Proceedings of the 37th IEEE
Conference on Decision & Contro!
Tampa, Florida USA e December 1998

FPO1 15:10

A geometric approach to bisimulation and verification of hybrid
systems

Mireille Broucke
Department of Electrical Engineering and Computer Science.
University of California, Berkeley CA 94720
mire@eecs.berkeley.edu

1 Introduction

We consider a hybrid system which is viewed as a two level
system with a finite automaton at the top level and a dynami-
cal system corresponding to each location at the lower level.
Hybrid models arise in applications where multiple agents
communicating via protocols are operating under feedback
control. If there are many agents each executing maneuvers,
it is necessary to do a verification ot the protocols to ensure
desirable properties such as safety, liveness, fairness. and
no deadlock. Likewise, control objectives at the planning
level can be stated in terms of temporal logic formulas, and
these formulas can be checked by formal verification meth-
ods (model checking) [9].

We are interested in constructing bisimulations in order to
carry out a verification of the safety problem.

Safety problem: For hybrid system A determine if a ser of
states P can be reached from an initial set of states QU. P
is usually the unsafe set to be avoided.

A primary focus of research is to extend the the class of
hybrid systems that have a finite bisimulation. The tech-
niques developed have primarily involved transforming the
state variables to obtain a reduction to timed automata [5].
However, the ability to perform this reduction is increas-
ingly difficult as the control location dynamics are allowed
to be more general.

Two fundamental and potentially compelling questions are:
can a bisimulation of a hybrid system be found analytically?
and, what geometric structure should the continuous dyv-
namics of the hybrid svstem possess in order to have a finite
bisimulation? We provide some results on these questions,
but our approach is, in general, approximate, and only in
certain cases is it exact. We will develop techniques for a
hybrid system that is “close” to the original system. In par-
ticular, the initial and final regions, enabling conditions, and
reset conditions will be approximated so that they are com-
patible with the bisimulation. This work has been inspired
by the papers by Caines {2, 3] and the groundbreaking paper
of Alur and Dill [1].
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2 Definitions

2.1 Notation

x’ refers to the updated value of a variable x after a tran-
sition is taken, and x refers to the time derivative.  All
manifolds. vector fields. curves and maps are of class C™.
Manifolds are assumed to be connected. paracompact, and
Hausdorff. C(M). X(M). and Q¥ (M) denote the sets of
smooth real-valued functions. smooth vector fields. and k-
forms defined on a manifold M.

2.2 Hybrid automata

A hybrid automaton is a system A =
(Q.Z,D. QO, 1,E.J.O)) consisting  of the follow-
ing components:

State space Q = L x M consists of a finite sct L of control
locations and n continuous variables x € M, where
M is an n-dimensional differentiable manifold.

Events X is a finite observation alphabet.

Vector fields D : L - X(M) is a [unction assigning an
autonomous vector field to cach location. We will use
the notation D(/) = f;. Tor location /. the dynamics
are given by X = fi(x), fi € X(M).

Initial conditions Q" : L — 2™ is a function assigning an
initial set of states for each location. If the automaton
is started in location /. then x € Q*(/y atr = (.

Invariant conditions / : L — 2™ is a function assigning
for each location, an invariant condition on the con-
tinuous states. The invariant condition restricts the
region on which the continuous states can cvolve for
each location.

Control switches E is a set of control swilches. ¢ =
(I,0,1') is a directed edge between a source location
1 and a target location I’ with observation o.

Jump conditions J : £ — G x R is a function assigning
to each edge a guard condition and a reset condition.
G is the set of guard conditions g on the continuous
states where g € M is compact. R is the sct of reset
conditions r where r : M — 2M is a compact set-
valued map. We will use the notation G(e) = g, and
R(e) = re.
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Final condition 9/ C Q is a sct of final states. We will
assume there is ong final location so that @ = {If} X
X/ x)cm.

We make the tollowing simplifying assumptions:
Dforeache = (Lo l'y € E, go € I(1), re(ge) € 1),
2) Q°() € 1), and

)y xlcrat

2.3 Semantics

A state is a pair (/. x) satisfying x € (/). The invariant
can be used to enforce edges from location /. In location
! the continuous state evolves according to the vector field
fi- Z(l) will denote the set of events possible at [ € L
and E(/) will denote the set of edges possible at / € L.
An edge is cnabled when the discrete location is / and the
continuous state satisties x € g, for ¢ € E(l). When the
transition ¢ = (/, o.1') is taken, the event o is recorded,
the discrete location becomes /. and the continuous state is
reset (possibly non-deterministically) to x” := r.(x).

