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1 Introduction 

We consider a hybrid system which is viewed as a two level 
system with a finite automaton at the top level and a dynami- 
cal system corresponding to each location at the lower level. 
Hybrid models arise in applications where multiple agents 
communicating via protocol e operating under feedback 
control. If there are many agents each executing maneuvers. 
it is necessary to do a verification of the protocols to ensure 
desirable properties such as safety, liveness, fairness. and 
no deadlock. Likewise, control objectives at the planning 
level can be stated in terms of temporal logic formulas, and 
these formulas can be checked by formal verification meth- 
ods (model checking) [9]. 

We are interested in constructing bisimulations in order to 
carry out a verification of the safety problem. 

Safety problem: For hyhrid system A cletermino I f  a set of 
stares P can be reachetlfiom an initiml set of states Q”. P 
is usually the unsafe set to be avoi[led. 

A primary focus of research is to extend the the class of’ 
hybrid systems that have a tinite bisimulation. The tech- 
niques developed have priinarily involved transforming thc 
state variables to obtain a reduction to timed automata [ 5 1. 
However, the ability to perform this reduction is increas- 
ingly difficult as the control location dynamics are allowed 
to be more general. 

Two fundamental and potentially compelling questions are: 
can a hisimulation cfa hybrid system he found analytically ? 
and, what geometric structure should the continuous &- 
naniics of the hybrid system possess in order to have u,finite 
bisimulation? We provide some results on these questions, 
but our approach is, in general, approximate, and only in 
certain cases is it exact. We will develop techniques for a 
hybrid system that is “close” to the original system. In par- 
ticular, the initial and final regions, enabling conditions, and 
reset conditions will be approximated so that they are com- 
patible with the bisimulation. This work has been inspired 
by the papers by Caines [2,31 and the groundbreaking paper 
of Alur and Dill [ 11. 
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2 Definitions 

2.1 Notation 
.r’ refers to the updated value of a variable r after a tran- 
sition is taken. and X refers to the time derivative. A11 
manifolds, vector fields. curves and maps are of class C x .  
Manifolds are assumed to be connected. paracompact, and 
Hausdorff. C X ( M ) .  X ( M ) .  and ! 2 ’ ( M )  denote the sets ol’ 
smooth real-valued functions. smooth vector fields. and k -  
forms defined on  a manifold M. 

2.2 Hybrid automata 
A hybrid automaton is ii system A = 
( Q .  C ,  D .  Q”, I ,  E .  J ,  Q J )  consisting of the follow- 
ing components: 

State space Q = L x M consists oi‘a finite sct L of control 
locations and n continuous variables .Y E M. where 
M is an n-dimensional differentiable manilold. 

Events C is a finite observation alphabet. 

Vector fields D : L -+ X ( M )  is I function assigning a11 
autonomous vector field to each location. We will use 
the notation I ) ( / )  = . f j .  1;or location 1. the dynamics 
are given b y i  = , / j ( . x ) ,  ,fi E X ( M ) .  

Initial conditions Q’ : L --f 2M is a function assigning an 
initial set of’ states for each location. I!’ the automaton 
is started in location 1. then .Y E Q O ( / )  at t = 0. 

Invariant conditions / : L + 2M is a function assigning 
for each location, an invariant condition on  the con- 
tinuous states. The invariant condition restricts the 
region on which the continuous states can cvolve lhr 
each location. 

Control switches E is a set of control switches. (J = 
(1, U ,  I ’ )  is a directed edge between a source location 
1 and a target location 1’ with observation cr. 

Jump conditions J : E --f G x K is a function assigning 
to each edge a guard condition and a reset condition. 
G is the set of’ guard conditions g on the continuous 
states where g c M is compact. R is the set of  reset 
conditions r where r : M -+ 2 M  is a compacl set- 
valued map. We will use the notation G ( e )  = gr and 
H ( e )  = r;. 
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Final condition Q f  c Q is a set of final states. We will 
assumc there is on: final location so that Q,f = ( I f )  x 
xf, XJ‘ c M. 

