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Abstract

We present results on existence of continuous selections of trajectories of hybrid
systems evolving according to Lipschitz nonlinear inclusions. First, we utilize the
Skorohod metric to define both a family of pseudo-metrics and a metric on the
set of trajectories accepted by the hybrid automaton. We show that under a non-
Zeno condition the latter metric is complete. Second, the existence of continuous
selections with respect to the family of pseudo-metrics is proved under a relatively
mild assumption of transversality.
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1 Introduction

Little work has appeared in the literature on hybrid systems studying the
qualitative behavior of their trajectories. This is a difficult task because hybrid
systems represent a very rich class of dynamical systems.

In this paper we study properties of the set of trajectories of a hybrid system
evolving according to Lipschitz nonlinear inclusions. Specifically, we inves-
tigate the existence of continuous selections of trajectories with respect to
initial conditions. In order to study continuity in a setting where trajecto-
ries can change discontinuously due to resets of the hybrid system, we adopt
the Skorohod metric for the continuous part of the hybrid trajectories and
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augment it using the discrete metric on the sequence of locations visited by
the automaton. In this manner, we introduce a metric topology on the set of
trajectories accepted by the hybrid automaton and present conditions under
which this metric space is complete. Our completeness result asserts that the
limit of a Cauchy sequence of hybrid trajectories is itself a trajectory accepted
by the automaton and thus it may be viewed as regularity property of so-
lutions. Zeno trajectories are excluded by imposing a non-overlap condition
on the guards and resets. Second, the existence of continuous selections with
respect to a family of pseudo-metrics based on the Skorohod metric is proved
under a relatively mild assumption of transversality.

An early paper by Witsenhausen [11] considers a model for switching be-
tween vector fields. The model eliminates non-determinacy by assuming that
transitions are taken at the first time the enabling condition is reached, en-
abling conditions are non-overlapping (also a non-Zeno condition), and the
reset map is the identity. The present work extends this model as we permit
non-determinacy in several features of our model: (1) the dynamics follow a
differential inclusion, (2) multiple enabling conditions (thus, multiple edges)
can be reached from a state, (3) a transition can be taken at any time while
an enabling condition is active, or not at all, and (4) the reset map is non-
deterministic. A paper by Tavernini [10] considers a hybrid system with dif-
ferential equations in each location. The paper obtains a result on continuity
with respect to initial conditions based on a transversality hypothesis at the
boundary of the enabling regions. Our result on continuity with respect to ini-
tial conditions is closely related, though we make use of a result by Cellina and
Ornelas [5] on continuous selections of Lipschitz inclusions and a more general
transversality condition suitable for inclusions. Also, the paper by Gupta et.
al. [8] introduces a metric for finite trajectories of timed automata. Finally,
while this paper was still under review results on continuity of solutions of
hybrid automata appeared in [9]. The systems studied in [9] are hybrid au-
tomata with complete vector fields at each location. Also, a key assumption is
that the automata are deterministic, i.e., there is a unique hybrid trajectory
for each initial condition, that the guards are components of the boundary of
the domain of each location and that this boundary is C* and the vector field
is transversal to it. Moreover, the topology used in [9] to compare hybrid tra-
jectories is weaker than our metric topology and hence a parameterization of
trajectories which is continuous in the topology utilized in [9] is not necessarily
continuous in ours.

The paper is organized as follows. Section 2 contains some preliminary back-
ground on hybrid automata. Section 3 defines a suitable topology for trajec-
tories of hybrid systems using the Skorohod metric. The study of continuity
with respect to initial conditions for hybrid systems with Lipschitz inclusions,
constituting the main contribution of the paper, is undertaken in Section 4.



2 Preliminaries
2.1 Notation

We denote by |-| the Euclidean norm and by d(x, B) the distance from a point
z to a set B defined by d(z, B) = inf,cp|r — y|. B(x,r) denotes the open ball
centered at x of radius r, and A° the interior of a set A. The Hausdorff distance
between two sets dp is di(A, B) = max{sup,c4 d(z, B),sup,cp d(y, A)}. For
an interval I = [to,t1], let C(I) and C,.(I) denote the spaces of continuous
and absolutely continuous functions f : I — R", endowed with the sup norm
[flloc and the norm | fllec = [f(to)| + [,[f(s)|ds, respectively. Finally, F(R")
denotes the space of differential inclusions on R® and D(I,R") the space of
all functions f : I — R” that are left continuous, lim, f(¢) = f(a), and have
limits from the right.