Foro e ¥ a o-srep is a wple L O x @ and we wrile
g 5 ¢'. Define ¢/ (x) to be a trajectory of f; at [, starting
from x and evolving for time ¢. For r € R, define a r-step
t be the tuple >C @ x Q. We write (I.x) - (I, x))
it (Dl =10 2yarr = 0.x" = x, and (3) for + > 0.
x' = ¢l(x). where @l (x) = fi(¢l(x)). We will usc the label
A to represent a 7-step with an arbitrary time passage.

A timed word of A is a finite or infinite sequence T
07172 ... of letters from £ U R*; that is. each 7; is ei-
ther an observation of A or a non-negative real that denotes
a duration of time between observations. The timed word T
is divergent if T is infinite and Y _{zi|t; € RT,i € N} = oc.
A wrajecrory m of A is a finite or infinite sequence of the
where go € Q0. and for
all i > 0, we have ¢; € Q.1 € £ URT. The trajectory
7 accepts the timed word T = tg7) ... and 7 is called di-
vergent if T is divergent. The w-language, called Lang(A),
is the set of all divergent timed words that are accepted by
trajectories of A. A run of A is the projection to the dis-
crete part of a trajectory accepted by A, namely, a finite or
infinite sequence lo, /1, l2, ... of admissible locations. We
assume throughout a non-zeno condition: every trajectory
of A admits a finite number of o-steps in any bounded time
interval. Finally. given a set of initial states Q¥ € Q, the
reach ser of a hybrid automaton A, Reuchy, is the set of
states that can be reached by any trajectory of A.

- T T k5]
formmx g0 = g1 > g2 = ...

2.4 Bisimulation
Given a hybrid system A = (Q. %, D, 0° 1. E, J, 0/).a
bisimulation of A is a binary relation ~C Q x @ satisfying
the condition that for all states p,g € Q. if p >~ g and
o € X U{A}, then

(it p 5 p/.then3 ¢’ suchthatg > ¢’ and p’ ~ q'. and
(2)ifg 5 ¢/, then 3 p’ such that p 5> p/and p’ ~ ¢/

Let @/~ be the set of equivalence classes of . A bisimula-
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tion is finite if it has a finitc number of equivalence classes.
Using ~~, a quotient system A/~ can be constructed. If
~ is finite, the quotient system A/~ is a finite automaton.
This quotient system can be used in verification of the safety
problem: if P N Reachys;.. = ¥, where P is a set of final
states, then P N Reacha = @. It P N Reachay. # ¥, then
no conclusive answer about the safety problem is obtained.

3 Verification

Iet K be a subset of an n-dimensional manifold M home-
omorphic to the closed, unit n-cube in R”. Foreach/ € L
we construct a finite cover of K, denoted €y, consisting of
a finite collection of compact n-dimensional cells ¢; such
that K = U}"c¢;. The boundary of each cell consists of a set
of 2n faces of dimension (n — 1) and a collection of edges
of dimension 1 — 2 to | and a set of 2" vertices. We re-
quire int(c;) # ¥ and int(c;) Ninr(cj) = @,Yi # j. for
Ci,Cj € C.

Let C be such a cover of K. The diameter of ¢ € C is
plc) = sup{d(x. v)|x, vy € ¢}, where 4 is a Riemannian
metric defined on M. The mesh of C is

H(C) = sup{p(c)|c € C}.

If V is a closed subset of K. we say (V), is a p-
approximation of V with respect to C with mesh |, given
by

(Vig={ceClcnV #d}

P ={l} xU CL xM,then(P), = {lI} X (U),.
Fact dy(V,(V),) < u.

Let C(K) = {C; |1 € L} be the sct of covers of K for
automaton A. C(K) induces an equivalence relation = on
Q. Wesay g ~ q’, where g = (I, x) and g’ = (I', x"} if
(hi=r,

QxegKiffx" ¢ K,

3)ifx,x' € K. thenx € ciff x’ € e, Ve € ().

