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Abstract. We consider the synthesis of optimal controls for continuous feedback systems by
recasting the problem to a hybrid optimal control problem: synthesize optimal enabling conditions

for switching between locations in which the control is constant. An algorithmic solution is obtained
by translating the hybrid automaton to a finite automaton using a bisimulation and formulating a
dynamic programming problem with extra conditions to ensure non-Zenoness of trajectories. We
show that the discrete value function converges to the viscosity solution of the Hamilton-Jacobi-
Bellman equation as a discretization parameter tends to zero.
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1. Introduction. The goal of this paper is the development of a computationally
appealing technique for synthesizing optimal controls for continuous feedback systems
ẋ = f(x, u), by recasting the problem as a hybrid optimal control problem. The hybrid
problem is obtained by approximating the control set U ⊂ R

m by a finite set Σ ⊂ U
and defining vector fields for the locations of the hybrid system of the form f(x, σ),
σ ∈ Σ; that is, the control is constant in each location. The hybrid control problem
is to synthesize enabling conditions such that a target set Ωf ⊂ Ω is reached while a
hybrid cost function is minimized, for each initial condition in a specified set Ω ⊂ R

n.
Casting the problem as a hybrid control problem is not necessarily a simplification

because, while algorithmic approaches for solving the controller synthesis problem for
specific classes of hybrid systems have appeared [33, 52], no general, efficient algorithm
is available. To be able to solve the (nonlinear) hybrid optimal control problem, we
must exploit some additional property. We have a feasible and appealing approach
if we can translate the problem to an equivalent discrete problem, which abstracts
completely the continuous behavior. This translation is possible if we can construct a
finite bisimulation defined on the hybrid state space; that is, an equivalence relation
that induces a partition in each hybrid automaton location that is consistent with the
continuous dynamics of that location. A finite bisimulation can be constructed using
the geometric approach reported in [10], based on the following key assumption: n−1
local (on Ω) first integrals can be expressed analytically for each vector field f(x, σ),
σ ∈ Σ. This assumption is imposed in the transient phase of a feedback system’s
response, when the vector field is non-vanishing and local first integrals always exist,
though finding closed form expressions for them is not always easy or possible. Also,
the assumption that the partition be a bisimulation is sufficient but not necessary for
the overall approach.

If the assumption is met, then we can transform the hybrid system to a quo-
tient system associated with the finite bisimulation, which is a finite automaton. The
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control problem posed on the finite automaton is to synthesize a discrete supervisor,
providing a switching rule between automaton locations, that minimizes a discrete
cost function approximating the original cost function, for each initial discrete state.
We provide a dynamic programming solution to this problem, with extra constraints
to ensure non-Zenoness of the closed-loop trajectories. By imposing non-Zeno condi-
tions on the synthesis we obtain piecewise constant controls with a finite number of
discontinuities in bounded time.

The discrete value function depends on the discretizations of U and of Ω using
the bisimulation. We quantify these discretizations by parameters δ and δQ. The
main theoretical contribution is to show that as δ, δQ → 0, the discrete value function
converges to the unique viscosity solution of the Hamilton-Jacobi-Bellman (HJB)
Equation.

There is a similarity between our approach to optimal control and regular syn-
thesis, introduced in [8], in the sense that both restrict the class of controls to a set
that has some desired property and both use a finite partition to define switching
behavior. For linear systems, the results on regular synthesis are centered on the
Bang-Bang principle [38], stating that a sufficient class of optimal controls is piece-
wise constant. If U is a convex polyhedron, then the number of discontinuities of the
control is bounded. There is no hope that general Bang-Bang results are available due
to Fuller’s example [20, 28]. Nevertheless, in many applications the optimal control is
a piecewise continuous function, and methods of regular synthesis of such controls are
worth investigating. Our paper focuses on piecewise constant controls and provides a
constructive approach to obtain a cell decomposition, in the spirit of regular synthe-
sis, by using a finite bisimulation, which further allows us to formulate the synthesis
problem on its quotient system - a finite automaton.

The idea of using a time abstract model formed by partitioning the continuous
state space has been pursued in a number of papers recently. Lemmon, Antsaklis,
Stiver and coworkers [48], [53] use a partition of the state space to convert a hy-
brid model to a discrete event system (DES). This enables them to apply controller
synthesis for DES’s to synthesize a supervisor. While our approach is related to this
methodology, it differs in that we provide conditions for obtaining the partition. In [41]
hybrid systems consisting of a linear time-invariant system and a discrete controller
that has access to a quantized version of the linear system’s output is considered.
The quantization results in a rectangular partition of the state space. This approach
suffers from spurious solutions that must be trimmed from the automaton behavior.
Hybrid optimal control problems have been studied in papers by Witsenhausen [51],
Branicky et.al. [9], and Bensoussan and Menaldi [6]. The first two concentrate on
problems of well-posedness, necessary conditions, and existence of optimal solutions
but do not provide algorithmic solutions. Bensoussan and Menaldi consider a more
general model than ours that includes continuous dynamics with a measurable control
input and a discrete part with impulsive control. Control switches can be autonomous
or controlled and may have time delays. They characterize the viscosity solution of
a dynamic programming problem on their model. They construct open-loop con-
trols whereas we obtain feedback controls, and they do not consider the numerical
implementation.

There has been recently significant progress in developing numerical methods
that incorporate geometric invariants of a dynamical or control system. In particular,
in the area of geometric mechanics, numerical integrators have been developed that
preserve the Hamiltonian, Lie group symmetries, and other integrals of motion [18,
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26, 24, 27, 40]. See the reference [36] for an overview of problems where geometric
structure is exploited in numerical methods. Our work represents the first general
methodology in which geometric invariants are explicitly considered in the numerical
solution of optimal control problems. The geometric structure that is present in the
optimal control problem is encoded in the bisimulation partition. In effect, the two
step procedure of a time discretization followed by the state discretization via finite
element methods that together lead to a fixed point formulation of the approximate
solution of a continuous time optimal control problem is circumvented. Instead an
exact representation of the time evolution of the system is encoded in the finite element
partition, enabling a simplified and more efficient formulation.

The paper is organized as follows. In section 2 we state the optimal control prob-
lem, while in section 3 the associated hybrid system is given. In Section 4 we review
how the bisimulation is constructed. Section 5 formulates the proposed solution using
bisimulation and dynamic programming. In section 6 we prove the main theoretical
result. In section 7 we present an algorithmic solution of the dynamic programming
problem including a formal justification of the algorithm’s optimality. In Section 8
we give two simple examples. Section 9 summarizes our findings.

2. Optimal control problem. Notation. 1(·) is the indicator function. cl(A)
denotes the closure of set A. ‖·‖ denotes the Euclidean norm. Let C1(Rn) and X (Rn)
denote the sets of continuously differentiable real-valued functions and smooth vector
fields on R

n, respectively. φt(x0, µ) denotes the trajectory of ẋ = f(x, µ) starting
from x0 and using control µ(·).

Let U be a compact subset of R
m, Ω an open, bounded, connected subset of R

n,
and Ωf a compact subset of Ω. Define Um to be the set of measurable functions
mapping R

+ to U . We define the minimum hitting time T : R
n × Um → R

+ by

T (x, µ) :=

{

∞ if {t | φt(x, µ) ∈ Ωf } = ∅
min{t | φt(x, µ) ∈ Ωf} otherwise.

(2.1)

A control µ ∈ Um specified on [0, T ] is admissible for x ∈ Ω if φt(x, µ) ∈ Ω for all
t ∈ [0, T ]. The set of admissible controls for x is denoted Ux. Let

R := { x ∈ Ω | ∃µ ∈ Ux. T (x, µ) <∞ }.

We consider the following stationary optimal control problem. Given y ∈ Ω,

minimize J(y, µ) =

∫ T (y,µ)

0

L(x(t), µ(t))dt + h(x(T (y, µ)))(2.2)

subject to ẋ = f(x, µ), a.e. t ∈ [0, T (y, µ)](2.3)

x(0) = y(2.4)

among all admissible controls µ ∈ Uy. J : R
n × Um → R is the cost-to-go function,

h : R
n → R is the terminal cost, and L : R

n × R
m → R is the instantaneous cost.

At T (y, µ) the terminal cost h(x(T (y, µ))) is incurred and the dynamics are stopped.
The control objective is to reach Ωf from y ∈ Ω with minimum cost.

Assumption 2.1.
(1) f : R

n ×R
m → R

n satisfies ‖f(x′, u′)− f(x, u)‖ ≤ Lf

[

‖x′−x‖+‖u′−u‖
]

for some Lf > 0. Let Mf be the upper bound of ‖f(x, u)‖ on Ω × U .
(2) L : R

n ×R
m → R satisfies |L(x′, u′)− L(x, u)| ≤ LL

[

‖x′ − x‖ + ‖u′ − u‖
]

and 1 ≤ L(x, u) ≤ML, x ∈ Ω, u ∈ U , for some LL,ML > 0.
(3) h : R

n → R satisfies |h(x′) − h(x)| ≤ Lh‖x′ − x‖ for some Lh > 0, and
h(x) ≥ 0 for all x ∈ Ω. Let Mh be the upper bound of |h(x)| on Ω.
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Remark 2.1. These assumptions ensure existence of solutions to (2.3) and unique-
ness of the trajectories φt(x, µ). Weaker assumptions are possible; see [4].

The value function or optimal cost-to-go function V : R
n → R is given by

V (y) = inf
µ∈Uy

J(y, µ)

for y ∈ Ω \ Ωf , and by V (y) = h(y) for y ∈ Ωf . A control µ is called ǫ-optimal for x
if J(x, µ) ≤ V (x) + ǫ.