2.3 Semantics 
A state is a pair ( I ,  .Y )  satisfying .Y E / ( I ) .  The invariant 
can he used to enforce edges from location I .  In location 
I the continuous state evolves according to the vector field 
,f i . C ( I )  will denote the set of events possible at I E L 
and E(1)  will denote the sct of edges possible at I E L .  
An edge is enabled when the discrete location is I and the 
continuous state satisfies .Y E ,yP.  for P E E ( / ) .  When the 
transition P = ( I ,  n. 1 ’ )  is taken, the event 0 is recorded, 
the discrete location becomes I’. and the continuous statc is 
reset (possibly non-deterministically) to x’ := re( . r ) .  

ki)r  n E E a a-strp is a tuple S c  Q x Q and we write 
cl q’. Define @:(.w) to bc a trajectory of ,fi at 1.  starting 
from .Y and evolving for time t .  h r  t E R+. define a t-step 
to be the tuple Ac Q x Q. We write ( I . x !  1, ( I ’ , . Y ’ )  
iff‘ ( I )  I = I’. (2) at t = 0 .  .K’ = .Y, and ( 3 )  for t > O. 
x’ = @ ; ( . I - ) ,  where & ( x )  = .fiC@f(.x)). We will use the label 
A to rcprcsent a t-step with an arbitrary time passage. 

A tirnetl \cord of A is a finite o r  infinite sequence t = 
tnrlt? . . . of letters from C U R+: that is. each t i  is ei- 
ther an observation of A or a non-negative real that denotes 
a duration of time between observations. The timed word t 
is divcqont i f 7  is intinite and )-(ti  Iti E W+, i E N} = x. 
A n-(,+xmr,v JC of A is a finite or infinite sequence of the 
foim n : qo + (11 -+ q 2  + . . . where qo E Qo. and for 
all i 2 0. we have qi E Q ,  ri E C U R+. The trajectory 
JC accepts the timed word T = tor1 . . . and JC is called di- 
vergent if  t is divergent. The u)-language, called L a n g ( A ) ,  
is the set of all divergent timed words that are accepted by 
trajectories of  A.  A rvn of A is the projection to the dis- 
crete part of a tra,jectory accepted hy A. namely, a finite or 
infinite sequence Io, / I ,  I?, . . . of admissible locations. We 
assume throughout a non-=.eno condition: every trajectory 
of A admits a finite number of  n-steps in any bounded time 
interval. Finally. given a set of initial states Q” 5 Q, the 
rruch set of a hybrid automaton A, ReuchA, is the set of 
states that can be reached by any trajectory of A. 
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2.4 Bisimulation 
Given a hybrid system A = ( Q ,  C ,  D ,  Qo, I ,  E ,  1. Qf) .  a 
hisirnulation of A is a binary relation “C Q x Q satisfying 
the condition that for all states p ,  q E Q. if p 2 q and 
CI E C U (A}. then 
( 1 )  if p 5 p’. then 3 q’ such that q 4 q’ and p’ = q‘, and 
( 2 )  i f q  4 q’, then 3 p’ such that y 

Let Q / =  be the set of equivalence classes of 2. A bisimula- 

p’ and p’ 2 q’. 

tion is finite if it has a finite number of equivalence classes. 
Using 2. a quotient system A / ,  can be constructed. If 
E is finite, the quotient system A / =  is a finite automaton. 
This quotient system can be used in verification of the safety 
problem: if  P n HeachAl- = 8, where P is a set of final 
states. then P f’ RrachA = Id. If P n RrachAl ,  # Id, then 
no conclusive answer about the safety problem is obtained. 