2.2 Hybrid automata

A hybrid automaton is a tuple H = (@, %, D, E, G, R) consisting of the fol-
lowing components:

State space () = L X R” is the state space where L is a finite set of control
locations.

Events X is a finite observation alphabet.

Differential Inclusions D : L — F(R") is a function assigning a differential
inclusion to each location. We use the notation D(l) = F;.

Control switches £ C L x ¥ x L is a set of control switches. Each element
e = (l,0,l') € E is a directed edge between a source location [ and a target
location I" with observation o.

Guard conditions G C 2%" is the set of guard conditions on the continuous
states. We use the notation G(e) = g. C R".

Reset conditions R is the set of reset conditions. We use the notation
R(e) = r,, where r, : R* — 2%" is a set-valued map.

2.2.1 Semantics

A state is a pair (I, z) € Q. X(I) denotes the set of events possible at | € L and
E(1) denotes the set of edges possible at [ € L. For o € ¥, a 0-step is a binary
relation 5 C Q x @ and we write (I, z) = (I',z) iff (1) e = (1, 0,1") € E(1), (2)
T € ge, and (3) 2’ € r(z). A o-step need not be taken even if z € g,. Let ©!(z)
be a trajectory of F; starting from z and evolving for time ¢. For ¢t € R, a



t-step is a binary relation - C Q x Q and we write (I, z) = (I, ') iff (1) 1 =1/,
(2) at t =0, 2' =z, and (3) for ¢t > 0, 2’ = ¢}(z), where ¢'(x) € Fl(goi(x))
A trajectory w of H is a finite or infinite sequence 7 : qq bo, Il N g2 LN

where ¢; € Q and 0; € YURT. A trajectory is accepted by H if each g; N Giv1
is a t-step or o-step of H, and we denote the space of all such trajectories by H.
A step of a trajectory refers to a t-step followed by a o-step. Associated with
the kth step of a trajectory is the data I° = [0, t!] or I* = (t*, t*+1], for k > 1,
the time interval of the step, 7% = t*+1 — ¥ its duration, e* = (I¥, o%, [¥+1),
the edge, and ¢*(t) = (lk, :L"’“(t)), the state, where ¥ is fixed over I* and z*(¢)

satisfies 2% (t) € Fi (xk (t)) Thus, the step can be represented as
(15,25 (#54)) = (1,28 (@) 2 (L2 @), (1)

satisfying o (t**1) € g.x and zFT1(tFH14) € ro (x’“(t’““)). We don’t exclude
the possibility 7% = 0, in which case the step is only a o-step. A run of H
is the projection to the discrete part of a trajectory in ; namely, a finite or
infinite sequence °,1',1%,... of admissible locations. We also refer to z(t) :=
{z*(t) : t € I* k=0,1,...} as the continuous part of the trajectory.

Trajectories in H might exhibit finite escape time for the continuous state,
or admit an infinite number of o-steps in a bounded time interval (i.e., Zeno
trajectories). Therefore, we define the regular trajectory language I C H as
those trajectories whose continuous part belongs to D(R,, R") and has a finite
number of discontinuities in any bounded interval of time. Dealing with a
subset of all trajectories might pose difficulties in the analysis especially when
trying to characterize convergence or continuity. For example, if we employ a
topology suitable for functions in D(R,,R") it is unclear whether II is open
in ‘H, or whether a converging sequence of elements of II is always non-Zeno.
We introduce a suitable definition below in order to surpass some of these
difficulties.

Assumption 1 For each e,e’ in E, g. is a closed set, r, has closed values
and d(re(ge), gef) > 0.

If Assumption 1 holds, and under mild conditions on the inclusion, i.e., each
F; has bounded values and is upper semicontinuous, then any trajectory of H,
whose continuous part belongs to D(R,, R"), satisfies the non-Zeno condition
a-priori.



