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Abstract

We introduce Filippov automata which are based on
Filippov’s theory of dynamical systems governed by
piecewise smooth vector fields. We develop some of
the global and generic aspects of the dynamics of Fil-
ippov automata. In particular we establish a generic
structural stability theorem for two dimensional Fil-
ippov automata, which is a natural generalization of
Mauricio Peixoto’s classic result [4].

1 Introduction

Consider a hybrid automaton with two locations whose
continuous state space is the 2-sphere. The initial con-
ditions for the first location are the upper hemisphere
and for the second location the lower hemisphere. The
locations have vector fields X_ and X, respectively,
and each location has an outgoing edge whose enabling
condition is the equator of the sphere. This gives an

Figure 1: Hybrid orbits on a 2-sphere.

orbit portrait on the sphere. See Figure 1. What can
it look like? How do perturbations affect it? How does
it differ from the standard vector field case in which
Xy = X_7 These topics will be put in proper context
and addressed in this paper.

Our work has precursors in an announcement by V.S.
Kozlova [2] about structural stability for the case of
planar Filippov systems, and also the work of Jorge
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Sotomayor and Jaume Llibre [3]. In Filippov [1] local
conditions for structural stability are obtained, while
our results are global.

2 Filippov Automata

A Filippov automaton is a dynamical system defined by
the tuple

H=(IxM,D,K,X%.

I x M is the hybrid state space. I is a finite in-
dex set corresponding to the locations of H and M is
a smooth, orientable, boundaryless, compact strface.
D : I = X"(M) is map assigning a C" vector field
to each location, where A" (M) is the set of C" vector -
fields on M. K C M is a fixed, smoothly embedded,
finite 1-complex. The angle between edges of K meet-
ing at a vertex is non-zero. That is, K has no cusps.
The set of connected components of M \ K is denoted
G = {Gh,...,Gx}. The connected components that
abut across an edge of K are pairwise distinct. That
is, K locally separates M. X°:I — G is a map that
assigns initial conditions G; C M to location 1. Let G;
be the closure of ;. The vector fleld D(i) restricted
to G; is denoted X;. The set of edges E C I x I of H is
determined by K. e = (i,4) ¢ Eif G;N Gy # 0. The
enabling condition of edge e is G; NGy C K.

The family {X;} forms a piecewise C™ vector field
X on M, 1 < r € co which captures the dynamics of
H. The X; are referred to as branches of X. This
piecewise smooth vector field has some kind of orbit
portrait, and structural stability of it should mean that
perturbing it leaves the orbit portrait unchanged topo-
logically. We proceed to spell this out, thus obtaining a
characterization of structural stability of Filippov au-
tomata.

A point g € K is of one of the following four types.

(a) g is a vertex of K.
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{(b) ¢ is a tangency point: it is not a vertex and
at least one of the two branches of X is tangent
to K at ¢. (This includes the possibility that a
branch vanishes at ¢.)

¢ is a crossing point: it is not a vertex, the two
branches of X are transverse to K at ¢, and both
point to the same side of K.

(0

g is an opposition point: it is not a vertex and
the two branches of X oppose each other in the
sense that they are transverse to K at g but they
point to opposite sides of K.

At an opposition point there is a unique strictly convex
combination

X*(g) = AXu(a) + (1 - N X;(0)
tangent to K at g [1].

Definition 2.1. X* is the sliding field. If X*(q) #
0, q is a sliding point, while if X*(g) = 0, it is a
singular equilibrium.

X* indicates the direction a point should slide along X.
See Figure 2. The sliding field is defined on a relatively
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Figure 2: Points slide along K from a to b under the
influence of X*.

open subset of K, which includes neither the vertices
of K, nor the points of K at which a branch of X is
tangent to K, for at a tangency point, the branches of
X do not oppose each other — transversality fails there.

Definition 2.2. A singularity of X is a singular
equilibrium, a tangent point, or a vertex of K.