3 Verification 

1,et K be a subset of an n-dimensional manifold M home- 
omorphic to the closed. unit n-cube in R“. For each I E L 
we construct a finite cover of K .  denoted C!,  consisting of 
a finite collection of compact n-dimensional cells c, such 
that K = U y c I .  The boundary of each cell consists of a set 
of 2n faces of dimension (n - 1)  and a collection of edges 
of dimension n - 2 to 1 and a set of 2” vertices. We re- 
quire int(c , )  # B and in t (c , )  fl int(c,)  = 0,V i  # j ,  for 

Let C be such a cover of K .  The diameter of c E C is 
p ( c )  = sup(d(.r. y ) l x ,  y E e } ,  where d is a Riemannian 
metric defined on M .  The mrJh of C is 

c, . c, E Cl. 

If V is a closed subset of K .  we say ( V ) , L  is a p- 
upproximation of V bvith respect to C with mesh p .  given 
by 

If P = { I }  x U c L x M ,  then ( P ) , L  = ( I }  x ( U ) @ .  

Fact ~ H ( V ,  5 P .  

I x t  C ( K )  = {Cr I I E L }  be the set of covers of K for 
automaton A.  CJ( K )  induces an equivalence relation 2 on 
Q. We say q E q’, where q = ( 1 ,  x) and q’ = (I‘, x’) if 
( 1 ) I = I f ,  
( 2 ) x  $ K iff.r’ $ K ,  
( 3 )  i fx ,x’  E K .  then .Y E c iffx’ E c. Vc E Cr. 
We say cover CI of K at I is a stable partition qf t h e j o w  if 
for all I ,  .Y, x’, .v and f > 0, if(1, .x)  2 (1, x’) and y = @,(x). 
then there exists a Y’ and t’ > 0 such that y’ = @p(x’)  and 
(I .  E ( I ,  $1. 

3.1 Approximate automaton 
Suppose we are given a collection of stable partitions C ( K )  
of K c M for hybrid automaton A. We write C ( K ,  P )  if 
~ ( C I )  = p > 0 for all I E L .  We define the approximate 
hybrid automaton 
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then the set-valued map ( I < ) / ~  is defined point-wise by 

( I < ) / , ( . Y )  = ( I JO. , )  f'i K ) / , .  

This operation introduces extra non-determinacy in the ap- 
proximate automaton because the identity map is not pre- 
served. in general. 

We will say A,, is an oiii~I-~i/)~?Io.Yiinuti~)ii  of A on K if  the 
following additional conditions arc satisfied: 

I .  @(I)  g; K .  each I E L. 

2. ,yc..r.,,(gC) K . e a c h r  E E .  
3.  X I  C K .  
3. / ( I )  cr K .  

Note that i t  A,, is an over-npproximation of A o n  K .  then 
K r ~ r l c . h , ~ ] ~  c /-!t>uch;i,, I K .  
Approximate Verification Problem: 
Giwn li,vl)riil uiiromuroii A. C'( K .  1 1 )  lcirh 11 > 0 urirl P c 
L x K ,  (forotniiiw i f ( l - ' ) , l  3 KecichAl, = fl. 

Remarks: 
( 1 ) 11' i P )/, f7 Kcwc,h,4,, = M arid A,, is an over- 

approximation of A on K .  then l-' n RruchA = 1/1. 
However, if either ( P ) / j  n Rriit,h,j,, # Irl o r  A,, is not 
an ~)ver-apploxirnation of A on K .  wc have no con- 
clusive answer about the original safety problem. 

( 2 )  If ( P ) , ,  n HrrrchA,, = Irl for / A  > 0 then for all 6 < 
p ,  ( P ) J  fl Kouchn,, = Irl. Therefore, we can lind a 
coarsest 11-approximation A,, * which verities that the 
original system is sal'c. 

I Construction of bisimulations 

In this section we elaborate a geometric construction in IN- 

der to derive an analytical representation of the bisimula- 
tion. The main geometric tool is foliations. The reader may 

refer to [6 ]  for background. We are interested in foliations 
whose leaves are regular submanifolds. By the Pre-Image 
theorem. regular submanifolds can be constructed by sub- 
mersions. A foliation globally defined by a submersion is 
called sirnplr. 