It is well-known [19] that V satisfies the Hamilton-Jacobi-Bellman (HJB) equation

− inf
u∈U

{

L(x, u) +
∂V

∂x
f(x, u)

}

= 0(2.5)

at each point of R at which it is differentiable. The HJB equation is an infinitesimal
version of the equivalent Dynamic Programming Principle (DPP) which says that

V (x) = infµ∈Ux

{

∫ t

0 L(φs(x, µ), µ(s))ds + V (φt(x, µ))

}

, x ∈ Ω \ Ωf

V (x) = h(x) x ∈ Ωf .

The subject of assiduous effort has been that the HJB equation may not have a
C1 solution. This gap in the theory was closed by the introduction of the concept
of viscosity solution [31, 13], which can be shown to provide the unique solution of
(2.5) without any differentiability assumption. In particular, a bounded uniformly
continuous function V is called a viscosity solution of HJB provided, for each ψ ∈
C1(Rn), the following hold:

(i) if V − ψ attains a local maximum at x0 ∈ R
n, then

− inf
u∈U

{

L(x0, u) +
∂ψ

∂x
(x0)f(x0, u)

}

≤ 0,

(ii) if V − ψ attains a local minimum at x1 ∈ R
n, then

− inf
u∈U

{

L(x1, u) +
∂ψ

∂x
(x1)f(x1, u)

}

≥ 0.

Assumption 2.2. For every ǫ > 0 and x ∈ R, there exists Nǫ > 0 and an
admissible piecewise constant ǫ-optimal control µ having at mostNǫ discontinuities
and such that φt(x, µ) is transverse to ∂Ωf .

The transversality assumption implies that the viscosity solution is continuous at
the boundary of the target set, a result needed in proving uniform continuity of V
over a finite horizon. The assumption can be replaced by a small-time controllability
condition. For a treatment of small time controllability and compatibility of the
terminal cost with respect to continuity of the value function, see [4]. The finite
switching assumption holds under mild assumptions such as Lipschitz continuity of the
vector field and cost functions, and is based on approximating measurable functions
by piecewise constant functions.

3. Hybrid system. The approach we propose for solving the continuous optimal
control problem first requires a mapping to a hybrid system and, second, employs a
bisimulation of the hybrid system to formulate a dynamic programming problem on
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Fig. 3.1. Hybrid automaton for time optimal control of a double integrator system

the quotient system. In this section we define the hybrid system. First, we discretize
U by defining a finite set Σδ ⊂ U which has a mesh size

δ := sup
u∈U

min
σ∈Σδ

‖u− σ‖.

We define the hybrid automaton H := (Σ × R
n,Σδ, D,Eh, G) with the following

components:

State set Σ × R
n consists of the finite set Σ = Σδ ∪ {σf} of control locations and

n continuous variables x ∈ R
n. σf is a terminal location when the optimal

control problem is “stopped” and the target set is reached. The controller for
σf may, for instance, be a linear feedback designed using the linearization of
the system.

Events Σδ is a finite set of control events.
Vector fields D : Σ → X (Rn) is a function assigning an autonomous vector field to

each location. We use the notation D(σ) = fσ.
Control switches Eh ⊂ Σ × Σ is a set of control switches. e = (σ, σ′) is a directed

edge between a source location σ and a target location σ′. If Eh(σ) denotes the
set of edges that can be enabled at σ ∈ Σ, then Eh(σ) := {(σ, σ′) | σ′ ∈ Σ\σ}
for σ ∈ Σδ and Eh(σf ) = ∅. Thus, from a source location not equal to σf ,
there is an edge to every other location (but not itself), while location σf has
no outgoing edges.

Enabling conditions G : Eh → {ge}e∈Eh
is a function assigning to each edge an

enabling (or guard) condition g ⊂ R
n. We use the notation G(e) = ge. The

optimal enabling conditions are unknown and must be synthesized.

3.1. Semantics. A state is a pair (σ, x), σ ∈ Σ and x ∈ R
n. In location σ ∈ Σδ

the continuous state evolves according to the vector field f(x, σ). In location σf , the
vector field is ẋ = f(x, µf ) where µf is the (not necessarily constant) control of the
terminal location. Trajectories of H evolve in steps of two types. A σ-step is a binary

relation
σ
→⊂ (Σ×R

n)×(Σ×R
n), and we write (σ, x)

σ′

→ (σ′, x′) iff (1) e = (σ, σ′) ∈ Eh,

(2) x ∈ ge, and (3) x = x′. A t-step is a binary relation
t
→⊂ (Σ × R

n) × (Σ × R
n),

and we write (σ, x)
t
→ (σ′, x′) iff (1) σ = σ′, and (2) for some t ≥ 0, x′ = φt(x, σ),

where φ̇t(x) = f(φt(x, σ), σ). Enabling conditions are forced in that an edge is taken
instantaneously and as soon as it is enabled.

5



p
′

p q

q
′

Fig. 4.1. Illustration of the definition of bisimulation.

Example 3.1 Consider the time optimal control problem for the system

ẋ1 = x2

ẋ2 = u.(3.1)

Suppose Ω = (−1, 1) × (−1, 1) and Ωf = Bǫ(0), the closed epsilon ball centered at

0. The cost-to-go function is J(x, µ) =
∫ T (x,µ)

0
dt and U = {u : |u| ≤ 1}. We select

Σδ = {−1, 1}, so that δ = 1. The hybrid system is show in Figure 3.1. The state set
is {σ−1 = −1, σ1 = 1, σf} × R

2. ge−1 and ge1 are unknown and must be synthesized,
while ge2 = ge3 = Ωf .

4. Bisimulation. Let λ represent an arbitrary time interval. A bisimulation
of H is an equivalence relation ≃⊂ (Σδ × R

n) × (Σδ × R
n) such that for all states

p1, p2 ∈ Σδ×R
n, if p1 ≃ p2 and β ∈ Σδ∪{λ}, then if p1

β
→ p′1, there exists p′2 such that

p2
β
→ p′2 and p′1 ≃ p′2. See Figure 4.1. Intuitively, a bisimulation is an equivalence

relation defining a partition on the hybrid state space that preserves reachability
over σ-steps and time steps. However, the definition leaves ambiguity as to how the
partition should be obtained. Alur and Dill [1] gave a construction for timed automata
that was based on the first integrals of the continuous dynamics and on the syntax of
the enabling and reset conditions. Their approach was first generalized in [10]. Time
evolution of the original system is modelled as untimed transitions from equivalence
class to equivalence class in the quotient system associated with the bisimulation.
Transitions between locations of the hybrid automaton appear also as transitions in
the quotient system. Thus if there are a finite number of equivalence classes of ≃, then
a finite transition system or finite automaton is obtained which gives a time abstract
model of the original system, with reachability properties exactly preserved. For a
more thorough discussion of results on bisimulations for hybrid systems, see [25, 2].

We declare the set of “interesting” equivalence classes of ≃, which is assumed to
be finite and is denoted Q, to be those that intersect Σδ × cl(Ω). For each q ∈ Q we
define a distinguished point (σ, ξ) ∈ q, and we use the notation q = [(σ, ξ)]. We define
a mesh size on Q by

δQ = max
q∈Q

sup
(σ,x),(σ,y)∈q

‖x− y‖.

For each q = [(σ, ξ)] ∈ Q we associate the duration τq, the maximum time to traverse
q using constant control σ. That is,

τq = sup
(σ,x),(σ,y)∈q

{ t | y = φt(x, σ) }.
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This extra data assocated with the bisimulation is required in our problem to obtained
approximations of the cost functions L and h.

4.1. Geometric construction. We review our method for obtaining finite bisim-
ulations [10] which relies on the following assumptions on the vector fields on Ω.

Assumption 4.1.
(1) For each σ ∈ Σδ, there exist n−1 C1 functions γσ

i : Ω → R, i = 1, . . . , n−1,
whose time derivative along solutions of ẋ = f(x, σ) in Ω is zero.

(2) There exists mf > 0 such that ‖f(x, u)‖ ≥ mf for all x ∈ cl(Ω), u ∈ U .

Remark 4.1. There is an uncontested view promulgated by Poincare that differ-
ential equations possessing a complete set of first integrals, i.e. completely integrable
systems, are the exception rather than the norm. This has lead to some confusion
as to when one can or cannot find first integrals for non-Hamiltonian systems. The
primary source of confusion comes from the multiple meanings of the term “integra-
bility”. It appears as a Liouville integrability (the version alluded to by Poincare
and further developed by Arnold [3]), local integrability, algebraic integrability, etc.
A type of integrability suitable for non-Hamiltonian systems was proposed by Llibre
[32] with the terminology weak integrability (to contrast with “strong integrability”
in the sense of Liouville). Weak integrability is meant to capture that many systems
do not exhibit complex behavior such as chaos, even if they are not Hamiltonian.

Let ẋ = f(x) be a differential equation with domain of definition D ⊂ R
n, and

let O be a set of orbits of the system such that D \O is open. Following [32], we say
a C1 function γ : D \ O → R is a weak first integral of the system ẋ = f(x) if γ is
constant on each solution of the system contained in D \ O, and γ is non-constant
on any open subset of D \ O. A system is said to be weakly integrable if it has n− 1
functionally independent (on D \ O) weak first integrals.

The relaxation of the requirement that the first integral be a differentiable func-
tion on the entire domain of the differential equation means that, for instance, all
linear systems are weakly integrable [11], whereas only the Hamiltonian linear sys-
tems (centers and saddles in the case of second order linear systems) are integrable
in the strong sense. The assumption 4.1(1) is a weak integrability assumption.

