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In automated traffic vehicles perform a sequence of ac- 
tivities that are implemented through vehicle control 
laws. The characteristics of the control law are ab- 
stracted in a flow model by the space-time of the ac- 
tivity. The space-time abstraction is used to  set an 
upper limit on the density of traffic flow. If all vehicles 
perform an activity CY and the space-time for this ac- 
tivity is X(a) = s .  T, with s in meters and T in seconds 
then the maximum density is k = $. The activity flow 
model [l] addresses the case when s, T, and the choice 
of activity CY are variable. 

Activity Model The highway is divided into sections 
indexed i which are one lane wide and of length L( i ) .  
Sections j and k are to the right and left, respectively, 
of section i, and section i + 1 is downstream of section 
i. Time is discretized with a time period of T seconds. 
Flow types, indexed e,  distinguish the destination and 
vehicle body type. The states of the model are n(i, t, e ) ,  
the number of vehicles in section i at time t and of flow 
type 0, and v ( i , t ) ,  the average velocity in i at time 
t .  The control inputs are w d ( i , t ) ,  the desired average 
speed, f ( i ,  t ) ,  the volume of entry flow, and T ( C Y ,  i, t ,  e ) ,  
the proportion of vehicles of type e in section i at time 
t that will perform activity CY. u(t)  = [ ~ ( t ) ,  v d ( t ) ,  f ( t ) ]  
is called a Traffic Management Center (TMC) plan. 

The activity model uses a conservation of vehicles law 
and velocity dynamics equation to  update the states. 
The conservation law consists of two steps: lateral mo- 
tion of vehicles doing a lane change activity, followed 
by longitudinal motion. We let ar (ai) denote t,he 
set of activities that turn right (left) and T,. ( T I )  be 
the proportion of vehicles that turn right (left). T~ 

is the proportion of vehicles that go straight. (Note 
rr(i,t ,  8)  3- q ( i , t ,  8)  + .rr,(i, t ,  6’) = 1 for each i,t, 6.) 
.rrr and ~1 represent successful lane changes. Consider- 
ing vehicles that go straight, we define p ( i ,  t )  to  be the 
fraction of vehicles in section i at time t that remain in 
the section at time t + T.  Assuming a uniform spatial 
distribution of vehicles of the same flow type within a 
section we have: 

v ( i , t )  x T p ( i , t )  := 1 - 
L ( i )  

Let nlong(i, t ,  0)  be the number of vehicles in section i 
at time t of type e after lane changes are done, given 

by : 

nlong(i,t,8) = n ( i , t , q T S ( i , t ,  e)+ 
n( . j7 t , e )~r ( . j 7 t ,  e )  + n ( k , t ,  e ) ~ l ( k , t , e ) *  (2) 

Then, the conservation of vehicles law is: 

n( i7  t + T,  0) = n l o n g ( i ,  t ,  e ) p ( i ,  t)+ 
nlong(i  - l , t ,  e ) p  - ~ ( i  - 1,t)i + f ( i , t ,  e) .  (3) 

The velocity in a section i is limited by the space avail- 
able in the downstream section. Let w, (it t )  be the max- 
imum speed in section i so as not to exceed the space 
available in section i + 1. Then the speed achieved in 
a section can be no larger than v d ( i , t )  and w,(i,t) and 
the velocity law gives the average speed over period t 
as 

v ( i , t )  = max{O,min{wd(i,t),v,(i,t)}} . (4) 

Finally, the flows and activities are constrained by the 
maximum available space-time in a section over one 
period. The space-time for an activity can be computed 
using a specification of the space as a function of time, 
given by s ( t ) ,  and the duration of the activity, given by 
T. The space-time is 

A(&) = lT s ( t )d t  

in section i over period t .  The space-time constraint is 

L ( i )  . T 2 (5) 

CY,  0 

Q 1  r9 

Control It is necessary to develop adaptive TMC poli- 
cies as typically the demanded input flows are not sta- 
tionary and congestion can develop when, for example, 
many automated vehicles have the same exit at the 
same time. 

We consider a single lane with sections i = 1, ... I and 
simplify notation by eliminating indices for B and cy. 
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Define n(i)  = ce n(i, e),  the total number of vehicles 
in section i, and ~ ( a ,  i), the proportion of vehicles per- 
forming activity a by 

Then X ( i ) ,  the average space-time used per vehicle in 
section i, is X ( i )  = x a X ( a ) ~ ( a l i ) .  X(i)n(i) is the 
space-time used by vehicles in section i. The maximum 
number of vehicles in a section is N ( i )  = e. Conse- 
quently, the maximum flow for section i is $(i) = 3, 
where V is the maximum speed, and the link or lane 
capacity is $* = mini $(i). We assume $ ( I )  = $*. 

