = X", substituting in (7), (4) we obtain v*(i) =
min{V, A. V}. If A*(i) < X*, then v*(i) < V and
X¥(i) increases. For some k > K, Af(i) = X* + (i),
€(?) > 0 and v*(s) = V. Therefore MeF1(G) = AR (3),
Using Lemma 2, v*(¢), i < T converges to V in a finite

number of steps. Therefore, A (z) converges to A(é) in

a finite number of steps, and n(i) = 54T = N *(i).

(m]

M)y = (1 =TT+ Tr

Implementation The above scheme works well when
the flow is homogeneous as in an ACC architecture:
each vehicle uses A{¢). In a non-homogeneous flow
such as platooning, only lead vehicles can adjust their
space-time. We consider the platooning architecture
with vehicles performing the activities oy = leader
and ay = follower. Let X\(i) = A(a1)m(ay,7) and

Ar(7) = AMay)m(ayg,i). Then A(¢) = Ai(é) + Af(§). Now
/\" (?) is adjusted by changing A(¢). In particular we
propose the adaptation rule

/\ss(i) = ’\l( ) + ’\f (z)

"( )
That is, leaders use space A*(a;) = (a,);—,,Y(T Assum-
ing m(aq,1) > 0,Vi < I, a result similar to Theorem 2
can be obtained in this case.

The policies discussed can be implemented directly us-
ing (7) and (8) if ¢* is communicated by a link layer
controller to all vehicles in the link. Finally, an impor-
tant extension is to include velocity dynamics.
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