3 Topologies for hybrid systems

We introduce suitable topologies for 11, using the Skorohod metric. The Sko-
rohod metric, denoted d,(-,-), was originally used in the study of stochastic
processes with right (or left)-continuous sample paths, such as Poisson pro-
cesses [2]. Given two functions f € D(I;,R") and g € D(I,,R"), ds(f,g) is
the infimum of € > 0 for which there exists a strictly increasing, continuous,
surjective function « : Iy — I, such that

(a) sup |k(t) —t| < e and
tely

(b) sup |£(t) = g(s(1))| < e.

tely

3.1 The pseudo-metric space (IT,d™)

We define a topology on Il via a family of pseudo-metrics that combine the
Skorohod metric on the continuous parts of a pair of trajectories with the
distance between the corresponding runs in the Cantor topology.

Let 7,7 € II with 7 = {I¥, z*(-),#*} and z(-) the continuous part of 7, where
z* : (t*,t*+1] — R". We adopt the analogous notation for #. Let z(™) (™)
m > 1, denote the restriction of x,% on [0,¢™] and [0,#™], respectively. We
define the pseudo-metric d™(-,-) by

m—1 1 . o
dm(’ﬂ',’ﬂ') = ds(x(m),x(m)) + Z ﬁﬂ(l #1 ) ,

k=0
where I() is the indicator function. Thus, (H, {dm}) is a topology on IT in-

duced by the family of pseudometrics. Also, for fixed m > 0, (I, d™) denotes
the pseudo-metric topology on the m-step trajectories of II.

3.2 The metric space (I1,d>)

We define a metric topology that utilizes the Skorohod metric for functions
in D(R;,R"™) (see [6]). This approach has the advantage that properties of
this metric are readily available, though its definition is somewhat more cum-
bersome. Let A be the collection of strictly increasing, Lipschitz continuous
functions A : Ry — R, with A\(0) = 0 and lim;_,, A(t) = 0o such that

Als) = A®)

¥(A) := sup |log < 00.

§>t>0




This function estimates how much A(¢) increases relative to ¢. Notice that
when () is large, then the maximum or minimum rate of change of A is
different from one. Also, when v(A\) = 0, then A = ¢. For f,¢g € D(R;,R"),
A€ A and u € Ry define

ds(f,g, A u) = StlZl]O) min{l,

(tAu) = g(A(E) Aw)|},

where a A b = min{a, b}. The Skorohod metric d°(-,-) is defined by

dX(f,9) = 1nf [max{’y()\), /000 e_“cis(f,g, A, u) du}] :

Let 7,7 € II be as in Section 3.1. We define the hybrid metric d*° by

o0

&, 7) = d(2,5) + 3 21—ku(zk £, @)

k=0

It is well known ([6], Theorem 5.6, pg. 121) that (D(&,]R”), ng) is a complete

metric space. The main result of this section is that the metric space (II, d*)
is also a complete metric space.

Theorem 2 Suppose that H satisfies Assumption 1, that r. has closed values
and 1s upper semicontinuous, for all e € E, and that at each location |, F; has
nonempty, compact, convex values and is upper semicontinuous. Then (I1, d*)
15 a complete metric space.

PROOF. Let {7r], j € N} C (I1,d*®), with m; = {1}, J() t*}, be a Cauchy

sequence, where z% : (t¥,#5*'] — R is a solution of &% € Flk( %). Let ;(-)

denote the continuous part of 7;. By (2), {z;},en is Cauchy in ( (R, R™), go)
and thus converges to some z € D(R;,R"). We must show that z is the
continuous part of a trajectory 7 € II and d*(mj,7) — 0, as j — oo. By
Proposition 5.2 in ([6], pg. 118), lim;_,o d3°(z;,2) = 0 if and only if there
exists {A;} C A such that lim; , v(};) = 0 and

lim sup ‘ z(t) — a:(/\j(t))‘ =0, for all T > 0. (3)

J=00 0<t<T

Note also that lim;_,o 7(A;) = 0 implies that

lim sup ‘/\j(t) - t‘ =0, for all T > 0. (4)

J=00 0<t<T

Since the inclusion F; has compact values and is upper semicontinuous, it
follows that all solutions that lie in a bounded domain are equicontinuous