There are many methods for finding first integrals including Lie group symmetry
analysis [7, 37], Lax pairs, Painleve analysis, and Frobenius theorem, among others
[15, 21, 46, 49]. A general reference and overview of the methods can be found in [23].
The best known result for symbolic computation of first integrals is the Prelle-Singer
procedure [39]. Reduce and Macsyma implementations of the Prelle-Singer procedure
are described in [34, 46], while an implementation in higher dimensions is described
in [35]. Algorithms for finding polynomial first integrals are described in [43, 44].

A bisimulation of Σδ×R
n is found by first constructing partitions for each location

of H such that reachability properties are preserved over time steps. In Section 5 we
describe how to accomodate σ-steps in the quotient system. To obtain a partition
consistent with the dynamics of location σ ∈ Σδ we use the level sets of the n−1 first
integrals γσ

i (x) = yσ
i , i = 1, . . . , n−1 to bound the flow in n−1 independent directions,

thus obtaining “tubes” of trajectories with a rectangular cross section. Next, the level
sets of a submersion γσ

n = yσ
n that is transverse to the flow of ẋ = f(x, σ) is used to

divide the tube of trajectories into boxes, so that (yσ
1 , . . . , y

σ
n) form a set of Euclidean

coordinates γσ : Ω → [−1, 1]n on Ω. That is, we assume that the level sets of γσ
i

foliate the set Ω (see [29] for background on foliations) and, by appropriate scaling,
their level values lie between −1 and 1 on Ω. We discretize the foliations associated
with each γσ

i by selecting a finite number of level values. More precisely, fix k ∈ Z+
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Fig. 4.2. Partitions for states σ1 and σ−1 of the hybrid automaton of Figure 3.1

and let ∆ = 1
2k . Define

Ck = {0,±∆,±2∆, . . . ,±1}.(4.1)

Each yσ
i = c for c ∈ Ck, i = 1, . . . , n defines a hyperplane in R

n denoted W̃ σ
i,c, and a

submanifold W σ
i,c = (γσ)−1(W̃ σ

i,c). The collection of submanifolds for σ ∈ Σδ is

Wσ
k = { W σ

i,c | c ∈ Ck, i ∈ {1, . . . , n} }.(4.2)

Ω\Wσ
k is the union of 2n(k+1) disjoint open sets Vσ

k = {V σ
j }. We define an equivalence

relation ≃e on R
n as follows. y ≃e y′ iff

(1) y /∈ [−1, 1]n iff y′ /∈ [−1, 1]n, and
(2) if y, y′ ∈ [−1, 1]n, then for each i = 1, . . . , n, yi ∈ (c, c+ ∆) iff y′i ∈ (c, c+ ∆), and
yi = c iff y′i = c, for all c ∈ Ck.
We define the equivalence relation ≃ on Σδ × R

n as follows. (σ, x) ≃ (σ′, x′) iff (1)
σ = σ′, and (2) γσ(x) ≃e γσ(x′).

Remark 4.2. A consequence of this construction is that if any trajectory of H
passing through q ∈ Q spends zero time in it, then τq = 0.

Example 4.1 Continuing example 3.1, a first integral for vector field ẋ1 = x2,
ẋ2 = 1 is x1−

1
2x

2
2 = c1, c1 ∈ R. For ẋ1 = x2, ẋ2 = −1 a first integral is x1 + 1

2x
2
2 = c2,

c2 ∈ R. We select a transverse foliation for each vector field, given by x2 = c3.
Partitions for locations σ1 and σ−1 and Ω = (−1, 1)× (−1, 1) are shown in Figure 4.2.
The equivalence classes of ≃ are pairs consisting of a control event in Σδ and of the
interiors of regions, open line segments and curves forming the boundaries of two
regions, and the points at the corners of regions. τ = 0 for the segments transverse
to the flow and the corner points. τ = ∆ for the interiors of regions and segments
tangential to the flow, where ∆ = .25 in Figure 4.2.

5. Discrete problem. In this section we transform the hybrid optimal synthesis
problem to a dynamic programming problem on a non-deterministic finite automaton.
Consider the class of non-deterministic finite automata with cost structure represented
by the tuple

A = (Q,Σδ, E, L̂, ĥ).

Q is the finite state set, as defined above, and Σδ is the set of control events as before.
E ⊆ Q× Q is the transition relation encoding t-steps and σ-steps of H . (q, q′) ∈ E,
where q = [(σ, ξ)] and q′ = [(σ′, ξ′)] if either (a) σ = σ′, there exists x ∈ Ω such
that (σ, x) ∈ q, and there exists τ > 0 such that ∀t ∈ [0, τ ], (σ, φt(x, σ)) ∈ q and
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σ

σ
′

q1

q2

q3

x

Fig. 5.1. Partitions for states σ and σ′ of a hybrid automaton, and the resulting non-

determinism in A.

(σ, φτ+ǫ(x, σ)) ∈ q′ for arbitrarily small ǫ > 0, or (b) σ = σ′, there exists x ∈ Ω
such that (σ, x) ∈ q, and there exists τ > 0 such that ∀t ∈ [0, τ), (σ, φt(x, σ)) ∈ q
and (σ, φτ (x, σ)) ∈ q′, or (c) σ 6= σ′ and there exists x ∈ Ω such that (σ, x) ∈ q and
(σ′, x) ∈ q′. Cases (a) and (b) say that from a point in q, q′ is the first state (different
from q) reached after following the flow of f(x, σ) for some time. Case (c) says that an
edge exists between q and q′ if their projections to R

n have non-empty intersection.
Remark 5.1. The requirement that there be an edge from q to q′ if their projections

to R
n have non-empty intersection is illustrated in Figure 5.1. We have partitions for

controls σ and σ′, respectively. In the partition for σ suppose a trajectory starting at
x flows in time using control σ until state q of A is reached, at which time the control
is set to σ′. The possible states of A that can be reached from q are q1, q2, q3, and
the one-dimensional equivalence classes between them. Hence, edges corresponding
to these possible futures for the trajectory must be included in the definition of A. A
consequence is that multiple trajectories of A can be defined starting from an initial
state. One can think of this construction as over-approximating the identity map in
terms of the equivalence classes of ≃. This is the source of non-determinacy of A.

Let e = (q, q′) with q = [(σ, ξ)] and q′ = [(σ′, ξ′)]. L̂ : E → R is the discrete
instantaneous cost given by

L̂(e) :=

{

τqL(ξ, σ) if σ = σ′

0 if σ 6= σ′.
(5.1)

ĥ : Q→ R is the discrete terminal cost given by

ĥ(q) := h(ξ).

The domain of ĥ can be extended to Ω, with a slight abuse of notation, by

ĥ(x) := ĥ(q)(5.2)

where q = arg minq′{‖x− ξ′‖ | q′ = [(σ′, ξ′)]}. Finally, Qf is the target set given by
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the over-approximation of Ωf ,

Qf = {q ∈ Q | ∃x ∈ Ωf s.t. (σ, x) ∈ q }.(5.3)

5.1. Semantics. A transition or step of A from q = [(σ, ξ)] ∈ Q to q′ =

[(σ′, ξ′)] ∈ Q is denoted q
σ′

→ q′. If σ 6= σ′ the transition is referred to as a con-
trol switch; otherwise, it is referred to as a time step. If E(q) is the set of edges that
can be enabled from q ∈ Q, then for σ ∈ Σδ,

Eσ(q) = {e ∈ E(q) | e = (q, q′), q = [(σ, ξ)], q′ = [(σ′, ξ′)]}.

If |Eσ(q)| > 1, then we say that e ∈ Eσ(q) is unobservable in the sense that when
control event σ is issued, it is unknown which edge among Eσ(q) is taken. If σ = σ′,
then |Eσ(q)| = 1, by the uniqueness of solutions of ODE’s and by the definition of
bisimulation.

A control policy c : Q → Σδ is a map assigning a control event to each state;
c(q) = σ is the control event issued when the state is at q. A trajectory π of A

over c is a sequence π = q0
σ1→ q1

σ2→ q2
σ3→ . . ., qi ∈ Q. A trajectory is non-Zeno if

between any two non-zero duration time steps there are a finite number of control
switches. Note that this definition is slightly different from the traditional definition
of non-Zeno trajectories of H [25] in which it is assumed that time steps always have
a non-zero duration. Here zero-duration time steps can occur. Let Πc(q) be the set
of trajectories starting at q and applying control policy c, and let Π̃c(q) be the set of
trajectories starting at q, applying control policy c, and eventually reaching Qf . If
for every q ∈ Q, π ∈ Πc(q) is non-Zeno then we say c is an admissible control policy.
The set of all admissible control policies for A is denoted C.

A control policy c is said to have a loop if A has a trajectory q0
c(q0)
→ q1

c(q1)
→

. . .
c(qm−1)
→ qm = q0, qi ∈ Q. A control policy has a Zeno loop if it has a loop made up

of control switches and/or zero duration time steps (i.e. τq = 0) only.
Lemma 5.1. A control policy c is admissible if and only if it has no Zeno loops.
Proof. First we show that a non-deterministic automaton with non-Zeno trajec-

tories has a control policy without Zeno loops. For suppose not. Then a trajectory
starting on a state belonging to the loop can take infinitely many steps around the
loop before taking a non-zero duration time step. Such a trajectory must necessarily
include a control switch (since a zero duration time step is always followed either by
a non-zero duration time step or a control switch). Since this control switch occurs
infinitely often in a finite time interval, the trajectory is Zeno, a contradiction.