I x t  ,f E X (  M ) .  We will define two types of simple co- 
dimension one foliations with respect to f ,  called tangential 
and transvcrsal foliations. For this we require a notion of 
transversality of foliations. 

A map h : M + N is transverse to lidiation F of N if either 
h - ' ( F )  = M.orifforevciy.r E h- ' (F)h*T. ,M+Th( . , )F = 
T I ~ ( . ~ ) N .  A submanifold P on M is tramvcrse to foliation F 
of M if the inclusion map i : P -+ M is transverse to 
F .  A foliation F' is said to be transverse to F ii' each leaf 
of F' is transverse to F .  A foliation in  general does not 
admit a transversal loliation. but a local submanifold C, of 
M such that C ,  intersects every leaf in  at most one point (or  
nowhere) and 7', C,  + T, F = T, M. can be found. 

A tcrngrntial,foliution F of M is a co-dimension one foli- 
ation that satisfies . f ( . r )  E T., F ,  V.Y E M :  that is. ,f is a 
cross-section of the tangent bundle of F .  A t ~ u n . s \ ~ ~ ~ r : s a l , ~ ~ l i -  
d o n  F_L of M is a co-dimension one foliation that satisfies 
f i x )  6 T, F, V.r E M. A tangential foliation is therefore an 
invariant of the How: an integral curve starting on a leaf of 
the foliation remains on it forever, whereas integral curves 
hit the leaves of a transversal foliation transversally. 

We construct a collection F, of n - I tangential foliations on 
K c M and one transversal foliation F,, := FL on K .  Ad- 
ditionally. we require a regularity condition on this collec- 
tion of n foliations: each puir r!fji>liutions ( F ; ,  F j ) ,  i # j 
i s  trurisvrrstrl. I:or simple foliations. the following lemma 
provides an algebraic test for regularity. 

Lemma Lot M ho mi n-tlivnensional inon(fi)Iri rind tkjinr 
h; : M + R. i = I ,  ... n .  N c~ollcction c~f.sri1~riir1sion.s on M. 
l f  rlhi UIY Iinrur1,v inrli~iwnrlrnt on K c M .  then thr j idiu- 
tioris dt$nrtl I)! t i - '  (R) NIP niuti~ully rrunswr:sal on K .  

We will not use all of the leaves of a foliation. but only 
some finite subset of them. We rfiscrrtizr a simple foliation 
a s  follows. 1,et h : M + R be the subtnersion of a simple 
co-dimension OIIC foliation F.  Given an interval la, I,]. a 
gridsize A = > 0 with N E Z+ . define the finite 
collection of points W = ( U ,  a+  A .  . . . . I ) } .  Then. h - ' (  W )  
is the discretization of F on h - ' ( I u ,  111) .  

A hisimulation can be constructed using foliations by elah- 
orating the following steps: 

1. I h d  ( n  - 1 ) simple co-dimension one tangential fo- 

2. Construct either a local or global (on K )  transversal 

3.  Check the regularity condition for mutual transversal- 

4. Discretize the toliations to obtain a cover C/ with 

liations on K c M .  for each ,/;. I E L .  

foliation for each f j .  

icy on K .  

mesh 11. 
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5. Construct the appioximate system A,, by approximat- 
ing the enabling end reset conditions. and the initial 
and linal regions using C/ tor each 1. 

Theorem [l:oliations] Given h!;hritl airtoinaton A, 11  0, 
arid an oiwn U c M on which. VI E L j j  E X (  M ) is non- 
vanishing. supposr there rxists u set ( f i i  - 1 siinple, inir- 

t14ally transvrrsul c:o-rlimmsion one tan~entiul.fr~liutions on 
U .  Thrn there rxists K c M hoincwinorphic to the closrd. 
unit n-cuhr and a r~ollri~tiori o f  stuhle partitions on K such 
thot A,, has a .finite I~isiinulatior~. 