Definition 2.3. A regular orbit of X is a piecewise
smooth curve v C M such that yNG; is a trajectory of
Xi, ¥NK consists of crossing points, and 4 is maximal
with respect to these two conditions. A singular orbit
of X is a smooth curve ¥ C K such that ~ is either an
orbit of X* or a singularity.

Evidently M decomposes into the disjoint union of or-
bits, each being regular or singular. They form the
phase portrait of X. The only periodic or recurrent
orbits on K are equilibria. In Figure 2 there is one X-
orbit through ¢ (namely (e,b), a regular X-orbit from
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b to the focus ¢, and a regular X-orbit from the regular
source p to ¢. The singular point {b} is an orbit.

Denote the set of all piecewise C" vector fields on M
by X} (M). It is a Banach space with respect to the
norm || X ||or = max; || Xiflcr.

Definition 2.4. An orbit equivalence is a homeo-
morphism & : M — M that sends X-orbits to X'-
orbits where X, X' € XL (M). The orbit equivalence
must preserve the sense (i.e., the direction) of the or-
bits and send K to itself. If X has a neighborhood
U C X such that each X' € Y is orbit equivalent to X
then X is structurally stable.

Definition 2.5. An orbit y(t) departs from ¢ € K if
lim, o+ ¥(t) = ¢. Arrival at q is defined analogously.

Definition 2.6. An unstable separatrix is a regular
orbit such that either (a) its a-limit set is a regular
saddle point, or (b) it departs from a singularity of
X. A stable separatrix is defined analogously. If
a separatrix is simultaneously stable and unstable it
is a separatrix connection. If unstable separatrices
arrive at the same point of an X *-orbit then they are
related. Symmetrically, if stable separatrices depart
from the same point of K they are related.

3 Generic Filippov Automata

Proposition 3.1. The branches of the generic X € X
have the following properties:

(a) They are Morse-Smale.
(b) None of them vanishes at a point of K.

(¢) They are tangent to K at only finitely many
points, none of which is a vertex of K, and dis-
tinct branches are tangent to K at distinct points.

(d) They are non-colinear except at o finite number
of points, none of which is a vertex.

(e) Properties (a)-(d) are sieble (i.e., robust) under
small perturbations of X .

To prove Proposition 3.1 and to analyze generic singu-
larities we introduce a smooth coordinate chart ¢ in M
along an edge £ C K such that ¢(F) is an interval on
the z-axis, say ¢(F) = [~1,1]. In this coordinate sys-
tem the branches X;, X; are expressed as vector fields
defined on the closed upper half plane and closed lower
half plane. On the z-axis we have

Xi(z,0) = fi(x)(%) +9i(m)(a%)

(1)
X(z,0) = f,-(m)(‘%) +9;2)(3;)
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Definition 3.1. A function f : [e,b] — R has generic
zeros if

(a) f(a) #0+# f(b), and
(b) f(z)= 0 implies f'(x) #0.

Lemma 3.2. The generic C" function f : [-1,1] = R
has generic zeros.

Proof: This is a special case of the Thom Transver-
sality Theorem. For (b} is equivalent to 0 being a reg-
ular value of f. B

Proof: [Proof of Proposition 3.1] Peixoto’s Generic-
ity Theorem applied on the surface with smoothly cor-
nered boundary G; states that the generic X; is Morse-
Smale, which is assertion (a} of Proposition 3.1.

As above, introduce a smooth coordinate chart ¢ in
which an edge of K is [—1,1] on the z-axis. Express
the branches of X as in (1).

Elaboration of Lemma 3.2 shows that the generic pair
of C™ functions [~1,1] = R has no common zeros. This
implies that the generic X has no zeros on K, which is
assertion (b) of Proposition 3.1,

For the generic X, g;(x) = 0 at only a finite number of
points, all of them different from +1, and at these zeros,
g;(x) # 0. Further, g; and g; have no common zeros.
This means that generically X; and X; are tangent to
K at only finitely many points, none of them vertices,
and never are they tangent to K at a common point,
which is assertion (c) of Proposition 3.1.