We say cover C; of K atl is a stable partition of the flow it
foralll, x, x’, yandr > 0,if (I, x) >~ (I, x') and y = ¢ (x),
then there exists a y’ and ¢’ > () such that y' = ¢y(x’) and
(. y)y = (., y).

3.1 Approximate automaton

Suppose we are given a collection of stable partitions C(K)
of K C M for hybrid automaton A. We write C(K, p) if
w(Cry = u > O foralll € L. We define the approximate
hybrid automaton

0

Ay =(Q.%,D.0% 1, E, J. Qf).



0. %, D, and E are unchanged. Q2 I Jy. and Q,f, are
the p-approximations of the respective sets. That is,

h = (QNK),.

lu(]) = (,([)mK),A,

J)l(f’) = ((ge n K)/“(r(’)“)

0 = 1V xXInK).
Ife =(.0.1")and
mx)
O(x) = {_ve ﬂ('; [Vr'ieC/.xev,' (3.1)

i=1

then the set-valued map (r.),, is delined point-wise by
re)ule) = (re(OO) N K,

This operation introduces extra non-determinacy in the ap-
proximate automaton because the identity map is not pre-
served. in general.

We will say A, is an over-approximation of A on K if the
following additional conditions are satisfied:

1. Q%) < K.cachl e L.

2 ge.relge) € K.eache € E.
3 X/ CKk.

4. 1) CK.

Note that if A, is an over-approximation of A on K. then
Reachp ; k C Reachy, IK.

Approximate Verification Problem:

Given hybrid automaron A, C(K . j0) with jt > O and P C
L x K. determine if (P)y 01 Reacha, = 0.

Remarks:

(D IF (P), N Reachy, # oand A, is an over-

approximation of A on K. then P N Reachy = W.
However, if cither (P}, N Reachy, # Wor Ay is not
an over-approximation of A on K. we have no ¢on-
clusive answer about the original safety problem.
It (P), 0 Reachp, = ¥ for > O then forall § <
1. (P)s 0 Reuch oy = W. Theretore, we can tind a
coarsest p-approximation A,- which verifies that the
original system is salc.

Theorem [Stable Partitions] Given hybrid auiomaton A
and K C M homeomorphic to the closed, unit n-cube, sup-
pose there exists C(K. 1), a collection of stable partitions
of K. Then > is a bisimulution for A,,.

4 Construction of bisimulations
In this section we elaborate a geometric construction in or-

der to derive an analytical representation of the bisimula-
tion. The main geometric tool is foliations. The reader may
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refer to [6] for background. We are interested in foliations
whose lcaves are regular submanifolds. By the Pre-Image
theorem, regular submanifolds can be constructed by sub-
mersions. A foliation globally defined by a submersion is
called simple.

Let f € X(M). We will define two types of simple co-
dimension one foliations with respect to f, called tangential
and transversal foliations. For this we require a notion of
transversality of foliations.

Amaph : M — N is transverse to foliation F of N if either
h~U(F) =d.orifforevery x € h" Y F) h  TeM+Tho F =
TnxyN. A submanifold P on M is transverse to foliation F
of M if the inclusion map i : P — M is transverse (o
F. A foliation F’is said to be transverse to F if cach leaf
of F’ is transverse to F. A foliation in general does not
admit a transversal foliation, but a local submanifold Xy of
M such that X, intersects every leaf in at most one point (or
nowhere) and 7, X, + T F = T. M. can be found.

A tangential foliation F of M is a co-dimension one {oli-
ation that satisfics f(x) € Ty F,Vx € M: thatis. fisa
cross-section of the tangent bundle of F. A rransversal foli-
ation Fi of M is a co-dimenston one foliation that satisfies
f(x) ¢ T\ F, ¥x € M. A tangential foliation is therefore an
invariant of the flow: an integral curve starting on a leal of
the foliation remains on it forever, whereas integral curves
hit the Icaves of a transversal foliation transversally.

We construct a collection £ of n — 1 tangential foliations on
K < M and one transversal toliation F,, :== F} on K. Ad-
ditionally. we require a regularity condition on this collec-
tion of » foliations: each pair of foliations (F;, Fj).i # j
is transversal. Tor simple foliations. the following lemma
provides an algebraic test for regularity.