Proof: Suppose that the collection of tangential foliations 
for each I is denoted { Fp)!=l , . , ,  and the associated sub- 
mersions are h j .  i = 1 .  . n - I .  We can lind a closed 
set K c I/ such that ( 1 )  h ; ( K )  = 1 - 1 ,  I ]  (by rescal- 
ing h ; .  if needed). and ( 9 )  there exists hj, independent of 
h: .  i = I .  . . . . I? - I .  for each I E L .  Define the coor- 
dinates ?:I = h l .  . . . . y, = h,. Fix N E Z+ and define 
A = & > 0. Take the suhcollection of submanifolds = 
W I . .  . . , ,vn = U!,, where wi E (0. *A,  &'A.. . . , i l ) .  
Call this collection of submanifolds S = ( s , ~ ]  and let 
K = K \ U,y(su} .  is the union of ( 2 N ) "  disjoint open 
sets ( cp } .  I x t  S,, = h- ' ( ,y , I )  and ttj = K ' ( c p ) .  

We can define the equivalence relation = on L x M .  For 
p = ( 1 ,  . r l )  and q = (1'. x'). we say 11 2 q iff 
1 1 1  = I < .  
2 )  .r $ K iffx '  
3 )  i f  .U. .Y' E K .  then .r E .Til iff .x' E sfly and .Y E 5.1 iff 
.U' E cp.  vu, p.  
2 delines a stahle partition on K with a tinite number of  
equivalence classes. s o  we can invoke the Stahle Partitions 

0 

Example Il3iunovsky noimal form I Consider the 
Ilrunovsky normal form for linear systems i n  R3 

.x; = x;+l , i = 1.2. 3 .  
i 4  = I1 . 

- 

K .  

Tlieorem to obtain the hisimulation of  A,. 

The three tangential foliations are 

.U?.rlj x3.r; .U; 
.U1 - - + 3 - - = ( ' 1  

I I  211- 8113 

.XI.XJ . x i  x--+- = ('2 
11 3u' 

i 

A transversal foliation is x4 = ('4. We confiim the regular- 
ity condition on the foliations by checking the rank of the 
matrix: 

This matrix is full rank for all U # 0; therefore, the partition 
is defined on all R4. 

5 Exterior differential systems 

Tangential l'oliations of a vector field can hc tound using 
first integrals. A natural setting for tinding lirst integrals 
is provided by exterior differential systems. A set of indc- 
pendent one-t'orms (0' .  . . . , ml{ generates a Pt'aflian system 
I = ( w ' .  . . . . ( U ' / ]  = {E . f ' k ( J ) , f k  E C % ( M ) } .  The I'lal- 
fian system satisfies the Frohenius condition i f  one of  the 
following equivalent conditions holds: 
( I ) rlw' is a linear combination of 0)'. . . . . d'. 
(2) (io' A 

( 3 )  do+ = CL;=, H J  A d. some ~ j .  

We write do' = 0 (mod w ' .  . . . . d )  i t  wi satislies the 
Frohenius condition. 

Theorem Il+oheniusl Lot I = ((0'. . . . . ( U ' / }  hr U F'fi!f'- 
fimi s,vsti~in with oiir$iwins sutisfiing tho Froheniirs c o i d -  
tion ( 1 ~ '  = 0 (mod I )  for k = I .  . . . , q.  T h m  there i).ri.vt 
c.ootdiiicltrs h ! , . . . . h,, stlch that I = (tlh I .  . . . . dhl, 1. 
In this case the l'faflian system is said to he cornpletr!\ in- 
trjiruhli~ and the h; are the lirst integrals 0 1  / .  Thus. thc 
1;rohenius theorem is a useful tool that provides local l i n t  
integrals. 

Theorem I l+st Integrals] Given h\hritf uutoinuton A .  ,> 

0, a i id  u i i  oprn U c M on krhich. VI E L. ,f j  E X ( M )  
is ri,)ri-vaiii.shinR, there rxists K c M homroinorphic to tho 
closed. unit I I  -cwhr arid N collection of'sruhli~ partitions .such 
thcit A,, hus a,finitr hisiinulurion. 

