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‡ Dip. di Ingegneria Elettrica, Università di L’Aquila, Poggio di Roio, 67040 L’Aquila, Italy.

mire,marika,alberto@eecs.berkeley.edu,digennar@dis.uniroma1.it

Abstract. We consider the synthesis of optimal controls for continuous
feedback systems by recasting the problem to a hybrid optimal control
problem which is to synthesize optimal enabling conditions for switching
between locations in which the control is constant. We provide a single-
pass algorithm to solve the dynamic programming problem that arises,
with added constraints to ensure non-Zeno trajectories.

1 Introduction

In this paper we continue our investigation of the application of hybrid systems
and bisimulation to optimal control problems. In the first paper [3] we devel-
oped a discrete method for solving an optimal control problem based on hybrid
systems and bisimulation. We showed that the value function of the discrete
problem converges to the value function of the continuous problem as a dis-
cretization parameter δ tends to zero. In this paper we focus on the pragmatic
question of how the discretized problem can be efficiently solved.

Following the introduction of the concept of viscosity solution [11, 5], Capuzzo-
Dolcetta [4] introduced a method for obtaining approximations of viscosity solu-
tions based on time discretization of the Hamilton-Jacobi-Bellman (HJB) equa-
tion. The approximations of the value function correspond to a discrete time
optimal control problem, for which an optimal control can be synthesized that is
piecewise constant. Finite difference approximations were also introduced in [6]
and [13]. In general, the time discretized approximation of the HJB equation is
solved by finite element methods. Gonzales and Rofman [10] introduced a dis-
crete approximation by triangulating the domain of the finite horizon problem
they considered, while the admissible control set is approximated by a finite
set. Gonzales and Rofman’s approach is adapted in several papers, including [8].
The approach of [14] uses the special structure of an optimal control problem to
obtain a single-pass algorithm to solve the discrete problem, thus bypassing the
expensive iterations of a finite element method. The essential property needed
to find a single pass algorithm is to obtain a partition of the domain so that the
cost-to-go value from any equivalence class of the partition is determined from
knowledge of the cost-to-go from those equivalence classes with strictly smaller



cost-to-go values. In this paper we obtain a partition of the domain provided by
a bisimulation partition. The combination of the structure of the bisimulation
partition and the requirement of non-Zeno trajectories enables us reproduce the
essential property of [14], so that we obtain a Dijkstra-like algorithmic solution.
Our approach has complexity O(N log N) if suitable data structures are used,
where N is the number of locations of the finite automaton.

While the objective is to solve a continuous optimal control problem, the
method can be adapted to solve directly the problem of optimal synthesis of
enabling conditions for hybrid systems. In that spirit, [1] investigates games on
timed automata and obtains a dynamic programming formulation as well.

2 Optimal control problem

cl(A) denotes the closure of set A. ‖ · ‖ denotes the Euclidean norm. X (IRn)
denotes the sets of smooth vector fields on IRn. φt(x0, µ) denotes the trajectory
of ẋ = f(x, µ) starting from x0 and using control µ(·).

Let U be a compact subset of IRm, Ω an open, bounded, connected subset
of IRn, and Ωf a compact subset of Ω. Define Um to be the set of measurable
functions mapping [0, T ] to U . We define the minimum hitting time T : IRn ×
Um → IR+ by

T (x, µ) :=

{

∞ if {t | φt(x, µ) ∈ Ωf } = ∅
min{t | φt(x, µ) ∈ Ωf} otherwise.

(1)

A control µ ∈ Um specified on [0, T ] is admissible for x ∈ Ω if φt(x, µ) ∈ Ω for
all t ∈ [0, T ]. The set of admissible controls for x is denoted Ux. Let R := { x ∈
Ω | ∃µ ∈ Ux. T (x, µ) < ∞ }. We consider the following optimal control problem.
Given y ∈ Ω,

minimize J(y, µ) =

∫ T (y,µ)

0

L(x(s), µ(s))ds + h(x(T (y, µ))) (2)

subject to ẋ = f(x, µ), a.e. t ∈ [0, T (y, µ)] (3)

x(0) = y (4)

among all admissible controls µ ∈ Uy. J : IRn × Um → IR is the cost-to-go
function, h : IRn → IR is the terminal cost, and L : IRn × IRm → IR is the
instantaneous cost. At T (y, µ) the terminal cost h(x(T (y, µ))) is incurred and
the dynamics are stopped. The control objective is to reach Ωf from y ∈ Ω with
minimum cost.