Lemma Ler M be an n-dimensional manifold and define
hi M — R.i = 1...n acollection of submersions on M.
If dh; are linearly independent on K C M, then the folia-
tions defined by h~Y(R) are mutually ransversal on K .

We will not use all of the leaves of a foliation, but only
some finite subset of them. We discretize a simple foliation
as follows. et h : M — R be the submersion of a simple
co-dimension one toliation F. Given an interval |a, b]. a
gridsize A = 254 ~ 0 with N € ZT . define the finite
collection of points W = {a, a+ A. ... .b}. Then. h=H(W)
is the discretization of £ on h~Y(|a. b)).
A bisimulation can be constructed using foliations by elab-
orating the following steps:

I. Find (n — 1) simple co-dimension one tangential fo-

liations on K C M. foreach f;.1 € L.

Construct either a local or global (on K') transversal
foliation for each fi.

. Check the regularity condition for mutual transversal-
ityon K.

Discretize the foliations to obtain a cover C; with
mesh .



5. Construct the approximate system A,, by approximat-
ing the enabling end reset conditions. and the initial
and final regions using C; for each /.

Theorem {'ohations} Given hvbrid automaton A, @ > 0,
and an open U C M onwhich. ¥l € L. fj € X(M) is non-
vanishing, suppose there exists a set of n — | simple, mu-
tually transversal co-dimension one tangential foliations on
U. Then there exists K C M homeomorphic to the closed,
unit n-cube and a collection of stable partitions on K such
that Ay, has a finite bisimulation.

Proof: Suppose that the collection of tangential foliations
for each [ is denoted {F: }5:1.,.. 1 and the associated sub-
mersions are th = l.....n— 1. We can find a closed
set K < U such that (1) hi(K) = |—1, 1] (by rescal-

ing h;. if nceded). and (2) there exists A, independent of
Wi = 1.....n — 1 forcach { € L. Define the coor-
dinates ¥| = hy.....vy = h,. Fix N € Z* and deline

A= -,'\,— > (). Take the subcollection of submanifolds vy =
Wi, ...,V = Wy, Wwhere w; € {0. £A, £2A. ... =1}
Call this collection of submanifolds § {s.} and let
K=K \ Uglse}. K is the union of (2N)" disjoint open
sets {cph. et §, = h™(s,) and &g = h=(cp).

We can define the equivalence relation ~ on L x M. For
p=(.x)and g = (I'. x"). we say p > ¢ iff

Ht=1I.

Dx¢g KifTx" ¢ K.

Ditx.x" € K. thenx € §, iff v € 5, and x € &p iff
x" € ép. V. B.

2 defines a stable partition on K with a finite number of
cquivalence classes, so we can invoke the Stable Partitions

Theorem to obtain the bisimulation of A,. ]
Example |[Brunovsky normal form] Consider the
Brunovsky normal form for linear systems in R*
Xi Xiy1, 1=1,2.3,
Xy = u.
The three tangential foliations are
> 4
Xaxg X3X3 X4
Xy — — -5 = «
u 2us 8w
3
X3X4 X3
Xy — — > =
u 3u-
L
X3 — Xy = 3.

A transversal foliation is x4 = c4. We confirm the regular-
ity condition on the foliations by checking the rank of the
matrix:

2 k)
X, vy X2 RREY 3
L =% e %+ s
X, X3 Xy
Dh=|0 1 -4 —24+3
00 1 ~4
0 0 0 1

This matrix is full rank for all u # 0; therefore, the partition
is defined on all R*.
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5 Exterior differential systems

Tangential foliations of a vector field can be found using
first integrals. A natural setting for finding first integrals
is provided by exterior ditferential systems. A set of inde-
pendent one-forms ' ... . 7 generates a Pfalfian system
I =o' ... .0 =Y frie"]| fi € C(M)}. The Plai-
fian system satistics the Frobenius condition if on¢ of the
following cquivalent conditions holds:

(1) de' is a linear combination of o'. ... . Y.
Ddo' Ao AcAe! =0i=1.....q.
iy j 7 come 9
(3 do' =37 0/ nol somep).
We write do' = 0 (mod @!.... . 0¥) if o satisfics the
IFrobenius condition.
Theorem |lrobenius] Ler I = {w'.... .o} be a Pfaf-

Sfian system with one-forms satisfving the Frobenius condi-

tion do' =0 (mod I) fork = 1.... . q. Then there exist
coordinates hy. ... . hy such thar I = {dhy. ... .dh,}.