Consider any z¢ € [—1,1]. By (c), either g;(zo) # 0
or g;(xg) # 0, say it is the latter. There is an interval
I C [~1,1] containing x¢ on which g; # 0. That is, X;
is not tangent to K there. Using a flowbox chart for
X; at I, we may assume that f;(z) = 0 and g;(z) > 0
for all z € I. (In the flowbox coordinates, X; points
straight upwards.) Then colinearity of X; and X; oc-
curs when f;(z) = 0. By Lemma 3.2, for the generic X
this happens only finitely often, never at an endpoint
of I, which is assertion (d) of Proposition 3.1 on the
subinterval I. Compactness of [—1,1] completes the
proof of (d).

Assertion (e}, stability of (a) - (d) under small pertur-
bations of X, follows from openness of Morse-Simale
systems and openness of transversality. n

4 Singular Equilibria

The sliding field X ™ is defined at non-vertex points g €
K where X;, X; oppose each other. These opposition
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points form a relatively open set in K. With respect to
the smooth chart ¢ as in Section 3 and the expression
for X;, X; along K in (1), we see that g; and g; are non-
zero and have opposite signs. Since the sliding field is
the unique strictly convex combination

X*=2X;+(1-0X;

tangent to K, its vertical component Agi(z) + (1 —
A}g;(x) is zero. This gives

g;{z)

= 0@ @) @)

Note that this denominator is never zero at opposition
points.

Proposition 4.1. The sliding field X* is of class C".
For the generic X, the zeros of X* are hyperbolic
sources or sinks along K.

Proposition 4.2. For the generic X, a singularity is
either

s g singular saddle point,

o a singular sink node, or

e a singular source node,

a singular saddle node or
a singular grain,

a vertez of K.

(See the proof for the definitions.) The singularities
are finite in number and stable (robust} under small
perturbations of X.

Proof: Let q € K be a singular equilibrium or tan-
gent point of X. By Proposition 3.1 genericity implies
that at least one branch of X is transverse to K at q.
Say it is X;. In the flowbox chart ¢ as above, f; = 0,
g; = 1, and we may take g = (0,0).

We write a matrix to describe the singularity at ¢ as
£i(0)  9:(0)

£10) ¢

Observe that g;(0) < 0. For if ¢;(0) is positive then
X; and X; both point upwards across the z-axis at g,
and g is regular, not singular. Genericity implies that
the first row of S contains exactly one 0, and neither
column is a zero column. Using the symbols —, 0, +,
+, * to denote an entry that is negative, zero, positive,
non-zero, or one whose sign is irrelevant, we get four
topologically distinct cases for S. See Figure 3.
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Figure 3: The four generic non-vertex singularities. The
heavy lines are X *-orbits.

2 :]. The fact that f;(0) = 0 implies
that X;, X; are colinear at ¢ and there is a unique
X;-orbit that arrives at the origin from above. Since
f1(0) is positive this gives a singular saddle with regular
stable separatrices.

Case1.5'=[

Case 2. E : . The fact that f;(0) = 0 implies that

Xi, X; are colinear at ¢ and there is a unique X;-orbit
that arrives at the origin from above. Since f}{0) is
negative this gives a singular sink with regular stable
separatrices. See Figure 3.

- Case 3. [:: _?_} Since g;(0) = 0 and ¢;(0) is positive,

we get a singular saddle node with three regular sepa-
ratrices, two stable and one unstable. The sign of f;(0)
only affects whether the arrows point right or left.

Case 4. [T E] . Since g;(0) = 0 and g}(0) is negative,

we get a singular grain with one regular stable separa-
trix. The sign of f;(0) only affects whether the arrows
point right or left.

Four homeomorphic pictures, but with the orientations
of all orbits reversed, are achieved by starting with the
field X; pointing straight down instead of straight up.
Finiteness of the singular equilibria and tangent points
is a consequence of (c}, (d) in Proposition 3.1. Stabil-
ity under perturbation of X follows from openness of
transversality. [
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Definition 5.1. Let v be a vertex of K. A base orbit
of X at v is an orbit, singular or regular, that arrives
at v or departs from v, but is not v itself.