The value function or optimal cost-to-go function V : IRn → IR is given by

V (y) = inf
µ∈Uy

J(y, µ)

for y ∈ Ω \Ωf , and by V (y) = h(y) for y ∈ Ωf . V satisfies the Hamilton-Jacobi-
Bellman equation

− inf
u∈U

{

L(x, u) +
∂V

∂x
f(x, u)

}

= 0 (5)



at each point of R at which it is differentiable. The HJB equation is an infinites-
imal version of the equivalent Dynamic Programming Principle (DPP) which
says that

V (x) = infµ∈Ux

{

∫ t

0
L(φs(x, µ), µ(s))ds + V (φt(x, µ))

}

, x ∈ Ω \ Ωf

V (x) = h(x) x ∈ Ωf .

Because the HJB equation may not have a C1 solution it has not been possible
to obtain a rigorous foundation for solutions in the usual sense. The correct con-
cept for solutions is that of viscosity solutions [11, 5], which provide the unique
solution of (5) without differentiability. We showed in [3] that under assumptions
of Lipschitz continuity of f ,L, and h, and non-Zenoness and transversality with
Ωf of ε-optimal trajectories, that a particular discrete approximation V̂ of the
value function converges to the viscosity solution of HJB.

3 From hybrid automata to finite automata

In [3] we proposed a mapping from the continuous optimal control problem (2)-
(4) to a hybrid optimal control problem. The first step is to restrict the class of
controls over which the cost function is minimized to piecewise constant controls
taking values in a set Σδ ⊆ U . Σδ ⊆ U is a finite approximation of U having a
mesh size δ := supu∈U minσ∈Σδ

‖u−σ‖. Next we restrict the continuous behavior
to the set of vector fields {f(x, σ)}σ∈Σδ

. If we associate each vector field to a
location of a hybrid automaton and, additionally, define a location reserved for
when the target is reached, we obtain a hybrid automaton

H := (Σ × IRn, Σδ , D, Eh, G, R)

which has the following components:

State set Σ × IRn is a finite set Σ = Σδ ∪ {σf} of control locations and n

continuous variables x ∈ IRn. σf is a terminal location when the continuous
dynamics are stopped (in the same sense that the dynamics are stopped in
the continuous optimal control problem).

Events Σδ is a finite set of control event labels.
Vector fields D : Σ → X (IRn) is a function assigning an autonomous vector

field to each location; namely D(σ) = f(x, σ).
Control switches Eh ⊂ Σ × Σ is a set of control switches. e = (σ, σ′) is a

directed edge between a source location σ and a target location σ′. If Eh(σ)
denotes the set of edges that can be enabled at σ ∈ Σ, then Eh(σ) :=
{(σ, σ′) | σ′ ∈ Σ \ σ} for σ ∈ Σδ and Eh(σf ) = ∅. Thus, from a source
location not equal to σf , there is an edge to every other location (but not
itself), while location σf has no outgoing edges.

Enabling conditions G : Eh → {ge}e∈Eh
is a function assigning to each edge

e an enabling (or guard) condition ge ⊂ IRn.



The enabling conditions are unknown and must be synthesized algorithmi-
cally. (See [3] for how the enabling conditions are extracted once the discrete
problem is solved.) Trajectories of H evolve in σ-steps and t-steps. σ-steps oc-
cur when H changes locations (and the control changes value, since there are
no self-loops) and t-steps occur when the continuous state evolves according to
the dynamics of a location as time passes. The reader is referred to [3] for pre-
cise statements. A hybrid trajectory is non-Zeno if between every two non-zero
duration t-steps there are a finite number of σ-steps and zero duration t-steps.