([7], Lemma 2, pg. 78). Using this fact along with (3)—(4) and Assumption 1,
one can show that z(¢) has at most a finite number of discontinuities in each
bounded time interval. Moreover, if {t*};>; are the discontinuity points of z,
then tf — t* as j — oo. Since {m;} is Cauchy, for each k € N there exists
Jo = Jo(k) € N such that d*(mj,,7;) < 2%, Vj > jo. This implies lf = l;-co,
Vj > jo. Set I* = 1% and e* = (I¥,0%,1**1). Let 2* denote the restriction of =
on (t*,t**1]. The equicontinuity of z;(¢) on bounded domains along with (3)-
(4) implies that z¥(t) — 2*(t), as j — oo, uniformly on compact subsets of
(t¥, t¥*1). Hence, by Corollary 1 in ([7], pg. 77), z¥ is a solution of the inclusion
i* € Fp(z*) on (t*,t¥1). By left-continuity we have z¥(t"!) — z*(t#*1)
which implies, since g« is closed, that z*(t*™!) € g.. The existence of right
limits along with equicontinuity yields ¥ (t*+) — #*(¢*+), and since the graph
of 7. is closed, it follows that z*(t*+) € 7. (xk_l(t’“)). Therefore, 7; converges
to m:= {I¥,2%(-),t*} in (II,d*). O

4 Continuity with respect to initial conditions

Continuity with respect to initial conditions for hybrid systems with Lipschitz
differential inclusions is established under a transversality condition, stated
in Definition 6. Let my be a trajectory starting from ¢y € ). We show that
if my satisfies the transversality condition, and under mild assumptions on
the automaton stated in Assumption 3, there exists a continuous selection of
trajectories from (II,d™) in a neighborhood of gy. Implicit in the definition
of transversality is that the steps of the trajectory have non-zero duration,
i.e., pure o-steps are excluded. The reason for this is the following. Consider
a parameterized family of trajectories m, = {I¥,2%(-),t%}, with a € [0,1],
and suppose that for some k¥ € N, 78 = R th =0, but 7F > 0 for
a > 0. Also suppose that |z871(t%) — 2k (tE+)| and |2F (tE+1) — ght1(ht14)|
are bounded below by a positive constant as & — 0. Then, 7, cannot converge
to mp in (II,d™) (note that in the weaker topology utilized in [9] convergence
under these circumstances is possible). In other words if 7y has a step of
zero duration at one location, this in general forces any continuous selection
of trajectories, in the vicinity of my, to also have a corresponding step of
zero duration. Satisfying this would involve conditions on the composition of
successive reset maps, which we prefer to avoid.

Consider the problem
i€ F(z), =2(0)=¢, (5)

on a time interval [0, T'], where & ranges over a compact X C R" with diameter
0. In addition, we assume the following.



Assumption 3 The set-valued map F' satisfies:

(a) The values of F are closed, nonempty subsets of R™.

(b) There exists K > 0 such that dH(F(x),F(x')) < K|z — 4|, for all z,2" €
R™.

Under Assumption 3, an absolutely continuous solution to (5) exists for each
€€ X [7]. Let & € X and z(-) be a solution of (5) such that z(0) = &. It is
shown in [5] that there exists a selection ¢;(§) from the set of solutions of (5)
which is continuous in £ € X and such that (&) = x(¢). Such a selection

is found by constructing a sequence of approximate trajectories, {gp{(f)} .
]:

which are shown to form a Cauchy sequence in the normed space Cac([(], T])
In particular, this sequence can be chosen to satisfy

(KT)] €2KT
ac§5( T 21‘+1>'

|#©) - ¢ (©)

Thus,

EGEFAEG!

< 5<6KT + eQKT) , VjeN,

ac

where

O =€+ [ pule)ds

is the initial guess of the approximate trajectories. Hence, we obtain the esti-
mate

167() = @(E0)llac < 5(eXT + €257 +1) < 35e* T, VjeN.  (6)
Assumption 4 The automaton H satisfies the following:

(a) The inclusion & € Fi(z) at each location | satisfies Assumption 3.
(b) For each e € E, g, is either a closed, n-dimensional topological manifold
with boundary, or an embedded (n — 1)-dimensional C' submanifold.

(¢) Te is a lower semicontinuous reset map from R™ to the closed, convex subsets
of R™.

Remark 5 Assumption 4 (c) makes possible the use of Michael’s selection
theorem [1].

The following definition is essential for our main result. See Figure 1.

Definition 6 Let e = (I,0,l') and x(t), be a solution of © € F(x) defined
for t € [to,t1], with to < t; and such that z(t,) € g.. We say that x(-) is
transversal to g. at x(t1) if it fulfills the following requirements.