Second, we show that a control policy without Zeno loops implies non-Zeno tra-
jectories. Suppose not. Consider a Zeno trajectory that takes an infinite number of
control switches in some finite time interval. Because there are a finite number of
states in Q, by the Dirichlet Principle [30], one of the states must be repeated in the
sequence of states visited during the infinite number of control switches. Note this
sequence can include zero duration time steps. This implies the existence of a loop in
the control policy. Now we argue this loop is Zeno.

First, by Remark 4.2, if τq = 0, then all trajectories spend zero time in q. Second,
if τq > 0, then there exists τ q > 0 such that all trajectories spend at least τ q time in q.
This follows from the boundedness of f and the bisimulation construction (trajectories
cannot move between two level sets of γσ

n in arbitrarily small time). Since there are
a finite number of states in Q, there exists τ > 0, the minimum time spent by any
trajectory in a state q ∈ Q with τq > 0. The result is that Zeno trajectories only arise

10
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Fig. 5.2. Fragment of automaton with a zero duration time step.

by an infinite number of control switches in a zero duration time interval. Hence, we
have shown that the loop consists of control switches and/or zero duration time steps
only, i.e. it is a Zeno loop.

Example 5.1 Consider the automaton in Figure 5.2. Suppose that we define a
control policy c(q1) = σ′, c(q3) = σ′, c(q4) = σ, and c(q5) = σ. Starting at q1 two

possible trajectories are q1
σ′

→ q3
σ′

→ q4
σ
→ q2, or q1

σ′

→ q3
σ′

→ q4
σ
→ q1. The first

trajectory has a zero duration time step. The control is inadmissible since the second
trajectory has a Zeno loop.

5.2. Dynamic programming. We formulate the dynamic programming prob-
lem on A. This involves defining a cost-to-go function and a value function that
minimizes it over control policies suitable for non-deterministic automata.

Let π = q0
σ1→ q1 → . . . → qN−1

σN→ qN , where qi = [(σi, ξi)] and π takes the
sequence of edges e1e2 . . . eN . We define a discrete cost-to-go Ĵ : Q× C → R by

Ĵ(q, c) =

{

maxπ∈Π̃c(q)

{

∑Nπ

j=1 L̂(ej) + ĥ(qNπ
)
}

if Πc(q) = Π̃c(q)

∞ otherwise

where Nπ = min{j ≥ 0 | qj ∈ Qf}. We take the maximum over Π̃c(q) because of the
non-determinacy of A: it is uncertain which among the (multiple) trajectories allowed
by c will be taken so we must assume the worst-case situation. The discrete value
function V̂ : Q→ R is

V̂ (q) = min
c∈C

Ĵ(q, c)

for q ∈ Q\Qf and V̂ (q) = ĥ(q) for q ∈ Qf . We show in Proposition 5.2 that V̂ satisfies
a DPP that takes into account the non-determinacy of A and ensures that optimal
control policies are admissible. Let Aq be the set of control assignments c(q) ∈ Σδ at
q such that c is admissible.

Proposition 5.2. V̂ satisfies

V̂ (q) = min
c(q)∈Aq

{

max
e=(q,q′)∈Ec(q)(q)

{

L̂(e) + V̂ (q′)
}

}

, q ∈ Q \Qf(5.4)

V̂ (q) = ĥ(q), q ∈ Qf .(5.5)
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Proof. Fix q ∈ Q. By definition of Ĵ

Ĵ(q, c) = max
e=(q,q′)∈Ec(q)(q)

{L̂(e) + Ĵ(q′, c)}.(5.6)

By definition of V̂

Ĵ(q, c) ≥ max
e=(q,q′)∈Ec(q)(q)

{L̂(e) + V̂ (q′)}.

Since c(q) ∈ Aq is arbitrary

V̂ (q) ≥ min
c(q)∈Aq

{

max
e=(q,q′)∈Ec(q)(q)

{L̂(e) + V̂ (q′)}
}

.

To prove the reverse inequality suppose, by way of contradiction, there exists σ′ ∈ Σδ

such that

V̂ (q) > max
e=(q,q′)∈Eσ′ (q)

{L̂(e) + V̂ (q′)} := L̂(e) + V̂ (q).(5.7)

Suppose an optimal admissible policy for q is c. Define c = c on Q\{q} and c(q) = σ′.
Then Ĵ(q, c) = L̂(e) + V̂ (q) < V̂ (q). This gives rise to a contradiction if we can show
c is admissible. Suppose not. Then there exists a loop of control switches and zero
duration time steps containing q. Either the loop includes q, implying V̂ (q) = V̂ (q),
which contradicts hypothesis (5.7). Alternatively, the loop includes some other q′

such that (q, q′) ∈ Eσ′(q), implying V̂ (q′) = V̂ (q). But V̂ (q) ≥ V̂ (q′) since q gives
the worst-case cost over edges with label σ′. This again contradicts hypothesis (5.7).

5.3. Synthesis of ge. The synthesis of enabling conditions or hybrid controller
synthesis is typically a post-processing step of a backward reachability analysis (see,
for example, [52]). This situation prevails here as well: equations (5.4)-(5.5) describe a
backward analysis to construct an optimal policy c ∈ C. Once c is known the enabling
conditions of H are extracted as follows.

Consider each e = (σ, σ′) ∈ E of H with σ 6= σ′. There are two cases. If σ′ 6= σf

then ge =
{

x | (σ, x) ∈ q, q ∈ Q, c(q) = σ′
}

. That is, if the control policy designates
switching from q ∈ Q with label σ to q′ ∈ Q with label σ′, then the corresponding
enabling condition in H includes the projection to R

n of q. The second case when
σ′ = σf is for edges going to the terminal location of H . Then ge =

{

x | (σ, x) ∈

q, q ∈ Qf

}

.

6. Main Result. We will prove that V̂ converges to V , the viscosity solution
of the HJB equation, as δQ, δ → 0. We make use of a filtration of control sets
Σk ≡ Σδk

corresponding to a sequence δk → 0 as k → ∞, in such a manner that
Σk ⊂ Σk+1. Considering (4.2), we define a filtration of families of submanifolds such
that Wσ

k ⊂ Wσ
k+1, for each σ ∈ Σk.

The proof proceeds in three steps. In the first step we restrict the class of controls
to piecewise constant functions whose constant intervals are a function of the state.
In particular, the control is constant on equivalence classes of ≃. As δk tends to zero
this class of piecewise constant controls well approximates ǫ-optimal controls. Arzela-
Ascoli theorem is invoked to show that the limit of a sequence of approximations Vk

of the value function using the aforementioned controls is a continuous function V∗.
Using techniques of [4], V∗ is shown to be the unique viscosity solution of HJB. In
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the second step we introduce the discrete approximations of L and h. The discrete
approximation of h is a one time error while the error between L and L̂ is shown to be
O(δ2k) per interval τ . Since the number of intervals is O(1/δk), the error is O(δk). In
the last step we introduce the discrete states Q. The error introduced at each control
switch by the non-determinacy of A is O(δk) and since there are a fixed number of
control switches as δk → 0, this error can be made arbitrarily small.
Step 1: piecewise constant controls.

In the first step we define a class of piecewise constant functions that depend on
the state and show that the value function which minimizes the cost-to-go over this
class converges to the viscosity solution of HJB as δk → 0. The techniques of this
step are based on those in Bardi and Capuzzo-Dolcetta [4] and are related to those
in [12].

We consider the optimal control problem (2.2)-(2.4) when the set of admissible
controls is U1

k , piecewise constant functions consisting of finite sequences of control
events σ ∈ Σk where each σ is applied for a time τ(σ, x) and the trajectory remains in
Ω. Let (σ, x) ∈ q for q ∈ Q and define τ(σ, x) to be the minimum of the time it takes
the trajectory starting at x and using control σ ∈ Σk to reach (ta) ∂Ωf , or (tb) some
x′ such that (σ, x′) 6∈ q. If a trajectory is at xi at the start of the (i+ 1)th step, then
the control σi+1 is applied for time τi+1 := τ(σi+1, xi) and xi+1 = φτi+1(xi, σi+1).
Thus U1

k is a class of piecewise constant controls whose constant intervals are based
on the state partition induced by ≃ (in contrast with a partition of the time interval):
the control can only change values on the boundary of equivalence classes.

Let

R1
k := { x ∈ Ω | ∃µ ∈ U1

k . T (x, µ) <∞ }.

We define the cost-to-go function J1
k : Ω × U1

k → R as follows. For x ∈ Ω and
µ = σ1σ2 . . . ∈ U1

k , if T (x, µ) <∞ then

J1
k (x, µ) =

N
∑

j=1

∫ τ(σj,xj−1)

0

L(φs(xj−1, σj), σj)ds+ h(xN )

where N = min{j ≥ 0 | xj ∈ Ωf}. J1
k (x, µ) = ∞, otherwise. We define the value

function V 1
k : R

n → R as follows. For x ∈ Ω \ Ωf ,

V 1
k (x) = inf

µ∈U1
k

J1
k (x, µ)(6.1)

and for x ∈ Ωf , V 1
k (x) = h(x). The following result is proved using standard argu-

ments from dynamic programming [19].
Proposition 6.1. V 1

k satisfies, for all x ∈ R1
k,

V 1
k (x) = min

σ∈Σk

{
∫ τ(σ,x)

0

L(φs(x, σ), σ)ds + V 1
k (φτ(σ,x)(x, σ))

}

.(6.2)

We would like to show that V 1
k is uniformly bounded and locally uniformly con-

tinuous. Considering uniform continuity of V 1
k , let Ck be as in (4.1) and γσ

n the
submersion whose level sets are transverse to the flow of ẋ = f(x, σ). Referring to
Figure 6.1, for each σ ∈ Σk and for each fixed c ∈ Ck we define the regions in R

n

Mσ
c := { x | γσ

n(x) = c }

Mσ
c− := { x | γσ

n(x) ∈ (−1, c) } ,
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x

y

Fig. 6.1. The shaded region is Mσ

c− while the bold curve on its boundary is Mσ
c .

that is, Mc− is the strip of points belonging to a level set of γσ
n whose level value is

between −1 and c.
Remark 6.1.
(a) If x, y ∈ Mσ

c− for some c ∈ Ck and τ(σ, x) and τ(σ, y) are defined using
(tb) then |τ(σ, x) − τ(σ, y)| → 0 and ‖φτ(σ,x)(x, σ) − φτ(σ,y)(y, σ)‖ → 0 as
‖x− y‖ → 0 in Mσ

c−, since Mσ
c is a smooth submanifold. See Figure 6.1. For

the details, see Theorem 6.1, p. 91-94, [19]. If instead τ(σ, x) and τ(σ, y) are
defined using (ta) and σ is an ǫ-optimal control for x, then by Assumption 2.2
the same results hold.