Proof: The approach is to lind a codistrihution of one- 
forms {d .  . . . . d'} such that w 1  = dh;  = 0. Then we 
will show that the I? - I independent functions h; : K + R 
are suhmersions and hy construction first integrals. They 
will provide I I  - I simple, co-dimension one tangential fo- 
liations. so we can invoke the Foliations theorem to show 
existence of a hisimulation. 

1;ix 1. and let ,f'l = J .  On some open V c U we can lind 
n - 1 smooth complementary vector tields ,f-. . . . . ,f,, such 
that s p a n { f l .  . . . . , f n )  = R" at each .Y E V .  { f l .  . . . . , f n }  
is clearly involutive on V .  1x1 $j ( x )  be the [low of ,ti. t5x 
.xO E V .  There exists W, a neighborhood of  0 in R" such 
that the map G : W + V given by 

A . A wl/ = O ,  i = I. . . . . q. 

(a1 . . . .  , ~ n ) b @ ( ~ ,  I z . . . E @ : , , ( . w  0 

is well defined. Since the 4's commute. we can change the 
order of integration 

Sincc the f, are independent, E is nonsingular. s o  G-l 
exists locally on V' c V by the Inverse Function Theorem. 
1x1 [ h l ( v ) ,  . . . . h n ( y ) I T  = G - ' ( Y ) .  v E V' .  By definition 
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In particular, $ . f l  = 0 f o r i  = 2, . . . . I ? .  S o  hz ,  . . . , hn 
are the desired functions. Since G - ’ ( y )  has rank n. the hi 
are independent submersions. U 

5.1 Parallel composition 
Bisimulation for hybrid systems is, in general, not closed 
under parallel composition of automata. Here we give a 
sufficient condition on the I’faffian form of the continuous 
dynamics of each control location so that if two hybrid au- 
tomata have a finite bisimulation, then so does their parallel 
composition. 

Proposition [Parallel Composition] Given hyhrid autoniutu 

(L2 x MT, C2,  D2, Qi, 12 ,  E2, J2, Q;),  suppose thtre e.x- 
ist  K1 c Mi, K? c M? such that, via the First In tc~pds  
theorem, bisimuhtions .for A l l r  and A?,, exist. If.for ruch 
pair ( I ,  1‘). I E L1, I‘ E L2 there e.rist.s U one-jbrm of the 
Pfajfian system ut 1 

= ( L ~  x M;. E], nl. Q:, I ] ,  E ~ .  J ~ ,  Q { )  and A? = 

given by g = gX, where 

cos4 - s i n 4  .r 

0 0 0 

4 is the yaw angle. and the inputs U I ,  U ?  control the yaw 
and velocity. respectively, of the aircraft. There are two tan- 
gential loliations given by equations 

and a transversal foliation given by 4 = cyi. Letting the state 
variables and inputs of aircraft 13 be 4 ~ .  .xi{ ,  j’n. U I / I ,  and 
M ~ B ,  analogous expressions for the tangential and transver- 
sal foliations are obtained for aircraft 13. An additional tan- 
gential foliation is found for the parallel composition o l  thc 
two systems given by 

and a one-jorm of the Pfa@n s.vstem at  I’ 

such that the one-form 

i s  exact, and ci is independent of thr first integmls on K1 
and K2 of the vector.fields ut I and I’, rr~pectrvel\: thtw a 
bisimulation of(A1 x exists. 