—€ €

u(dge) = V x {0}

Fig. 1. Transversal trajectory of a hybrid system with differential inclusions

(1) If g is a (n — 1)-dimensional submanifold we require that the solution x(t)

(2)

of & € Fy(x) can be suitably extended on some interval (t1,s1], s1 > t1 in
a manner that for some open neighborhood V' of x(t1) and local coordinates
u = (u1,...,uy) centered at x(t1) and mapping V' homeomorphicaly onto
some open neighborhood of R*, and satisfying u, (V N ge) =0,

&(t) - Vug(v) > 1, YveV, ae on {t s z(t) € V}.
If g. is a topological n-manifold with boundary we require that the solution

z(t) of & € Fi(x) can either be continued on some interval (t1,s1], s1 > t1
in a manner that

z(t) € g5, Vt € (t1,s], (7a)
or there exists sy € [to,t1) such that

z(t) € g2, Vt € [so,t1). (7b)

Note that if x(t1) is an interior point of g, then (7b) is trivially satisfied.

We say that m = {I*, 2%(-), t*}, whose steps are denoted as in (1), is a transver-
sal trajectory if 2*(t) is transversal to gex at x*(t**) for all k.

Remark 7 If the enabling region is n-dimensional and has o differentiable
boundary, a simple condition suffices for the solution to be continued in the
interior of the region. Using the notation of Definition 6 and denoting by
Ty(11)9e the tangent space to g. at z(t1) and by Ty, the unit normal to Ty, 9ge
in the direction of g2, we require that F' (ac(tl)) contains a vector n such that
(N, Ng(r,)) > 0, where (-,-) > 0 is the standard inner-product in R".

The transversality assumption allows for the following construction.

Lemma 8 Let & € Fy(x) be a Lipschitz inclusion satisfying Assumption 3,
and let x(t), t € [to,t1], be a solution that is transversal to g, e = (l,0,l'),



at x(t1). Then there exist s; > t1, an open neighborhood W of xz(ty), and a
continuous selection ¢ : W — Cac([to, 31]) of solutions of ¢ € Fi(p) satisfying:

(a) ¢i(x(to)) = x(t), t € [to, 1],

(b) there ezists a continuous T : W — [to, s1], satisfying %(m(to)) = t1, such
that pz)(§) € ge, VEEW.

(c) if ge is (n — 1)-dimensional, there ezists sy € (to,t1) such that, with u
denoting the coordinates in Definition 6,

1

2 a.e. on [sg, 81|, VEEW.

21(€) - Vun (04(8)) >

PROOF. We first consider the case when g, is (n — 1)-dimensional. By the
transversality assumption there exists an open neighborhood V' of z(t;) and
coordinates u : V' — R™ such that z can be continued to (t,s;] for some
s1 > t1 and

%(t) - Vup(v) > 1, a.e. on {t s z(t) € V}, YoeV. (8)
Select times t] < t1, t| € (t1,s1] and ¢’ > 0 such that
B(z(t),d") C V, vt € [t], 1], 9)
and if necessary shrink ¢’ even further so that

un <0, on B(z(t}),d") and wu, >0, on B(z(t]),d). (10)

We use the construction in [5]. First, choose § > 0 to satisfy

30e2K—t) < o7, (11a)
1! 1
20K e* =10 . sup |Vu, (v)| < 3 (11b)
veV

Let {goi &) };io denote the sequence of approximate solutions in Cac([to,t'l']),

with £ in B(x(to), (5), converging to ¢;(£) uniformly in Cac<[t0, t’l’]) Let & :=
z(to). We claim that, for all £ € B(&, 9)

¢i(€) - Vun(pi(€)) = a.e. on [ty 17]. (12)

N =

In order to prove this claim, using the construction in [5], we can derive the
-y OO
following property characterizing the sequence {go{} o Corresponding to each

j > 0, and to each £ € B(&,J), there exists a finite partition {I,({')}Zl of

10



[0, t]], and a finite subset of B(&, ), denoted by =; = {ff, 0</<j—1,1<
1 < nj} (2, not depending on &) such that the following estimate holds a.e. on
Li(¢), fori=1,...,n,

e1
: : _ K(t —to) e2K(t—t0) .
G4 — ol (€ 1)\35K[( ,) e TR
(0= 1)! 2 (13)
i—1
i S Lei Y| < 5K (K@t 1) eant=to
i From (13), using a triangle inequality, we obtain
[£H(6) — GH(EN| < 9K [0 1 AR < pgKeE ) (14)
a.e. on I;(€). By (6) and (11a),
Q&) —a(t) <&, Vtelto,t], VEE B(&,d). (15)