(b) For each x ∈ ∪kR
1
k and ǫ > 0 there exists m ∈ Z

+ and µ ∈ U1
m such that µ

is an ǫ-optimal control for x w.r.t. V 1
k with at most Nǫ discontinuities and

such that φt(x, µ) is transverse to ∂Ωf . This follows from Assumption 2.2,
V 1

k (x) ≥ V (x), and the fact that we can well-approximate an ǫ-optimal control
for V by a control in U1

m, for large enough m.
The following lemma shows that V 1

k is locally uniformly continuous.
Lemma 6.2. For each y ∈ ∪kR1

k and ǫ > 0, there exists mǫ ∈ Z
+ and ηǫ > 0

such that |V 1
k (x) − V 1

k (y)| < 2ǫ for all |x− y| < ηǫ with x ∈ R1
k and for all k > mǫ.

Proof. Fix y ∈ ∪kR1
k. By Remark 6.1(b) there exists m1 > 0 and µ ∈ U1

m1
such

that µ is an ǫ-optimal control for y satisfying Assumption 2.2. Let x ∈ R1
m1

. Then
V 1

k (x) − V 1
k (y) ≤ J1

k (x, µx) − J1
k (y, µ) + ǫ for any µx ∈ U1

m1
and k > m1. If we can

show that for fixed y and µ there exists µx ∈ U1
m1

such that

J1
k (x, µx) − J1

k (y, µ) < ǫ(6.3)

for all x ∈ R1
m1

sufficiently close to y, then V 1
k (x) − V 1

k (y) ≤ 2ǫ for all k ≥ m1.
Conversely, by Remark 6.1(b) there exists m2 > 0 and µx ∈ U1

m2
such that µx

is an ǫ-optimal control for x satisfying Assumptions 2.2. Then V 1
k (y) − V 1

k (x) ≤
J1

k (y, µ)− J1
k (x, µx) + ǫ for any µ ∈ U1

m2
and k > m2. If we can show that for fixed y

there exists µ ∈ U1
m2

such that

J1
k (y, µ) − J1

k (x, µx) < ǫ(6.4)

for all x ∈ R1
m2

sufficiently close to y, then V 1
k (x)−V 1

k (y) ≥ −2ǫ for all k ≥ m2. The
result follows by letting mǫ = min{m1,m2}. Thus, we must show (6.3) and (6.4).

Consider first (6.3). Let µ = σ1σ2 . . . ∈ U1
k be an ǫ-optimal control for y such

that yN ∈ ∂Ωf . By redefining indices, we can associate with µ the open-loop control
µ̃ = (σ1, τ1)(σ2, τ2) . . ., where τi is the time σi is applied. We claim there exists
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µ̃x = (σ1, τ
x
1 )(σ2, τ

x
2 ) . . . such that as x → y, (a) xj → yj , (b) τx

j → τj , and (c)
xN ∈ ∂Ωf . Let Tk = maxi τi. Then we have

J1
k (x, µ̃x) − J1

k (y, µ̃) ≤
N

∑

j=1

∫ τj

0

|L(φs(xj−1, σj), σj) − L(φs(yj−1, σj), σj)|ds

+

N
∑

j=1

∣

∣

∫ τx
j

τj

L(φs(xj−1, σj), σj)ds
∣

∣ + |h(yN ) − h(xN )|

≤ LLTk exp (LfTk)

N
∑

j=1

‖xj−1 − yj−1‖

+ML

N
∑

j=1

|τx
j − τj | + Lh|xN − yN |.

By the previous claim the r.h.s. can be made less than ǫ. Thus, we need only show
there exists µ̃x = (σ1, τ

x
1 )(σ2, τ

x
2 ) . . . which satisfies the claim and µx ∈ U1

k can be
reconstructed from it, based on the discrete states in Q visited by φt(x, µ̃

x).
We argue by induction. Suppose (a)-(c) hold at j − 1. We show they hold at j.

We need only consider the case when yj−1 ∈ M
σj

c− and yj ∈ M
σj
c for some c ∈ Ck;

that is, yj−1 lies “upstream” of yj (trajectories flow in the increasing γ
σj
n direction),

while yj lies on the boundary of an equivalence class where the control is allowed to
switch values. For xj−1 sufficiently close to yj−1, xj−1 ∈ M

σj

c−. By Remark 6.1(a)
there exists τx

j such that xj = φτx
j
(xj−1, σj) ∈ M

σj
c and τx

j → τj and xj → yj as

xj−1 → yj−1. The case yj−1 ∈ M
σj

c− and yj ∈ ∂Ωf follows in the same way from
Assumption 2.2. Proving (6.4) follows along the same lines as the proof for (6.3).

To show boundedness of V 1
k , let T (x) := infµ∈U1

k
T (x, µ). In light of Assump-

tion 2.1(2), we have that for all x ∈ R
n, |V 1

k (x)| ≤ T (x) ·ML +Mh. Consider the set
Ka := {x ∈ R1

k | T (x) < a}. Then |V 1
k (x)| ≤ a ·ML +Mh, ∀x ∈ Ka.

We have shown that on each Ka ⊆ R
n, {V 1

k } forms a family of equibounded,
locally equicontinuous functions. It follows by Arzela-Ascoli Theorem [42] that along
some subsequence kn, V 1

kn
converges to a continuous function V∗. The proof of the

following result closely follows [4].
Proposition 6.3. V∗ is the unique viscosity solution of HJB.
Proof. We show that V∗ solves HJB in the viscosity sense. Let ψ ∈ C1(Rn)

and suppose x0 ∈ Ω is a strict local maximum for V∗ − ψ. There exists a closed
ball B centered at x0 such that (V∗ − ψ)(x0) > (V∗ − ψ)(x), for all x ∈ B. Let
x0δk

be a maximum point for V 1
k − ψ over B. Since V 1

k → V∗ locally uniformly it
follows that x0δk

→ x0 as δk → 0. Then, for any σ ∈ Σk, the point φτ (x0δk
, σ) is in

B (using boundedness of f), for sufficiently small δk and 0 ≤ τ ≤ τ(x0δk
, σ), since

τ(x0δk
, σ) → 0 as δk → 0. Therefore,

V 1
k (x0δk

) − ψ(x0δk
) ≥ V 1

k (φτ (x0δk
, σ)) − ψ(φτ (x0δk

, σ)).

Considering Equation 6.2, we have

0 = − min
σ∈Σk

{

V 1
k (φτ (x0δk

, σ)) − V 1
k (x0δk

) +

∫ τ

0

L(φs(x0δk
, σ), σ)ds

}

≥ − min
σ∈Σk

{

ψ(φτ (x0δk
, σ)) − ψ(x0δk

) +

∫ τ

0

L(φs(x0δk
, σ), σ)ds

}

.
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Since ψ ∈ C1(Rn), we have by the Mean Value Theorem,

0 ≥ − min
σ∈Σk

{

∂ψ

∂x
(y) ·

∫ τ

0

f(φs(x0δk
, σ), σ)ds+

∫ τ

0

L(φs(x0δk
, σ), σ)ds

}

where y = αx0δk
+ (1 − α)φτ (x0δk

, σ) for some α ∈ (0, 1). Dividing by τ > 0 on
each side and taking the limit as δk → 0, we have V 1

k → V∗, x0δk
→ x0, τ → 0, and

y → x0δk
. By the Fundamental Theorem of Calculus, the continuity of f and L, and

the uniform continuity in u of the expression in brackets, we obtain

0 ≥ − inf
u∈U

{

∂ψ

∂x
(x0) · f(x0, u) + L(x0, u)

}

.

This confirms part (i) of the viscosity solution definition. Part (ii) is proved in an
analogous manner.
Step 2: approximate cost functions and over-approximation of Ωf by Qf .