Proof: From the First Integrals theorem. we have I I  - I 
first integrals for each f i ,  I E L1 and m - I first integral.\ 
for each f i  , I’  E L2, giving n + m - 2 first integrals for 
the vector field f = 1.h . f i , I T .  But we require n + m - 1 
first integrals to construct the bisimulation. The missing first 
integral is provided by the exact form a. Using the fact that 
h(c iwl , ,  . . , d x , )  has the form for some i = I , .  . . , n ,  
and similarly for h’, it can be verified that a satisfies LJ a! = 
0. 0 

h,( 

6 Applications 

Planar Aircraft Consider the coordination problem of two 
aircraft A and B flying at a fixed altitude near an airport 
[8]. Each aircraft is modeled by a hybrid system in which 
an automaton location corresponds to an atomic maneuver 
performed with constant control inputs. The control inputs 
are changed instantaneously upon switching control loca- 
tions. The state is g E S E ( 2 )  and X is an element of the 
Lie algebra s e ( 2 ) .  Assuming the aircraft does not exercise 
it’s pitch control, the kinematic dynamics of aircraft A are 

We check the regularity condition on the live tangential fo- 
liations and either of the two transversal foliations. Namely, 
Dh takes the iorm 

This matrix has full rank so long as U ] A ,  U I B  # 0.  so thc 
partition is defined globally on R4 x T2. It. in addition, 
U. 

IS rational. a finite bisimulation on K x T’. for compact 
“18 

K c R4. exists. 

Mobile robot Consider the coordination problem 0 1  two 
mobile robots A and 13. operating in a closed workspace of 
a factory. The robots are modclcd using hybrid automata, 
with each control location corresponding to an atomic ma- 
neuver. such as move forward, or change direction. Each 
location of the automaton has the kinematic model of the 
associated maneuver. We assume in cach automaton loca- 
tion. the control inputs are constant, but they are allowed to 
change instantaneously upon switching locations. The kine- 
matic model for each robot, converted to chained form (71 
is the following: 
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There are three tangential foliations given by the equations 

and a transversal foliation given by: .rl = c l .  These folia- 
tions deline the bisimulalion for each robot, by checking the 
regularity condition as fi)llows: 

0 
I 

11 I 
I f ?  .r2 - IN? = j'_ -- 

L o  - 

This matrix has lull rank so long as 11 I # 0 and U? # 0. 
Thus, the partition for each robot is defined globally on Et4. 
When we take their parallel composition. an extra tangential 
foliation is introduced: 

u1H.rlA - i4lA.rIH = C A B .  

A calcdation analogous to the previous exampll: shows that 
a hisimulation for the parallel composition exists. 

7 Symbolic execution theory 

In this section we consider the implementation of the theory 
01 approximate verification in a symbolic model checking 
algorithm. A symbolic execution theory S of A is a set of 
predicates assigned truth values by the states 01 A and sat- 
islying: 

I .  the emptiness problem for each predicate p of  S is 
decidable, 

2. S is closed under boolean operations and P i e  and 
Post  operations. 

3.  (Qf) E S. where (Qf) denotes the set of formulas 
detining Q J ' .  

Suppose the tangential and transversal foliations on K for 
each I E L are defined by submersions h$(.r) = ci. Idet 
S be the class of formulas h f ( . r )  % ci with '%. = {r, 
, =, >. L ) ,  I L .  i = 1, . , . , n and all finite conjunctions 
and disjunctions of these exprcssions. A finite automaton 
with its symbolic execution theory is said to be yflectivelv 
presented 141. 

Theorem A,, with the theol?; S i s  efectively presented. 

8 Critique and future work 

This paper opens up avenues for applying model checking 
algorithms to the verilication of  safety problems for hybrid 

systems consisting of coordinating autonomous agents, and 
especially hybrid systems where the continuous level is a 
model of the kinematic dynamics. There are some lim- 
itations and obstacles to be overcome. First, it is likely 
that model checking will still be a computationally expen- 
sive tool. Initially, the number of autonomous agents will 
be small and the continuous dynamics will be low- dimen- 
sional. at least until further breakthroughs appear on this 
frontier. The approach becomes more interesting when 
more of the "burden of control" can be placed at the logic 
level, for the performance of model checking is relatively 
unaffected by the number of states of the automaton. Some 
work that remains to be done is obtaining the approximate 
automaton automatically, given the analytical representa- 
tion of its hisimulation. and to characterize the robustness 
of the reach set to model variations. 
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