In this case the Pfaffian system is said to be complerely in-
tegrable and the h; are the first integrals of /. Thus. the
Frobenius theorem is a useful tool that provides local first
integrals.

Theorem |[liirst Integrals] Given hvbrid automaron A, jt >
0. and an open U C M on which. ¥l € L. fi € X\M)
is non-vanishing, there exists K C M homeomorphic to the
closed, unit n-cube and a collection of stable partitions such
that A, has a finite bisimulation.

Proof: The approach is to find a codistribution ol one-
forms {w.... . w"} such that u’ dh; = 0. Then we
will show that the n — | independent functions h; : K — R
are submersions and by construction first integrals. They
will provide n — | simple. co-dimension one tangential fo-
liations. so we can invoke the Foliations theorem to show
existence of a bisimulation.

Fix [, and let f; Ji. On some open V € U we can lind
n — 1 smooth complementary vector ficlds fo. ... . f, such
that span{fi.... . fa} = R"ateachx € V. {fi..... fa}
is clearly involutive on V. 1et qbf(x) be the flow ot f;. Fix
x" € V. There exists W, a neighborhood of 0 in R” such
that the map G : W — V given by

[ o ah 0
ay - ¢(l,,(x ).

is well defined. Since the ¢'s commute, we can change the
order of integration

9G
dai /

(ay.....dan) — ¢

-9 S

[
¢(r,: > ¢u]

da;

=l gitl om0y e 0
a.1 " Waj.y 7Y a,,(x )—f,(.\” ).
Since the f; are independent, % is nonsingular, so G~
ai v

exists locally on V/ C V by the Inverse Function Theorem.
Let[A1(v). ... . ho(W]T =G~ Y(y). y € V’. By definition
a0G=" | ToG
< ) l:( ] — 7

dy E




T fi=0fori=2,....n.80hy ... hy

are the desired functions. Since G~( v) has rank n. the h;
are independent submersions. O

In particular,

5.1 Parallel composition

Bisimulation for hybrid systems is, in general, not closed
under parallel composition of automata. Here we give a
sufficient condition on the Pfaffian form of the continuous
dynamics of each control location so that if two hybrid au-
tomata have a finite bisimulation. then so does their parallel
composition.

Proposition [Parallel Composition] Given hybrid automata
At = (L1 x M7, 2, Dy, Q% Iy, Er. Jy1, Q] ) and As
(Ly x M3, %2, D2, Qg, b, E2, Jo, Q% ), suppose there ex-
ist K1 € My, K» C M such that, via the First Integrals
theorem, bisimulations for Ay, and Ay, exist. If for each
pair (1LI).1 € Li,I' € Ly there exists a one-form of the
Pfaffian system at ]

hidxy, ... ,dxy)—dr =0,

and a one-form of the Pfaffian system ar I’

h,(d)(n_H, e d.’fn+m) —dr =0,

such that the one-form

hidxy, ... ,dx,) — W' (dxes1, ... .dxpim) =do
is exact, and o is independent of the first integrals on K|
and K of the vector fields arl and I, respectively, then a

bisimulation of (A1 x A2)y exists.

Proof: From the First Integrals theorem. we have n — |
first integrals for each f;,/ € Ly and m — 1 first integrals
for each fi,l' € Ly, giving n + m — 2 first integrals for
the vector field f = [fi fr]7. But we require n + m — 1
first integrals to construct the bisimulation. The missing first
integral is provided by the exact form «. Using the fact that
h(dxy,...,dx,) has the form /‘ll(Y{) forsomei = 1,...,n,
and similarly for A’, it can be verified that « satisfies L yo =
0. O

6 Applications

Planar Aircraft Consider the coordination problem ol two
aircraft A and B flying at a fixed altitude near an airport
[8]. Each aircraft is modeled by a hybrid system in which
an automaton Jocation corresponds to an atomic maneuver
performed with constant control inputs. The control inputs
are changed instantaneously upon switching control loca-
tions. The state is g € SE(2) and X is an element of the
Lie algebra se(2). Assuming the aircraft does not exercise
it’s pitch control, the kinematic dynamics of aircraft A are
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given by ¢ = g X. where

cos¢p —sing x 0 —uy uz
g=|sing cos¢p ¥ X={u 0 0
0 0 1 0 0 0

¢ is the yaw angle, and the inputs uy, w2 control the yaw
and velocity. respectively. of the aircraft. There are two tan-
gential foliations given by cquations

uix — uysing

{l

Cy

Il

ury +uacosg Cy
and a transversal foliation given by ¢ = ¢g. Letting the state
variables and inputs of aircraft B be ¢p.xp. vp. u1p. and
uap. analogous expressions for the tangential and transver-
sal foliations are obtained for aircraft B. An additional tan-
gential foliation is found for the parallel composition of the
two systems given by

uipha — ui1Ahp = cap.