Proposition 5.1. The generic X has at least one base
orbit at each vertex. In fact, one of the following two
possibilities occurs.

(a) There exists no singular base orbit, in which case
X has a singular focus at v: all orbits near v
are regqular and either oll arrive ot v or all depart
from v.

(b) There exists a singular base orbit, in which case
there exist at most 2n base orbits at v, where n
is the number of edges of K at v.

Proof: Because K locally separates M, n > 2. We
draw a circle C around v and refer to the component of
G; inside C as the corner V; of G;,i=1,...,n. (The
term “sector” applies equally well to V;, but we refer
also to the dynamical sectors at v.) The angle between
the edges of V; at v is the aperture of V;. We choose
C small — it encloses no singular equilibria or tangent
points, and the edges of K at v are arcs from C to v.

Suppose that the aperture of some corner V; is > «.
Generically X;(v) is non-zero and is parallel to neither
edge of V;. From now on we assume that the aperture
of all corners is < 7. In particular, n > 3.

Proposition 3.1 states that the generic X is not tangent
to an edge of K at v. Thus, when the circle C is small
and 1 < i < n, either (¢) X; points inward across both
edges of Vj, or points outward across both edges, or (d)
X; points inward across one edge of V; and outward
across the other. Each corner contains at most one
base orbit in its interior.

Assume that there is no singular base orbit at v. Then
X; never opposes X;; across the common edge V; N
Vit1, and we get an arc o of a regular X-orbit that
starts at @ € Ey, an edge of V1 and continues through
each of the corners at v until it comes back to E, say
at the point a'.

The vectors X;{v) are fixed, and so are the aper-
tures of the corners V;. The arc « is an amalgam of
nearly straight segments, a;,...,a,. The exterior an-
gle 6; between a; and ;1 tends to a definite non-
zero limit as the circle € shrinks to v. Generically
© = Y ,8; # 2, and thus the points at which a
crosses By are distinct. If © > 2x then a' lies closer
than a to v along E;. In fact, for a constant ¢ < 1,
|&' — v] < c¢la — v|. The same constant ¢ works for all
e sufficiently close to v. See Figure 4. The length of
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Figure 4: A singular focus.

time it takes for « to make the circuit through the cor-
ners at v is proportional to |a — v|. For X;(z) tends
to the non-zero vector X;(v) as z — v in V;. Thus the
X-orbit through a arrives at v (in finite time), and is a
base orbit. In fact the local orbit portrait at » is that
of a focus where all orbits arrive at v.

If © < 2r it is the opposite. All orbits near v depart
from v. This completes the proof of assertion (a), lack
of a singular base orbit implies a singular focus.

Now assume that there is at least one singular base
orbit 8. Tt is an edge of adjacent corners V;, V;y; such
that X; and X;;+1 oppose each other across 8. No base
orbit can spiral around v because it is blocked by S.
Thus, the only possible base orbits are the n edges of
K at v (they would be singular base orbits) plus n
regular base orbits, one interior to each corner. This
completes the proof of assertion (b), the existence of
one singular base orbit implies there are at most 2n
base orbits at v. n

Definition 5.2. A singular sector is a region S
bounded by an arc of the small circle C at v together
with two consecutive base orbits. S must contain no
other base orbits.

Corollary 5.2. The orbit portrait for the generic X
inside a singular sector is either singular hyperbolic,
singular parabolic, or singular elliptic. See Figure 5.

K
N BN -
A% A7 P P
K K \
K

Figure 5: Singular seetors: hyperbolic, elliptic, and

parabolic.
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6 Separatrix Connections

In this section we examine various forms of separatrix
connections, and in particular we show how to bury
some of them.

Examples of separatrices are shown in Figure 3. Note
that a singular sink ¢ has stable separatrices — the
unique regular orbits that arrive at q. Likewise a sin-
gular source has unstable separatrices. A base orbit
is also a separatrix. It is easy to see that structural
stability fails if there are separatrix connections or sep-
aratrix relations. Also, singular orbits never connect
singular saddles, so there is no need to exclude them
by a genericity argument. See Proposition 6.3.