In this step we define a class of piecewise constant controls, denoted U2
k , nearly

the same as U1
k , to accommodate that trajectories terminate at Qf not Ωf , and we

replace the cost functions L and h by approximations L2 and ĥ, respectively. We
define U2

k ⊂ U1
k to be the class of piecewise continuous controls whose constant time

intervals τ(σ, x) are determined by the equivalence classes of ≃, but not ∂Ωf . That
is, the case (ta) in the definition of τ(σ, x) in Step 1 is omitted. Next we define an
approximate instantaneous cost L2 : Ω × Σk → R by

L2(x, σ) := L̂(e)(6.5)

where (σ, x) ∈ q and e = (q, q′) represents the time step. For x ∈ Ω and µ = σ1σ2 . . . ∈
U2

k , if T (x, µ) <∞, the cost-to-go function J2
k : Ω × U2

k → R is

J2
k (x, µ) =

N
∑

j=1

L2(xj−1, σj) + ĥ(xN )

where N = min{j ≥ 0 | xj ∈ Qf}. In other words, J2
k is a worst-case cost over a set

of trajectories starting at x that visit the same sequence of equivalence classes of ≃;

and it is a worst-case cost w.r.t. J1
k because

∫ τ(σ,x)

0 L(φs(x, σ), σ)ds ≤ L2(x, σ).
We define a value function V 2

k : R
n → R as follows. For x ∈ Ω \Qf ,

V 2
k (x) = inf

µ∈U1
k

J2
k (x, µ)(6.6)

and for x ∈ Qf , V 2
k (x) = ĥ(x). For x ∈ Ω such that V 2

k (x) <∞, V 2
k satisfies the DPP

V 2
k (x) = min

σ∈Σk

{

L2(x, σ) + V 2
k (φτ(σ,x)(x, σ))

}

.

The proof is along the same lines as that of Proposition 5.2.
The following facts are useful for the subsequent result. The first lemma says

that τq is order δk. The second lemma says that given two times τ and τ ′ that two
trajectories spend, respectively, in the same equivalence class, |τ − τ ′| is order δ2k.

Lemma 6.4. If δk <
mf

Lf
, then for all q ∈ Q,

τq ≤
δk

mf − Lfδk
.(6.7)
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Proof. Let q ∈ Q. Fix x ∈ Ω and σ ∈ Σk such that (σ, x) ∈ q. We know
‖φτ(σ,x)(x, σ) − x‖ ≤ δk. We have

δk ≥ ‖φτ(σ,x) − x‖ =
∥

∥

∥

∫ τ(σ,x)

0

f(φs(x, σ), σ)ds
∥

∥

∥

≥
∥

∥

∥

∫ τ(σ,x)

0

f(x, σ)ds
∥

∥

∥
−

∥

∥

∥

∫ τ(σ,x)

0

[f(φs(x, σ), σ) − f(x, σ)]ds
∥

∥

∥

≥ τ(σ, x)‖f(x, σ)‖ − τ(σ, x)Lf δk,

where in the last step we use the fact that ‖φs(x, σ) − x‖ ≤ δk. Therefore,

τ(σ, x) ≤
δk

‖f(x, σ)‖ − Lfδk
.

Using Assumption 4.1(2) and taking the sup over all τ(σ, x) for q, the result follows.

Lemma 6.5. Let x, x′ ∈Mσ
c for some c ∈ Ck and σ ∈ Σk such that ‖x−x′‖ ≤ δk.

Let τ, τ ′ be times such that φτ (x, σ), φτ ′ (x′, σ) ∈ Mσ
c+∆. Then |τ − τ ′| ≤ cγτδk for

some cγ > 0.
Proof. We have

∫ τ

0

d

ds
(γσ

n(φs(x, σ)))ds =

∫ τ ′

0

d

ds
(γσ

n(φs(x
′, σ)))ds.

Let f = f(φs(x, σ), σ), f ′ = f(φs(x
′, σ), σ), dγ =

dγσ
n(z)
dz

|z=φs(x,σ) and dγ′ =
dγσ

n(z)
dz

|z=φs(x′,σ).
Then rearranging terms

∫ τ

0

(f ′ · dγ′)ds−

∫ τ

0

(f · dγ)ds =

∫ τ

τ ′

(f ′ · dγ′)ds.

Let L1 be the Lipschitz constant of f · dγ (using the fact that γσ
n is smooth). Then

∫ τ

τ ′

f ′ · dγ′ ≤ L1τ‖x− x′‖ ≤ L1τδk.

Since γσ
n defines a transversal foliation to vector field f(·, σ), f · dγ > 0. Let c =

mins∈[τ,τ ′]{f
′ · dγ′} > 0. Letting cγ = L1

c
we obtain the result.

Remark 6.2. If µ ∈ U1
k is an ǫ-optimal control for x and the first time the trajectory

φt(x, µ) reaches Ωf (Qf ) is T (T 2), then T − T 2 → 0 and |φT (x, µ) − φT 2(x, µ)| → 0
as k → ∞. This follows from the fact that the distance between Ωf and Qf tends to
zero as k → ∞.

We denote by µ2 ∈ U2
k the restriction of µ to [0, T 2]. Note that if the length of µ

is |µ| = N then |µ2| := N2 ≤ N . Then we have the following result.
Proposition 6.6. Let k0 ∈ Z

+ be arbitrary, x ∈ R1
k0

, and µ ∈ U1
k0

be an
ǫ-optimal control for x. Then |J1

k (x, µ) − J2
k (x, µ2)| → 0 as k → ∞.

Proof. Suppose µ = (σ1, τ1) . . . (σN , τN ) and µ2 = (σ1, τ1) . . . (σN2 , τN2) where
N2 ≤ N . Thus, N −N2 additional steps are required to reach ∂Ωf after reaching Qf .
Then we have

∣

∣J1
k (x, µ) − J2

k (x, µ2)
∣

∣ ≤

∣

∣

∣

∣

N
∑

j=1

[

∫ τ(σj,xj−1)

0

L(φs(xj−1, σj), σj)ds
]

+ h(xN )

17



−
N2
∑

j=1

[

τqj−1L(ξj−1, σj)
]

− ĥ(xN2 )

∣

∣

∣

∣

where (σj , xj−1) ∈ qj−1 and qj−1 = [(σj , ξj−1)]. There exists ξN2 such that ĥ(xN2) =
h(ξN2) and ‖xN2 −ξN2‖ ≤ δk. Also, using the Mean Value Theorem, there exists t̃j−1

with x̃j−1 = φt̃j−1
(xj−1, σj) and ‖x̃j−1 − ξj−1‖ ≤ δk such that

∣

∣J1
k (x, µ) − J2

k (x, µ2)
∣

∣ ≤
N2
∑

j=1

∣

∣τ(σj , xj−1)L(x̃j−1, σj) − τqj−1L(ξj−1, σj)
∣

∣

+

∣

∣

∣

∣

N
∑

j=N2+1

[

∫ τ(σj ,xj−1)

0

L(φs(xj−1, σj), σj)ds
]

∣

∣

∣

∣

+
∣

∣h(xN ) − ĥ(xN2)
∣

∣

≤
N2
∑

j=1

τqj−1LLδk +

N2
∑

j=1

[τqj−1 − τ(σj , xj−1)]L(x̃j−1, σj)

+(T − T 2)ML + Lh‖xN − xN2‖ + Lhδk.

The last three terms on the r.h.s. go to zero as k → ∞ because of Remark 6.2 and
since δk → 0. Using Lemma 6.4 the first summation decreases linearly as δk. Call the
second summation on the r.h.s. “B”. Splitting B into sums over control switches and
time steps, we have

B ≤ML

N2
∑

j=1

[τqj−1 − τ(σj , xj−1)]1(σj = σj−1) +ML

N2
∑

j=1

[τqj−1 − τ(σj , xj−1)]1(σj 6= σj−1)

≤ML

N2
∑

j=1

cj−1τqj−1δk +ML

N2
∑

j=1

τqj−11(σj 6= σj−1)

for some cj−1 ∈ R. In the second line we used Lemma 6.5 and the fact that τqj−1 ≥
τ(σj , xj−1). Using Lemma 6.4 the first summation on the r.h.s. decreases linearly as
δk. The second term on the r.h.s. goes to zero since, by Assumption 2.2, µ has a fixed
number of control switches for all k ≥ k0.
Step 3: discrete states and non-determinacy.

In the last step we compare the value function V 2
k (x) with the discrete value

function V̂ defined on A. The difference between the two is that trajectories defined
over U2

k do not include jumps while trajectories whose time abstract versions are
accepted by A can have jumps due to the non-determinacy of A. Nevertheless, as
k → ∞ this decrepancy can be made negligible and we show that the difference
between V 2

k and V̂ can be made arbitrarily small.

First we extend the domain of V̂ (q), with an abuse of notation, by defining

V̂k(x) := min
σ∈Σk

{ V̂ (q) | (σ, x) ∈ q }.

Also let R̂k = {x ∈ Ω | V̂k(x) <∞} and R̂ = ∪kR̂k.
Remark 6.3.
(a) For each x ∈ ∪kR1

k and ǫ > 0 there exists m ∈ Z
+ and µ ∈ U2

m such that µ
is an ǫ-optimal control for x w.r.t. V 2

k with at most Nǫ discontinuities. This
follows from Remark 6.1(b) and the fact that trajectories in U2

m are merely
truncations of trajectories in U1

m.
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Fig. 6.2. The family of trajectories Ψk in the proof of Proposition 6.7.

(b) R̂ ⊂ ∪kR1
k, but the converse is not true, in general.

(c) If µ is an ǫ-optimal control for x w.r.t. V 2
k , then we can assume φt(x, µ) does

not self-intersect, for if it did we could find µ̃, also ǫ-optimal, which eliminates
loops in φt(x, µ).