Let λ represent an arbitrary time interval. A bisimulation of H is an equiva-
lence relation '⊂ (Σδ×IRn)×(Σδ×IRn) such that for all states p1, p2 ∈ Σδ×IRn,

if p1 ' p2 and σ ∈ Σδ ∪ {λ}, then if p1
σ
→ p′1, there exists p′2 such that p2

σ
→ p′2

and p′1 ' p′2.
One sees that ' encodes σ-steps and t-steps of H in a time abstract form

by partitioning Σδ × IRn. If ' has a finite number of equivalence classes, then
they form the states of a finite automaton A. If q := [(σ, x)] and q′ := [(σ′, x′)]
are two different equivalence classes of ', then A has an edge q → q′ if there
exists (σ, y) ∈ q and (σ′, y′) ∈ q′ such that (σ, y) → (σ′, y′) is a σ-step or t-step
of H . We define the set of interesting equivalence classes of ', denoted Q, as
those that intersect Σδ × cl(Ω), and we identify a distinguished point (σ, ξ) ∈ q

for each q ∈ Q, denoted q = [(σ, ξ)].
Consider the class of non-deterministic automata with cost structure repre-

sented by the tuple

A = (Q, Σδ, E, obs, Qf , L̂, ĥ).

Q is the state set just defined, and Σδ is the set of control labels as before.
obs : E → Σδ is a map that assigns a control label to each edge and is given by
obs(e) = σ′, where e = (q, q′), q = [(σ, ξ)] and q′ = [(σ′, ξ′)]. Qf is an over (or
under) approximation of Ωf , Qf = {q ∈ Q | ∃x ∈ Ωf . (σ, x) ∈ q }. E ⊆ Q×Q is
the transition relation of A and is defined assuming that each enabling condition
is initially the entire region Ω. The identity map is implemented in A by an
over-approximation in terms of equivalence classes of '. That is, for σ 6= σ′,
([σ, x)], [(σ′ , x′)]) ∈ E if the projections to IRn of [σ, x)] and [(σ′, x′)] have non-
empty intersection. This over-approximation introduces non-determinacy in A.
Let

τq = sup
(σ,x),(σ,y)∈q

{ t | y = φt(x, σ) }.

Let e = (q, q′) with q = [(σ, ξ)] and q′ = [(σ′, ξ′)]. L̂ : E → IR is the discrete
instantaneous cost given by

L̂(e) :=

{

τqL(ξ, σ) if σ = σ′

0 if σ 6= σ′.
(6)

ĥ : Q → IR is the discrete terminal cost given by

ĥ(q) := h(ξ).



A transition or step of A from q ∈ Q to q′ ∈ Q with observation σ′ ∈ Σδ is

denoted q
σ′

→ q′. If σ 6= σ′ the transition is referred to as a control switch, and
it is forced. σ = σ′ the transition is referred to as a time step. If E(q) is the
set of edges that can be enabled from q ∈ Q, then for σ ∈ Σδ, Eσ(q) = {e ∈
E(q) | obs(e) = σ}. If |Eσ(q)| > 1, then we say that e ∈ Eσ(q) is unobservable in
the sense that when control event σ is issued, it is unknown which edge among
Eσ(q) is taken. (Note that unobservability of edges refers strictly to the discrete
automaton A, whereas in H one may be able to reconstruct which edge was
taken using continuous state information). If σ = σ′, then |Eσ(q)| = 1, by the
uniqueness of solutions of ODE’s and by the definition of bisimulation.

A control policy c : Q → Σδ is a map assigning a control event to each state;
c(q) = σ is the control event issued when the state is at q. A trajectory π of A

over c is a sequence π = q0
σ1→ q1

σ2→ q2
σ3→ . . . , qi ∈ Q. Let Πc(q) be the set of

trajectories starting at q and applying control policy c, and let Π̃c(q) be the set
of trajectories starting at q, applying control policy c, and eventually reaching
Qf . If for every q ∈ Q, π ∈ Πc(q) is non-Zeno then we say c is an admissible
control policy. The set of all admissible control policies for A is denoted C.

A control policy c is said to have a loop if A has a trajectory q0
c(q0)
→ q1

c(q1)
→

. . .
c(qm−1)
→ qm = q0, qi ∈ Q. A control policy has a Zeno loop if it has a loop

made up of control switches and/or zero duration time steps (i.e. τq = 0) only.

Lemma 1. A control policy c for non-deterministic automaton A is admissible
if and only if it has no Zeno loops.