Next, by (15) and (9), ¢!(€) € V, for all € € B(&,9), t € [t,¢"] and j € N.
Hence, combining (8), (11b) and (14), and using the fact that ©?(£2) = z(¢),
for all i =1,...,n;, a triangle inequality yields

P - Vun(l(€)) > () - Vun (#1(9)) = [Vun (2] (€))] - [£1(€) — £D(&D)]
>1——-=- a.e. on [t},t]], V&€ B(&,9).

Passing to the limit as j — oo, we establish (12). Parts (a) and (c) of the
Lemma follow if we select W = B(&p,d). In order to establish part (b), first
note that by (10) and (15)

un (g (€)) <0 and ua(py(€)) >0,  VEEW. (16)

Hence (12) and (16) imply that for each & € W, there exists a unique 7(§) €
(¢, t]) satisfying u,, (gp;(g) (f)) = 0, or equivalently, ;) (§) € ge. To prove con-
tinuity of 7(-), we argue by contradiction. Suppose {£)} C W is a sequence

converging to £* € W, as k — oo, but 7(£®)) 4 7(¢*). Then along some sub-
sequence also denoted by {£®)}, 7(¢®)) — 7* for some 7 # 7(£*). It follows

that @%(g(k))(f(k)) — ¢7(£"), and hence, u, (@%(g(k))(g(k))) — Un (%%*(5*)) But
Up (@;(g(k))(f(k))) = 0 implying u,, ((p;* (5*)) = 0 which contradicts the unique-
ness of 7(&*). This proves part (b).

We now turn to the case where g, is a topological n-manifold with boundary.
Suppose that (7a) applies. Let {gat(-), t € [to, sl]} be a continuous selection
of solutions of ¢ € F;(¢p), defined on some open neighborhood U of & = x(¢,).

11



Wk+1

Fig. 2. Theorem 9: Continuity with respect to initial conditions

Using the continuity of the selection, we pick an open neighborhood W C U
of & such that ¢, (€) € g2, for all € € W. Let p : W — [tg, s1] be defined by

wu(€) == inf{s € [to,s1] : we(§) € g, Vt € (s, sl]}.

The multivalued map T defined on W by T (&) := [u(€), s1] has closed, con-
vex values and satisfies 7(&) = [t1, s1]. It is also lower semicontinuous. To
establish this fact we argue by contradiction. If not, then for some & € W, an
open neighborhood A of 7(¢'), and a sequence {£®)} € W converging to &,
we must have 7 (£€®¥))NN =0, for all k € N. Select s’ € T(£)NN, s' # u(&").
Then @y (£') € g°. Since s' ¢ T (£€®)), for each k € N, there exists s¥) € (s, 51)
such that ¢,u (E®)) € dg.. Let s* be a subsequential limit of {s*)}. Passing
to the limit as £ — oo along this subsequence, we conclude that ¢4« (&) € dge..
However, s* > s’ and therefore s* > pu(£'), yielding a contradiction. Applying
Michael’s selection theorem we obtain a continuous selection 7 : W — [to, $1],
passing through ¢; at &. By construction @z (&) € ge, for all £ € W. In the
event that (7b) applies, the proof is analogous. [J

Theorem 9 Suppose H satisfies Assumption 4 and let my be a transversal
trajectory of H with initial state qo = (I°,&) € Q. For each m > 0, there
exists a neighborhood (I°,U) of qo, with U C R™ open, and ¥ (t,£), a selection
of trajectories of H, such that W(t,&) = mo(t) and & — (-, §) is continuous
in (I1,d™).

PROOF. Suppose that 7wy has an m step run [°,..., ™ !, each step repre-
sented by (1), and visits the enabling conditions ¢°, ..., g™ with 7%, ... r™!
denoting the corresponding reset maps. Observe that in order for & — V(-,§)
to be continuous in (II, d™), the m-step run of t — ¥ (¢, &) must be independent
of £ and therefore must equal {°, ..., ™!