A maximum throughput, minimum time policy is one 
that achieves r$(i) = r$* and w(i,t) = V for all i. In this 
case, n ( i , t )  must satisfy 

To ensure section i does not exceed N* (i) we artificially 
increase X ( i )  to X - ?vl-t;r = F .  Applying a $*-filling 
velocity policy for wd results in [I]: 

* - L i T  

The entry flow policy is: 

Theorem 1 Using a $*-filling policy (7), (8) and as- 
suming w(I) = V,Vt, then for every t ,  i, either w(i,t) = 
V ,  or $ ( i , t )  2 r$*. 

Proof In [l] . 0 

The theorem suggests an adaptive approach for esti- 
mating PI particularly when it suddenly drops to an 
unknown value. If vehicles observe w ( i ,  t )  < V ,  then at  
some time $(i, t )  2 $*. Let dk be the kth guess of 4'. 

Lemma 1 Using a c$"-filling policy, $k 5 $*, and 
w(1,t) = V,Vt, then w ( i l t )  converges to V infinite time, 
for all i. 

Proof The $k-filling policy uses X k  = and sub- 

stituting in (3) and (4), gives n k ( i )  = * , V i .  By 
induction, assume w(i,t) = V, some t .  Substituting 

0 

Lemma 2 Using a $'-filling policy, $k > $*, and 
v(1,t) = V,W, then w(i,t) converges to $V in finite 
time. for all i < I .  

L i T  

n k ( i ) ,  and X k  in (7) we obtain v( i  - 1,t) = V .  

Proof Apply the same steps as in Lemma 1. 0 

In principle, assumin$ steady-state conditions, vehicles 
could estimate $* = *. Since this approach is not 
robust we employ an adaptive scheme. To add real- 
ism to the model, we assume X has (discrete) dynamics 
given by 

X" ' ( i )  = (1 - Tr)X'(i) + T T & ~ ( ~ )  (9) 
where r(sec) is the time constant, T < T and A,, is the 
steady-state value. 

Theorem 2 Using a r$k-filling policy, dk > r$*, 
v(I,t) = V,Vt, and adaptation rule Xss(i) = Xk(i)+, 
the system (3), (4), (7), (8) converges to the equilib- 
rium solution X ( i )  == A* + ~ ( i ) ,  $ = $*, w ( i )  = V, 
n(i) = + N * ( i ) ,  in 

a )  

Proof Substituting X s s ( i )  in (9), 

finite number of steps, V i  < I. 

V 
Xktl ( i )  = ( I  - Tr + TT-)X~(~) .  

?Ik (2) 

Consider section I - 1. Since w(1) = V and 
X ( I )  = A* ,  substituting in (7), (4) we obtain v k ( i )  = 
min{V,+V}. If Ak(i) < A* ,  then w k ( i )  < V and 
X k ( i )  increases. For some k > K ,  X k ( i )  = A* + ~ ( i ) ,  
~ ( i )  > 0 and w k ( i )  =I V. Therefore, Xkt'(i) = Xk(i). 
Using Lemma 2, w k ( i ) ,  i < I converges to V in a finite 
number of steps. Therefore, Xk(i) converges to X ( i )  in 
a finite number of steps, and n(i) = -&$- = &N*(i ) .  
0 

L i T  

Implementation The above scheme works well when 
the flow is homogeneous as in an ACC architecture: 
each vehicle uses X ( : i ) .  In a non-homogeneous flow 
such as platooning, only lead vehicles can adjust their 
space-time. We consider the platooning architecture 
with vehicles performing the activities a1 = leader 
and aj = follower. Let X l ( i )  = X(al)r(al,i) and 
X j ( i )  = X(aj)r(aj,i). Then X ( i )  = X i ( i ) + A f ( i ) .  Now 
X k ( i )  is adjusted by changing X l ( i ) .  In particular we 
propose the adaptation rule 

That is, leaders use space Xk(al) = X(al)$q. Assum- 
ing r(al,  i) > 0, V i  <: I, a result similar to Theorem 2 
can be obtained in tlhis case. 

The policies discussed can be implemented directly us- 
ing (7) and (8) if 4'' is communicated by a link layer 
controller to all vehicles in the link. Finally, an impor- 
tant extension is to include velocity dynamics. 
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