Proof. First we show that a non-deterministic automaton with non-Zeno tra-
jectories has a control policy without Zeno loops. For suppose not. Then a tra-
jectory starting on a state belonging to the loop can take infinitely many steps
around the loop before taking a non-zero duration time step. This trajectory is
not non-Zeno, a contradiction. Second, we show that a control policy without
Zeno loops implies non-Zeno trajectories. Suppose not. Consider a Zeno trajec-
tory that takes an infinite number of control switches and/or zero duration time
steps between two non-zero duration time steps. Because there are a finite num-
ber of states in Q, by the Axiom of Choice, one of the states must be repeated in
the sequence of states visited during the control switches and/or zero duration
time steps. This implies the existence of a loop in the control policy. Either each
step of the loop is a control switch, implying a Zeno loop; or the loop has one
or more zero duration time steps. But the bisimulation partition permits zero
duration time steps only if τq = 0, which implies a Zeno loop. ut

Example 1. Consider the automaton in Figure 1. If we are at q1 and the control

σ′σ′σ is issued, then three possible trajectories are q1
σ′

→ q3
σ′

→ q4
σ
→ q2, q1

σ′

→

q4
σ′

→ q5
σ
→ q2, or q1

σ′

→ q3
σ′

→ q4
σ
→ q1. The first trajectory has a zero duration

time step. The control is inadmissible since the last trajectory has a Zeno loop.
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Fig. 1. Fragment of automaton with a zero duration time step.

4 Dynamic programming

In this section we formulate the dynamic programming problem on A. This
involves defining a cost-to-go function and a value function that minimizes it
over control policies suitable for non-deterministic automata.

Let π = q0
σ1→ q1 . . . qN−1

σN→ qN , where qi = [(σi, ξi)] and π takes the sequence
of edges e1e2 . . . eN . We define a discrete cost-to-go Ĵ : Q × C → IR by

Ĵ(q, c) =

{

maxπ∈Π̃c(q)

{

∑Nπ

j=1 L̂(ej) + ĥ(qNπ
)
}

if Πc(q) = Π̃c(q)

∞ otherwise

where Nπ = min{j ≥ 0 | qj ∈ Qf}. We take the maximum over Π̃c(q) because of
the non-determinacy of A: it is uncertain which among the (multiple) trajectories
allowed by c will be taken so we must assume the worst-case situation. The
discrete value function V̂ : Q → IR is

V̂ (q) = min
c∈C

Ĵ(q, c)

for q ∈ Q \ Qf and V̂ (q) = ĥ(q) for q ∈ Qf . We showed in [3] that V̂ satisfies a
DPP that takes into account the non-determinacy of A and ensures that optimal
control policies are admissible. Let Aq be the set of control assignments c(q) ∈ Σδ

at q such that c is admissible.

Proposition 1. V̂ satisfies

V̂ (q) = min
c(q)∈Aq

{

max
e=(q,q′)∈Eσ′ (q)

{

L̂(e) + V̂ (q′)
}

}

, q ∈ Q \ Qf (7)

V̂ (q) = ĥ(q), q ∈ Qf . (8)

5 Non-deterministic Dijkstra algorithm

The dynamic programming solution (7)-(8) can be viewed as a shortest path
problem on a non-deterministic graph subject to all optimal paths satisfying a



non-Zeno condition. We propose an algorithm which is a modification of the
Dijkstra algorithm for deterministic graphs [7]. First we define notation. Fn is
the set of states that have been assigned a control and are deemed “finished”
at iteration n, while Un are the unfinished states. At each n, Q = Un ∪ Fn.
Σn(q) ⊆ Σδ is the set of control events at iteration n that take state q to finished
states exclusively. Ũn is the set of states for which there exists a control event
that can take them to finished states exclusively. Ṽn(q) is a tentative cost-to-go
value at iteration n. Bn is the set of “best” states among Ũn.

The non-deterministic Dijkstra (NDD) algorithm first determines Ũn by
checking if any q in Un can take a step to states belonging exclusively to Fn.
For states belonging to Ũn, an estimate of the value function Ṽ following the
prescription of (7) is obtained: among the set of control events constituting a
step into states in Fn, select the event with the lowest worst-case cost. Next, the
algorithm determines Bn, the states with the lowest Ṽ among Ũn, and these are
added to Fn+1. The iteration counter is incremented until it reaches N = |Q|.
It is assumed in the following description that initially V̂ (q) = ∞ and c(q) = ∅
for all q ∈ Q.