12



First consider the reset of the kth step (see Figure 2). Since 7* is locally selec-
tionable, by Michael’s Selection Theorem, there exists a continuous selection
7* of 7% satisfying

(2 () = b (). (17)

Therefore, given an open neighborhood W+ of z*+1(¢k+14) there exists
an open subset V¥ containing z*(t**!) such that 7* (V’“ N gk) C Wk If
Tk (t**1) € g¢*, then by Lemma 8, for each open set V¥ containing x*(#**1),
there exists an open neighborhood W* of z*(t*+), a time 1 > k1 a
continuous selection ¢* : Wk — Cac([(), fk+1—tk]) of solutions of ¥ = Fj (@bk),

and a continuous map 7* : W* — [0, #¥+! — t¥] such that
PE(ah () =2t + 15, te (0,8 =],

7k (:rk(tk+)) = o+l _ ¢k (18)
¢§k(w)(w) € Vk N gk, Yw € Wk .

An iteration of the above arguments yields, for each £ = 0,...,m — 1, open
sets W* and V* along with a continuous selections 1/* and continuous maps
7% and 7%, as defined above, such that (17) and (18) hold.

Define 9% : W* — VF N g% by F(w) = chk(w) (w). ;From the continuity of
w +— YF(w) and w — 7¥(w), the absolute continuity of ¢ — ¥ (w), and the
triangle inequality

F (w) — PF(w')] < |8k () (W) — Wy (W) + [0k oy (W) — Yy (W)

we conclude that 1;’“ is continuous on W*. Let U = W9 and define for £ € U

ﬁk(f) :fkflo@zkflo---ofooq/;o(f), k=1,....,m; &) =¢
th(€) = eZ_j%‘ o B¢€),  I°(&) =1[0,t"(&)], TH(E) = (t* (&), t*T(€)]

m—1

(t,6) = { (It g 0B©)) s te 16

k=0

It follows that each #*(-) is continuous on U. To show continuity of ¥(-,) in
(I, d™), we fix £’ € U and define

=)
W= e - he)

ter®(¢), k=0,...,m—1.
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Also, for each £ € U we construct the functions k; and s with domain
[O,tm(ﬁ’)] by defining on each I*(¢'), k=0,...,m — 1,

Ke(t) = M) + (1= A®)H(E)
se(t) = M) min{t*+1(€), 71 (€) } + (1 — A(®)) max{t* (), 5(£)} .

Note that k¢ : [0,t™(&)] — [0,¢™(€)] is strictly increasing, continuous, and
surjective. Also, for & sufficiently close to &',

min{t* (&), #11(¢)} > max{t*(¢), (¢}

and hence
m—1

se(t) € T(6,€) = |J (I"(€) n1*(9)). (19)

k=0
In addition, from the continuity of t*(-) on U it follows that

t—ke(t)| — 0 d[t—se(t)] —0 iforml 0,t™(&)]. (20
t= ke(t)l —2 0, and [t = selt)] —0, niformly on [0,¢"(€)]. (20)

In order to avoid introducing new notation we identify ¥ with the continu-
ous part of the trajectories. While it is certainly not the case that ¥(t,-), is
continuous on U, for arbitrary ¢, it holds that

sup
tET(£,¢")

U(t,€) = U(t,6)] - 0, (21)

where Z(&,¢') is defined in (19). Therefore, if we form the triangle inequality

|W(t,€) — W(n(t), &)] < [W(t,€) — W(s¢(t), €)
+ | W(s(t), €)= U(se(t), €)| + [W(s(8), €) — V(e 2), )

I

and let & — £, the first and third term on the right hand side converge by
(20) and the uniform absolute continuity of ¢+ — W(¢,-), on each I*(-), while
the middle term converges by (19) and (21), and the convergence is uniform
in t € [0,t™(¢")]. Therefore,

d" (‘Il(tv g)? \IJ(ta 51)) Q 0 ’

and the proof is complete. [
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5

Conclusions

We have introduced some useful analytical tools and have demonstrated the
existence of continuous selections of trajectories of hybrid automata with Lip-
schitz differential inclusions with respect to initial conditions. We believe that
the basic properties of hybrid trajectories presented here will be useful in
establishing new connections between observation equivalences for hybrid au-
tomata, including those that are bisimulations, and qualitative features of
trajectories starting from equivalent points. This type of investigation was

begun in [3].
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