We check the regularity condition on the five tangential fo-
liations and cither of the two transversal foliations. Namely,
Dh takes the form

Uiz 0 —uzpcosda 0 0 0
0 w4 —uaasinga 0 0 0
0 0 uB 0 0 ~UjiA
0 0 0 mp 0 —uxpcosop
0 0 0 0 wigp —wurgsingy
0 0 0 0 0 |

This matrix has full rank so long as w4, ;5 # 0. so the
partition is defined globally on R* x T2, I, in addition,
%llg is rational. a finite bisimulation on K x T7. for compact
K ¢ R*. exists.

Mobile robot Consider the coordination problem of two
mobile robots A and B. operating in a closed workspace of
a factory. The robots are modcled using hybrid automata,
with each control location corresponding to an atomic ma-
neuver, such as move forward, or change direction. Lach
location of the automaton has the kinematic model of the
associated mancuver. We assume in cach automaton loca-
tion. the control inputs are constant, but they are allowed to
change instantaneously upon switching locations. The kine-
matic model for each robot, converted to chained form [7]
is the following:

X1 = u
X2 = u>
X3 = XUy
X4 = Xxaup.



There are three tangential foliations given by the equations

uo
X2 — —X] = @
uy
Ui
X3 — —X5 = (3
2ur
:I
Vfur ™ 3 g
Xgt+-{—f & — —x2x3 = (4.
3 \uo < u

and a transversal foliation given by: x; = ¢;. These folia-
tions detine the bisimulation for cach robot, by checking the
regularity condition as follows:

| 0

i 1 0 0

Dh=1| ¢ —Lx Lo
- 2

0 e+ (4) 3 -Se o

This matrix has full rank so long as «; # 0 and u2 # 0.
Thus. the partition for each robot is defined globally on R*.

When we take their parallel composition. an extra tangential
foliaton is introduced:

UIBXIA — U1AXIB = CAB.

A calculation analogous to the previous example shows that
a bisimulation for the parallel composition exists.
7 Symbolic execution theory

In this section we consider the implementation of the theory
of approximate verification in a symbolic model checking

algorithm. A symbolic execution theory S of A is a set of

predicates assigned truth values by the states of A and sat-
islying:
1. the emptiness problem for cach predicate p of S is
decidable,
2. 8 is closed under boolean operations and Pre and
Post operations, ' ‘
3. (Q7) e 8. where (QF) denotes the set of formulas
defining Q7.

Suppose the tangential and transversal foliations on K for
cach / € L are defined by submersions hg(x) = ¢j. Let
S be the class of formulas hf(.r) % ¢i with & = {<, <
.=,>.>},l &« L i=1,...,nand all finite conjunctions
and disjunctions of these expressions. A finite automaton
with its symbolic execution theory is said to be effectively
presented [4].

Theorem A, with the theory S is effectively presented.

8 Critique and future work

This paper opens up avenues for applying model checking
algorithms to the verification of safety problems for hybrid
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systems consisting of coordinating autonomous agents, and
especially hybrid systems where the continuous level is a
model of the kinematic dynamics. There are some lim-
itations and obstacles to be overcome. First, it is likely
that model checking will still be a computationally expen-
sive tool. Initally, the number of autonomous agents will
be small and the continuous dynamics will be low- dimen-
sional. at least until further breakthroughs appear on this
frontier. The approach becomes more interesting when
more of the "burden of control” can be placed at the logic
level, for the performance of model checking is relatively
unaffected by the number of states of the automaton. Some
work that remains to be done is obtaining the approximate
automaton automatically, given the analytical representa-
tion of its bisimulation, and to characterize the robustness
of the reach set to model variations.
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