Procedure NDD:

F1 = Qf ; U1 = Q − Qf ;

for each q ∈ Qf , V̂(q) = ĥ(q);

for n = 1 to N, do

for each q ∈ Un,

Σn(q) = {σ′ ∈ Σδ | if q
σ′

→ q′, then q′ ∈ Fn};

Ũn = {q ∈ Un | Σn(q) 6= ∅};

for each q ∈ Ũn,

Ṽn(q) = minσ′∈Σn(q){maxe=(q,q′)∈Eσ′ (q){L̂(e) + V̂(q′)}};

Bn = argminq∈Ũn
{Ṽn(q)};

for each q ∈ Bn,

V̂(q) = Ṽn(q);

c(q) = argminσ′∈Σn(q){maxe=(q,q′)∈Eσ′ (q){L̂(e) + V̂(q′)}};
endfor

Fn+1 = Fn ∪ Bn; Un+1 = Q − Fn+1;

endfor

We prove that algorithm NDD is optimal; that is, it synthesizes a control
policy so that each q ∈ Q reaches Qf with the best worst-case cost. We observe
a few properties of the algorithm. First, if all states of Q can reach Qf then
Q − Qf = ∪nBn. Second, as in the deterministic case, the algorithm computes

V̂ in order of level sets of V̂ . In particular, V̂ (Bn) ≤ V̂ (Bn+1). Finally, we need
the following property.



Lemma 2. For all q ∈ Q and σ′ ∈ Σδ,

V̂ (q) ≤ max
e=(q,q′)∈Eσ′ (q)

{L̂(e) + V̂ (q′)}.

Proof. Fix q ∈ Q and σ′ ∈ Σδ . There are two cases.
Case 1.

V̂ (q) ≤ max
e=(q,q′)∈Eσ′ (q)

{V̂ (q′)}.

In this case the result is obvious.
Case 2.

V̂ (q) > max
e=(q,q′)∈Eσ′ (q)

{V̂ (q′)}. (9)

We observed above that q belongs to some Bn. Suppose w.l.o.g. that q ∈ Bj .

Together with (9) this implies q′ ∈ Fj for all q′ such that q
σ′

→ q′. This, in turn,
means that σ′ ∈ Σj(q) and according to the algorithm

V̂ (q) = Ṽj(q) ≤ max
e=(q,q′)∈Eσ′ (q)

{L̂(e) + V̂ (q′)}

which proves the result. ut

Theorem 1. Algorithm NDD is optimal and synthesizes a control policy with
no Zeno loops.

Proof. First we prove optimality. Let V (q) be the optimal (best worst-case) cost-
to-go for q ∈ Q and Q = {q ∈ Q | V (q) < V̂ (q)}. Let l(πq) be the number of
edges taken by the shortest optimal (best worst-case) trajectory πq from q. Define
q = arg minq∈Q{l(πq)}. Suppose that the best worst-case trajectory starting at

q is πq = q
σ′

→ q → . . . . We showed in the previous lemma that

V̂ (q) ≤ max
e=(q,q′)∈Eσ′ (q)

{L̂(e) + V̂ (q′)} ≤ L̂(e) + V̂ (q).

Since πq is the best worst-case trajectory from q and by the optimality of V (q)

V (q) = max
e=(q,q′)∈Eσ′ (q)

{L̂(e) + V (q′)} = L̂(e) + V̂ (q).

Since πq is the shortest best worst-case trajectory, we know that q 6∈ Q, so

V (q) = V̂ (q). This implies V̂ (q) ≤ L̂(e) + V (q) = V (q), a contradiction.
To prove that the algorithm synthesizes a policy with no Zeno loops we argue

by induction. The claim is obviously true for F1. Suppose that the states of Fn

have been assigned controls forming no Zeno loops. Consider Fn+1. Each state
of Bn takes either a time step or a control switch to Fn so there cannot be a
Zeno loop in Bn. The only possibility is for some q ∈ Bn to close a Zeno loop
with states in Fn. This implies there exists a control assignment that allows an
edge from Fn to q to be taken; but this is not allowed by NDD. Thus, Fn+1 has
no Zeno loops. ut



Remarks:
1. It is intuitively reasonable that the algorithm cannot synthesize a controller

with Zeno loops. This worst-case behavior would show up in the value func-
tion, forcing it to be infinite for states that can reach the loop.