(d) ‖x−x′‖ → 0 as k → ∞ for all x,x′, σ, σ′ 6= σ such that ([(σ, x)], [(σ′, x′)]) ∈ E.
(e) For all x ∈ R̂, V̂k(x) ≥ V 2

k (x). This follows because the argument of the max

in the definition of Ĵ(q, c) is equal to J2
k (x, µ), where c is a control policy as

defined in Section 5.1 with c(q) = σ1, (σ1, x) ∈ q, and µ = (σ1, τ1) . . . is the
piecewise continuous control that corresponds to following policy c starting
at x. Thus, J2

k (x, µ) is the cost for a particular trajectory in Π̃c(q) which

has no jumps at the control switches. Then we have Ĵ(q, c) ≥ J2
k (x, µ), since

Ĵ(q, c) maximizes over all trajectories in Π̃c(q).
Proposition 6.7. For all x ∈ R̂, |V̂k(x) − V 2

k (x)| → 0 as k → ∞.
Proof.
Fix ǫ > 0 and x ∈ R̂. By Remark 6.3(a) there exists m > 0 and an ǫ-optimal

control µ ∈ U2
m for x w.r.t. V 2

m. Denote µ = ((σ1, τ1) . . . (σN , τN )), where τi is the
time σi is applied. Let c be any control policy on Q that is generated using δk and
Ck, for k ≥ m. Then, using Remark 6.3(e),

0 ≤ V̂k(x) − V 2
k (x) ≤ Ĵk(q, c) − J2

k (x, µ) + ǫ,

where q = [(σ1, x)]. If we can show there exists k ≥ m such that for k > k, there
exists a policy c such that

Ĵk(q, c) − J2
k (x, µ) < ǫ,

then the result follows.
By Remark 6.3(d) and the transversality of φt(x, µ) with the level sets of γn, we

can find k ≥ m such that for k > k, there exists a family of (both continuous and
discontinuous) trajectories Ψk starting at x with the following properties:

1. φt(x, µ) ∈ Ψk.
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2. φ ∈ Ψk is defined over a control µ̃ = ((σ1, τ̃1), . . . , (σN , τ̃N )) ∈ U2
k with the

same sequence of control values as µ.
3. φ ∈ Ψk switches controls on the same (transversal) submanifolds as φt(x, µ)

and reaches Qf .
4. If x−j = φτj

(xj−1, σj), then xj , the initial condition of the next step, satisfies

([(σj , x
−

j )], (σj+1, xj)]) ∈ E. Thus, the trajectories of Ψk include jumps at
the control switches modeling the non-determinacy of A.

5. If φ ∈ Ψk intersects q ∈ Q in R
n at the jth step, then that is the only

step where it intersects q. Also, all other φ′ ∈ Ψk that intersect q do so at
the jth step only. This requirement can be met, for sufficiently large k by
the fact that φ′ has no self-intersections, by the fact that there are a finite
number of steps, and by Remark 6.3(d). For if φ′ has a self-intersection,
then since φ′ approaches φt(x, µ) as k → ∞, this would imply φt(x, µ) has a
self-intersection, contradicting Remark 6.3(c).

The family Ψk includes all trajectories starting at x, using the same sequence of
control values as µ, and switching on the same equivalence class boundaries φt(x, µ).
Moreover, the initial condition at the start of each step can be any point in an equiva-
lence class that has a non-empty intersection in R

n with the equivalence class reached
at the end of the previous step. One visualizes a tube of trajectories that fans out with
each successive control switch, as depicted in Figure 6.2. By choosing k sufficiently
large and by transversality, all these trajectories reach Qf .

Let Wk(φ) =
∑N

j=1 L
2(xj−1, σj) + ĥ(xN ). Observe that for φ, φ′ ∈ Ψk, |Wk(φ) −

Wk(φ′)| → 0 as k → ∞, using Lipschitz continuity of L and h, and Remark 6.3(d).
We can define a control policy c in which q ∈ Q is assigned a time step if q is not
visited by any trajectory in Ψk. If q ∈ Q is visited by some φ ∈ Ψk in its jth step,
then we assign c(q) = σj . This gives a well-defined value for c because of Property 4.
By construction A accepts the time abstract trajectory starting at q corresponding to
each trajectory of Ψk. c is admissible because otherwise some time abstract trajectory
of A would have a Zeno loop. But a time abstract trajectory of A with a Zeno loop
has a corresponding timed trajectory in Ψk that violates Property 4 of Ψk.

Now we observe that

Ĵ(q, c) = max
φ∈Ψk

Wk(φ) := Wk(φ).

Thus, Ĵk(q, c) − J2
k (x, µ) ≤ |Wk(φ) −Wk(φ(x, µ))| → 0 as k → ∞.

Combining Propositions 6.3, 6.6, and 6.7, we have
Theorem 6.8. For all x ∈ R̂, V̂k(x) → V (x) as k → ∞.

7. Implementation. So far we have developed a discrete method for solving an
optimal control problem based on hybrid systems and bisimulation. Now we focus
on the pragmatic question of how the discretized problem can be efficiently solved.
In this section we propose a modification of the Dijkstra algorithm suitable for non-
deterministic automata and prove that it is optimal and does not synthesize Zeno
loops.

7.1. Motivation. Capuzzo-Dolcetta [12] introduced a method for obtaining ap-
proximations of viscosity solutions based on time discretization of the HJB equation.
The approximations of the value function correspond to a discrete time optimal con-
trol problem, for which an optimal control can be synthesized which is piecewise
constant. Finite difference approximations were also introduced in [14] and [47]. In

20



general, the time discretized approximation of the HJB equation is solved by finite
element methods. Gonzales and Rofman [22] introduced a discrete approximation
by triangulating the domain of the problem, while the admissible control set is ap-
proximated by a finite set. Gonzales and Rofman’s approach is adapted in several
papers, including [17]. The approach of [50] uses the special structure of an optimal
control problem to obtain a single-pass algorithm to solve the discrete problem, thus
bypassing the expensive iterations of a finite element method. See [45] for a recent
adaptation of Tsitsiklis’ approach. The essential property needed to find a single pass
algorithm is to obtain a partition of the domain so that the cost-to-go value from any
equivalence class of the partition is determined from knowledge of the cost-to-go from
those equivalence classes with strictly smaller cost-to-go values. We obtain a partition
of the domain provided by a bisimulation partition. The combination of the structure
of the bisimulation partition and the requirement of non-Zeno trajectories enables us
reproduce the essential property of [50], so that we obtain a Dijkstra-like algorithmic
solution. Our approach has complexity O(N logN) if suitable data structures are
used, where N is the number of locations of the finite automaton. The number N is,
of course, exponential in n, the dimension of the continuous state space.

7.2. Non-deterministic Dijkstra algorithm. The dynamic programming so-
lution (5.4)-(5.5) can be viewed as a shortest path problem on a non-deterministic
finite graph subject to all optimal paths satisfying a non-Zeno condition. We propose
an algorithm which is a modification of the Dijkstra algorithm for deterministic graphs
[16]. First we define the notation. Fn is the set of states that have been assigned a
control and are deemed “finished” at iteration n, while Un are the unfinished states.
At each n, Q = Un ∪ Fn. Σn(q) ⊆ Σδ is the set of control events at iteration n that
take state q to finished states exclusively. Ũn is the set of states for which there exists
a control event that can take them to finished states exclusively. Ṽn(q) is a tentative
cost-to-go value at iteration n. Bn is the set of “best” states among Ũn.

The non-deterministic Dijkstra (NDD) algorithm first determines Ũn by checking
if any q in Un can take a step to states belonging exclusively to Fn. For states
belonging to Ũn, an estimate of the value function Ṽ following the prescription of
(5.4) is obtained: among the set of control events constituting a step into states in Fn,
select the event with the lowest worst-case cost. Next, the algorithm determines Bn,
the states with the lowest Ṽ among Ũn, and these are added to Fn+1. The iteration
counter is incremented until it reaches N = |Q|. It is assumed in the following
description that initially V̂ (q) = ∞ and c(q) = ∅ for all q ∈ Q.
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Procedure NDD:

F1 = Qf ; U1 = Q − Qf ;

for each q ∈ Qf , V̂(q) = ĥ(q);

for n = 1 to N, do

for each q ∈ Un,

Σn(q) = {σ′ ∈ Σδ | if q
σ′

→ q′, then q′ ∈ Fn};

Ũn = {q ∈ Un | Σn(q) 6= ∅};
for each q ∈ Ũn,

Ṽn(q) = minσ′∈Σn(q){maxe=(q,q′)∈Eσ′ (q){L̂(e) + V̂(q′)}};

Bn = argminq∈Ũn
{Ṽn(q)};

for each q ∈ Bn,

V̂(q) = Ṽn(q);

c(q) = argminσ′∈Σn(q){maxe=(q,q′)∈Eσ′ (q){L̂(e) + V̂(q′)}};
endfor

Fn+1 = Fn ∪ Bn; Un+1 = Q − Fn+1;

endfor

7.3. Justification. In this section we prove that the algorithm is optimal; that
is, it synthesizes a control policy so that each q ∈ Q reaches Qf with the best worst-
case cost. We observe a few properties of the algorithm. First, if all states of Q can
reach Qf in a non-deterministic sense, then Q − Qf = ∪nBn. By non-deterministic
sense we mean that for each q ∈ Q, there exists a control policy c such that Πc(q) =
Π̃c(q). Note that if this condition is not met then it can happen that at some iteration
of NDD, Ũn = ∅ but Un 6= ∅. Second, as in the deterministic case, the algorithm
computes V̂ in order of level sets of V̂ . In particular, V̂ (Bn) ≤ V̂ (Bn+1). Finally, we
need the following property.

Lemma 7.1. For all q ∈ Q that can reach Qf in a non-deterministic sense and
for all σ′ ∈ Σδ,

V̂ (q) ≤ max
e=(q,q′)∈Eσ′ (q)

{L̂(e) + V̂ (q′)}.