Proposition 6.1. For the generic X, no separairiz
connections or relations occur in the neighborhood of
K. Moreover there are restrictions on how the equilib-
ria appear along K.

Definition 6.1. An unstable separatrix is tame if its
w-limit set is a regular point sink, a regular periodic or-
bit sink, or if it arrives at a sliding point. Time reversal
gives the corresponding definition for stable separatri-
ces.

Proposition 6.2. If a separatriz is tame then it stays
tame under small perturbations of X.

Proposition 6.3. A separatriz connection between a
singularity and a singularity or regular saddle point can
be tamed by a small perturbation of X. Also, separa-
triz relations can be broken by small perturbations of
X, and once broken, they stay broken under subsequent
sufficiently small perturbations of X.

Corollary 6.4. The generic X has no separatriz con-
nection between a singularity end e singulerity or reg-
ular saddle point. This remains true for small pertur-
bations of X.

7 Recurrence and Periodicity

In this section we prove that if you have recurrence
then you can connect separatrices.

Proposition 7.1. Assume that the X-orbit through
p is non-trivially recurrent. Then it is regular and
through p there passes a regular, smooth Jordan curve
J everywhere transverse to X.

Proof: Singular orbits are points and sliding curves.
They are not non-trivially recurrent. The existence of
J is proved in the same way as for flows. Although the
orbit arc from p to a closest return may have a few cor-
ners where it crosses K, the construction is unaffected.
]



The first return map, or Poincare map P, is naturally
defined by the X-orbits that leave J at ¥ and return
at P(y). Transversality implies that the domain of def-
inition of P is an open subset D C J. It consists of
open intervals I or it equals J. The X-orbits through
I are regular, and we get an open-sided strip from I
to P(I). Let @ be an endpoint of I. Its orbit does not
return to J but it does stay on the boundary of the
strip. Thus the forward orbit of @ ends at a point a'.
For the generic X, o’ can be a regular saddle point, a
singular saddle node, or a vertex. Thus a lies on a sep-
aratrix that does not return to J after leaving @. There
are only finitely many separatrices and therefore D is
either J or a finite union of intervals I whose endpoints
lie on stable separatrices that leave J and go directly
to regular saddles, singular saddle nodes, or vertices.

Proposition 7.2, Assume thet the Poincaré map is
defined on the whole closed transversal J and some
points of J are non-trivially recurrent. Then M is the
torus, all points are regular non-egquilibria, and o small
perturbation of X produces a periodic orbit.

Proposition 7.3. Assume that the Poincaré map is
defined on D # J and a point p € D is non-trivially
recurrent. Then there exists a reqular unstable separa-
triz that accumulates at p.

Proposition 7.4. As ebove, a small perturbation ez-
ists that leaves all separatriz connections intact and
produces one more.

8 Main Results

Proposition 8.1. If X has ne recurrence then the w-
limit set of an orbit of X is either empty (the orbit
arrives ot a singularity or sliding point in finite time),
- or is ¢ regular equilibrium, or is a vertez, or is a finite
graphic cycle that consists of separatriz connections.

Proposition 8.2. A graphic cycle that is the w-limit
of an unstable separatriz o can be perturbed to produce
o reguler period orbit that tames o.

The follow two theorems are our main results on struc-
tural stability of Filippov automata.

Theorem B.3. The generic X € X is structurally sta-
ble.

Theorem 8.4. The following conditions characterize
structural stability of X € X,

e The conditions listed in Proposition 3.1.

e Hyperbolicity of all periodic orbits.

¢ No separatriz connections or relations.
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o Only trivially recurrent orbits.

The proof imitates the Palis and deMelo approach to
Peixoto’s structural stability result. That is, if you
have recurrence, you can keep connecting separatrices
until there are no more left to connect, and then you
can tame one more separatrix. Then apply induction.
A special case occurs when there are no separatrices,
namely, the torus with recurrence.
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