2. When we say that the algorithm is optimal, we mean the algorithm de-
termines the best worst-case cost to take each state to the target set. In
fact, (see remark below) the hybrid system or continuous system using the
synthesized controller may perform better than worst case.

3. The non-deterministic automaton predicts more trajectories than what ei-
ther the continuous system or the hybrid system can exhibit. Indeed, the
automaton may exhibit a trajectory that reaches the target set using only
control switches, and thus accruing zero cost. This is not of concern. Such
a trajectory is an artifact of the non-determinacy of the automaton, and is
not used in the determination of the value function, which accounts only for
worst-case behavior, nor is it exhibited in either the hybrid system or the
continuous system when the control policy synthesized by Algorithm NDD
is used.

4. Related to the previous remark is that the non-deterministic automaton may
also predict worst-case behavior which is not exhibited by the continuous
system. It would appear that a discrepancy will develop between the cost-to-
go obtained by applying the synthesized controller to the continuous system
and the cost-to-go predicted by the nondeterministic automaton. This error
is incurred every time a control switch is taken and is effectively an error
in predicting the state and has an upper bound of δ at each iteration. This
error was accounted for in our proof of convergence of the method, and the
convergence result essentially depends on the fact that only a finite number
of control switches occur [3].

6 Example

We apply our method to the time optimal control problem of a double integrator

ẋ1 = x2

ẋ2 = u.

Given the set of admissible controls U = {u : |u| ≤ 1}, we select Ω =
(−1, 1) × (−1, 1) and Ωf = Bε(0), the closed epsilon ball centered at 0. The

cost-to-go function is J(x, µ) =
∫ T (x,µ)

0
dt. The bang-bang solution obtained us-

ing Pontryagin’s maximum principle is well known to involve a single switching
curve. The continuous value function V is shown in Figure 2(a).

To construct the hybrid automaton H we select Σδ = {−1, 1}. H is show
in Figure 3. The state space is {σ−1 = −1, σ1 = 1, σf} × IRn. ge−1

and ge1
are

unknown and must be synthesized, while ge2
= ge3

= Ωf .
A first integral for vector field ẋ1 = x2, ẋ2 = 1 is x1 −

1
2x2

2 = c1, c1 ∈ IR. For
ẋ1 = x2, ẋ2 = −1 a first integral is x1 + 1

2x2
2 = c2, c2 ∈ IR. We select a transverse

foliation (see [2]) for each vector field, given by x2 = c3.
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Fig. 2. Continuous and discrete value functions for double integrator
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Fig. 3. Hybrid automaton for time optimal control of a double integrator system



We define Q, Qf , E, L̂ and ĥ for automaton A derived from H in Figure 3.
Q can be visualized using Figure 4.

The states q ∈ Q are of the form (σ, [x]) with σ ∈ {σ−1, σ1}. For the case
σ = σ1 with c1, c2 ∈ IR, [x] is either an open subset of IR2 bounded by the leaves
c1 < x1−

1
2x2

2 < c1 +∆ and c2 < x2 < c2 +∆; or an open interval in a horizontal
leaf x1 − 1

2x2
2 = c1, c2 < x2 < c2 + ∆; or an open interval in a vertical leaf

c1 < x1 −
1
2x2

2 < c1 + ∆, x2 = c2; or a point x1 −
1
2x2

2 = c1, x2 = c2. Analogous
expressions can be written for σ = σ−1. In Figure 4, ∆ = 0.25, c1 ∈ [−1, 1]
and c2 ∈ [−1, 1]. If we identify equivalence classes (σ, [x]) by their Euclidean
coordinates (c1, c2) directly, then Qf , shown in Figure 4 as the regions inside the
dotted lines, includes states (σ, [x]), where [x] satisfies c1, c2 ∈ (−∆, ∆).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ1 σ−1