Proof. Fix q ∈ Q and σ′ ∈ Σδ. There are two cases.
Case 1.

V̂ (q) ≤ max
e=(q,q′)∈Eσ′(q)

{V̂ (q′)}.

In this case the result is obvious.
Case 2.

V̂ (q) > max
e=(q,q′)∈Eσ′(q)

{V̂ (q′)}.(7.1)

By assumption, q belongs to some Bn. Suppose w.l.o.g. that q ∈ Bj . Together with

(7.1) this implies q′ ∈ Fj for all q′ such that q
σ′

→ q′. This, in turn, means that
σ′ ∈ Σj(q) and according to the algorithm

V̂ (q) = Ṽj(q) ≤ max
e=(q,q′)∈Eσ′ (q)

{L̂(e) + V̂ (q′)}
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which proves the result.
Theorem 7.2. Algorithm NDD is optimal and synthesizes a control policy with

no Zeno loops.
Proof. First we prove optimality. Let V (q) be the optimal (best worst-case)

cost-to-go for q ∈ Q and Q = {q ∈ Q | V (q) < V̂ (q)}. Let l(πq) be the number of
edges taken by the shortest optimal (best worst-case) trajectory πq from q. Define
q = argminq∈Q{l(πq)}. Suppose that the best worst-case trajectory starting at q is

πq = q
σ′

→ q → . . .. We showed in the previous lemma that

V̂ (q) ≤ max
e=(q,q′)∈Eσ′(q)

{L̂(e) + V̂ (q′)} = L̂(e) + V̂ (q).

Since πq is the best worst-case trajectory from q and by the optimality of V (q)

V (q) = max
e=(q,q′)∈Eσ′(q)

{L̂(e) + V (q′)} = L̂(e) + V (q).

Since πq is the shortest best worst-case trajectory, we know that q 6∈ Q, so V (q) =

V̂ (q). This implies V̂ (q) ≤ L̂(e) + V (q) = V (q), a contradiction.
To prove that the algorithm synthesizes a policy with no Zeno loops we argue by

induction. The claim is obviously true for F1. Suppose that the states of Fn have
been assigned controls forming no Zeno loops. Consider Fn+1. Each state of Bn takes
either a time step or a control switch to Fn so there cannot be a Zeno loop in Bn.
The only possibility is for some q ∈ Bn to close a Zeno loop with states in Fn. This
implies there exists a control assignment that allows an edge from Fn to q to be taken;
but this is not allowed by NDD. Thus, Fn+1 has no Zeno loops.

8. Examples. We consider two simple examples where the solution of the opti-
mal control problem is known in order to illustrate the correctness of the method. The
software that generates the optimal enabling conditions is broken into two programs,
one that generates the automaton given the information about the bisimulation and
the second that runs the algorithm NDD. The first program takes as input the control
values Σδ and the level values of γσ

i , i = 1, . . . , n, σ ∈ Σδ defining the bisimulation.

The functions γσ
i , L̂ and ĥ are compiled with the executable. A data structure that

associates to each location of the finite automaton the lower and upper level values of
each γσ

i allows time steps to be encoded symbolically; namely by sorting nodes with
equal upper and lower first integral level values in ascending order of γσ

n level values.
The edges of the finite automaton that correspond to σ-steps are generated numeri-
cally by evaluating γσ

i for i = 1, . . . , n and each σ ∈ Σδ and thereby determining which
equivalence classes overlap for each pair (l, l′) of locations. In our implementation the
grid of sample points is {x ∈ Ω, γi ∈ Ck}, in order to correlate with the meshsize of the
bisimulation partition. This numerical step can also be performed symbolically if the
functions γσ

i are polynomials using a quantifier elimination algorithm [5]. However,
the quantifier elimination step is expensive and for approximate solutions it suffices
to use a numerical approach.

First we apply our method to Example 3.1 and 4.1. The bang-bang solution
obtained using Pontryagin’s maximum principle is well known to involve a single
switching curve. The continuous value function V is shown in Figure 8.1(a).

The results of algorithm NDD are shown in Figure 8.1(b) and Figure 8.2. In
Figure 8.2 the dashed line is the smooth switching curve for the continuous problem.
The black dots identify equivalence classes where NDD assigns a control switch. Con-
sidering ge−1 we see that the boundary of the enabling condition in the upper left
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(b) V̂ for ∆ = 0.1.

Fig. 8.1. Continuous and discrete value functions for double integrator

corner is a jagged approximation using equivalence classes of the smooth switching
curve. Initial conditions in the upper left corner just inside the enabling condition
must switch to a control of u = −1, otherwise the trajectory will increase in the x2

direction and not reach the target. Initial conditions in the upper left corner just
outside the enabling condition must allow time to pass until they reach the enabling
condition, for if they switched to u = −1 they would be unable to reach the target.
Hence the upper left boundary of the enabling condition is crisp. The lower right
side of the enabling condition which has islands of time steps shows the effect of the
non-determinacy of automaton A. These additional time steps occur because it can
be less expensive to take a time step than to incur the cost of the worst case control
switch. Indeed consider an initial condition in Figure 8.2(a) which lies in an equiva-
lence class that takes a time step but should take a control switch according to the
continuous optimal control. Such a point will move up and to the left before it takes
a control switch. By moving slightly closer to the target, the worst-case cost-to-go
incurred in a control switch is reduced. Notice that all such initial conditions eventu-
ally take a control switch. This phenomenon of extra time steps is a function of the
mesh size δ: as δ decreases there are fewer extra time steps. Finally we note that the
two enabling conditions have an empty intersection, as expected in order to ensure
non-Zeno trajectories.

Figure 8.3 shows trajectories of the closed-loop system using the controller syn-
thesized by NDD. The central shaded region is an enlarged target set.

Next we consider the time optimal control problem for the system

ẋ1 = x2

ẋ2 = −x1 + u.(8.1)

Suppose Ω = (−1, 1) × (−1, 1) and Ωf = Bǫ(0), the closed epsilon ball centered at

0. The cost-to-go function is J(x, µ) =
∫ T (x,µ)

0 dt and U = {u : |u| ≤ 1}. We select
Σδ = {−1, 1}, so that δ = 1. The hybrid system is show in Figure 8.4. The state set
is {σ−1 = −1, σ1 = 1, σf} × R

2. ge−1 and ge1 are unknown and must be synthesized,
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Fig. 8.3. Trajectories of the closed-loop system
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ẋ2 = 0
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Fig. 8.4. Hybrid automaton for Example 2.

25



−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a) σ1

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(b) σ−1

Fig. 8.5. Partitions for states σ1 and σ−1 of the hybrid automaton of Figure 8.5
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(b) V̂ for ∆ = 0.02.

Fig. 8.6. Continuous and discrete value functions for Example 2.

while ge2 = ge3 = Ωf . A first integral for Equation 8.1 is
√

(x1 − u)2 + x2
2 = c1

where u = ±1. The transverse foliation is chosen to be defined by the function
arctan( x2

x1−u
) = c2. Partitions for locations σ1 and σ−1 and are shown in Figure 8.5.

The results of algorithm NDD are shown in Figure 8.6(b) and Figure 8.7. In Figure 8.7
the dashed line is the switching curve for the continuous problem. As in the previous
example the black dots identify equivalence classes where NDD assigns a control
switch. Figure 8.8 shows trajectories of the closed-loop system using the controller
synthesized by NDD. An enlarged target set is at the origin.

Remark 8.1. From these examples we observe that our method is best suited to
problems when there are relatively few control switches, as each control switch incurs
an error of order δ. Also the method is suited to problems where bang-bang controls
are used. The method has advantages in situations where a fine time discretization of
the vector field is needed for standard finite element methods. We do not require time
discretization because of the particular choice of grid which captures time evolution
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Fig. 8.7. Enabling conditions for Example 2.
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Fig. 8.8. Trajectories of the closed-loop system for Example 2.

exactly. Finally, because the method requires computation of weak first integrals,
only systems for which first integrals are computable in closed form are considered.

The following table shows the computation times for the two examples as a func-
tion of δ. The automaton size and the time in seconds to generate it appear in the
second and third columns. We report the time for file I/O which otherwise would
dominate the computation times. The time in seconds to run NDD and the size of
the set Fn of finished states appear in the last two columns. Note that not all nodes
are finished in the first example because the regions of R

2 that are partitioned in the
two locations do not overlap perfectly, resulting in the non-existence of a trajectory
that can reach the origin starting in a subset of the non-overlapping areas.
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Example δ N Automaton I/O NDD Finished
1 .2 7200 .11 4.57 .02 3274
1 .1 28800 .46 5.69 .08 12835
1 .05 115200 1.97 9.09 .38 51490
1 .025 460800 7.83 22.91 1.77 205624
2 .2 1920 .03 4.42 .01 1920
2 .1 7560 .09 4.78 .07 7560
2 .05 30240 .39 6.13 .28 30240
2 .025 120960 1.55 11.04 1.3 189000
2 .0125 482880 7.99 35.29 7.12 482880

9. Conclusion. In this paper we have developed a methodology for the syn-
thesis of optimal controls based on hybrid systems and bisimulations. The idea is
to translate the optimal control problem to a switching problem on a hybrid system
whose locations describe the dynamics when the control is constant. When the vec-
tor fields for each location of the hybrid automaton have local first integrals which
can be expressed analytically we are able to define a finite bisimulation using the
approach of [10]. From the finite bisimulation we obtain a (time abstract) finite au-
tomaton upon which a dynamic programming problem can be formulated that can be
solved efficiently. We proposed an efficient single-pass algorithm to solve this dynamic
programming problem and demonstrated its correctness on two simple examples.
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