Fig. 4. Partitions for states σ1 and σ−1 of the hybrid automaton of Figure 3

Let us consider the edges corresponding to control switches of A. q = (σ1, [x]) ∈
Q has an outgoing edge to q′ = (σ−1, [y]) ∈ Q if [x] ∩ [y] 6= ∅. For example,
for q = (σ1, [x]) and [x] satisfying c1 ∈ (−.25,−.5) and c2 = .25, there are
three outgoing edges from q to q′i,i = 1, . . . , 3, with [y] satisfying c2 = .25
and c1 ∈ (−.5,−.25), c1 = −.25, and c1 ∈ (−.25, 0), respectively. Similarly, for
q = (σ1, [x]) and [x] satisfying c1 ∈ (−.5,−.25) and c2 ∈ (.75, 1), there are five
outgoing edges from q to q′i,i = 1, . . . , 5, with [y] satisfying c2 ∈ (.75, 1) and
c1 ∈ (−.25, 0), c1 = 0, c1 ∈ (0, .25), c1 = .25 and c1 ∈ (.25, .5), respectively.
Edges corresponding to time steps of A can be determined from visual inspec-
tion of Figure 4. For example, for q = (σ1, [x]) with [x] satisfying c1 ∈ (−.25,−.5)
and c2 = .25, there is an outgoing edge from q to q′ = (σ1, [y]) with [y] satisfying
c1 ∈ (−.25,−.5) and c2 ∈ (.25, .5).

The results of algorithm NDD are shown in Figure 2(b) and Figure 5. In
Figure 5 the dashed line is the smooth switching curve for the continuous prob-
lem. The black dots identify equivalence classes where NDD assigns a control
switch. Considering ge−1

we see that the boundary of the enabling condition in
the upper left corner is a jagged approximation using equivalence classes of the
smooth switching curve. Initial conditions in the upper left corner just inside



the enabling condition must switch to a control of u = −1, otherwise the trajec-
tory will increase in the x2 direction and not reach the target. Initial conditions
in the upper left corner just outside the enabling condition must allow time to
pass until they reach the enabling condition, for if they switched to u = −1
they would be unable to reach the target. Hence the upper left boundary of the
enabling condition is crisp. The lower right side of the enabling condition which
has islands of time steps shows the effect of the non-determinacy of automaton
A. These additional time steps occur because it can be less expensive to take a
time step than to incur the cost of the worst case control switch. Indeed consider
an initial condition in Figure 5(a) which lies in an equivalence class that takes a
time step but should take a control switch according to the continuous optimal
control. Such a point will move up and to the left before it takes a control switch.
By moving slightly closer to the target, the worst-case cost-to-go incurred in a
control switch is reduced. Notice that all such initial conditions eventually take
a control switch. This phenomenon of extra time steps is a function of the mesh
size δ: as δ decreases there are fewer extra time steps. Finally we note that
the two enabling conditions have an empty intersection, as expected in order to
ensure non-Zeno trajectories.
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Fig. 5. Enabling conditions

Figure 6 shows trajectories of the closed-loop system using the controller
synthesized by NDD. The bold lines are the trajectories, the central hatched
region is an enlarged target region, and the shaded areas are the equivalence
classes visited during the simulation.
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Fig. 6. Trajectories of the closed-loop system

7 Conclusion

In this paper we developed an efficient single-pass algorithm to solve a dynamic
programming problem on a non-deterministic graph that arises in the solution of
a continuous optimal control problem using hybrid systems and bisimulation. We
have seen that the single-pass nature of the solution depends on the partitioning
method. An area for future investigation is exploring other partition methods in
relation to the efficiency of the algorithmic solution of the dynamic programming
problem. This would include partitions that are not bisimulations, especially
when analytical expressions for first integrals are difficult to obtain.

We have developed a prototype tool for the synthesis of hybrid optimal con-
trols based on bisimulation. The algorithm has complexity O(N log N) where N

is the number of states of the automaton. The number of states is exponential
in the dimension of the continuous state space. In the “vanilla” version of our
approach, the automaton is constructed before running the Djikstra-like algo-
rithm. To improve the speed and the memory usage of the algorithm, we plan to
build the automaton on the fly while algorithm NDD is executing. In addition,
we plan to apply the approach to solving a number of optimal control problems
arising in automotive engine control.
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