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Abstract—This paper develops a method to construct viability relative degree-like condition. This condition makes itasl
kernels for multi-input, single-output nonlinear control systems how to select the target set. Finally, we focus on bang ctstro
affine in the control. The safe set is the superlevel set of a g restriction has the important consequence that a flarmu
smooth function, and the control is constrained to take vales in for the viable capture basin can be obtained. To test that the
a compact polyhedron. The results make use of the Frankowska . e C ;
method and the notion of viable capture basins. proposed viable capture basin is correct, one verifies taiee
conditions based on the Frankowska method [14]. In certain
cases, the entire procedure can be carried out analytiéaily
example on fisheries management is provided at the end.

Notation Let £ C R™ be a set. The complement &t
|. INTRODUCTION is -k := R" \ K, the closure is, and the interior isk°.

The purpose of this paper is to develop a methodology 8¢ tangent coneto K at a pointz € K is denoted by
explicitly construct viability kernels for control affingstems. Tk (), and the closure of the convex hull ok () is denoted
The central problem can be roughly described as enforcing® Zx(2)). Forz € R", Il () denotes the set of points in
control system to evolve in a “safe set’ of the state spade that achieve the infimal distance to Let K1, KC; C R™.
starting from any initial condition inside the set, by propef = € K1 UKy, thenTi,ux, (z) = T, (x) U Tk, (z) [1]. If
assignment of the control input. When no control exists tb : R" — R", g : R" — R™™, andh : R" — R, then

Index Terms—viability kernels, capture basins, set invariance,
control affine systems, nonsmooth analysis

0 .
satisfy this requirement, then the problem is to find a largeksh(z) = S&f(x), LyLsh(z) = LR g (z), and we define
subset inside the safe set, called a viability kernel, and Aursively,LOh(z) = h(z) and L’Jﬁh(x) — 6(L5 h)f(x)_

associated controller, called a viability controller, sattthe
system remains inside the safe set, starting from any linitia
condition in the viability kernel, using a viability contter.
The theory of viability kernels has been developed over theConsider the multi-input, single output nonlinear system
last two decades by J.-P. Aubin and his co-workers [1]. It has .
numerous applicati in di iscipli #o= f@)+g(z)u
pplications in diverse disciplines such as ggolo
mathematical biology, economics, and robotics. Sevetal-in y = hiz), 1)
esting results have recently appeared on numerical metbod%heref . R" — R" andg : R* — R"*™ are Lipschitz and

compute viability kernels [3], [4], [5], [10], [12]. The psent gmqoth functions, and : R” — R is a smooth submersion,

paper is among the first results on explicit construction of e gradien¥h is non-vanishing everywhere iR". The
viability kernels. o . input space is a compact, convex polyhedidnc R™. A
~We study the following situation: we have a multi-inputcontrol 4, : [0, 00) — U is a measurable function inwhich
single-output nonlinear system affine in the control. The saaes values ifi/. Let ¢, (, o) denote the unique solution of
set is the sublevel set of a smooth function and geomemca&) starting atro and using control. The set ofy vertices of
is a manifold with boundary. We want to find the viability;; is denoted as” — {v',...,v9}. Also, let] == {1,...,q}
kernel associated with the safe set, and a viability coRirol pe the set of indices. Aang controlis a control that takes a
assuming that the control is constrained to take values insfhgle constant control value . A bang-bang controls a
compact, convex set. The proposed solution is motivated Pyntro| that is piecewise constant and takes value.iThe
features of viability problems arising in applicationsrsi - gomain of the state space that we want to render positively

we are interested in viability controllers which terminate . ariant by proper choice of control, called thafe setis
finite time. For example, in collision avoidance of two veeg
[13], it is desirable that the vehicles can return to a useful S={zeR" [ h(z) = 0}. (2)
actlv!ty after performlng CO||ISIOH. av0|dance. The teriaion ssumption 1-There existsl < r < n such that for all
requirement is addressed by introducing a target set an n k -

, L : . r € R" and forallk <r —1, LyL3h(z) = 0.
formulating the viability problem in terms of viable capgur

. ; : R k 2:Th ti s that each t of th
basins [20]. Second, we focus on systems which satisfy a emar € assumprion says that each component ot the

a(Lkn .
row vectorLgL’;h(x) = %g(x) is zero fork < r —1;
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for the given problem in the sense thatifi(z) # 0 on some g¢(xz)v* with initial conditionz,. Define thehitting time; ()
set, then the viability kernel is trivially computable orattset to be the first time whew; (¢, x¢) reache< before possibly
because the control can be used to maintain any value of leaving . If ¢;(t,z¢) does not reaclt or it leaveskK before
Assumption 1 implies that the derivative bfalong solutions reachingC, set?;(xy) = oco. For zy € C, seti;(zg) = 0.
of (1) is %(tt) = Lh(¢u(t,z0)). Thus, we can define the setDefine the setY; := {zo € R" | t;(z9) < oo}. It can be
of states wheré is strictly decreasing as shown that for eachi € I, #; is lower semicontinuous of;
. [1].
Wi={zeR" [ Lsh(x) <0}. Next, for 2o € R", we defineh;(z,) to be the value of,

A subsetK is said to be aviability domainif for eachzy € at t;(wo), i.e., hi(zo) = h(¢i(ti(20),20)). If Li(xo) = oo,
IC, there exists a contrak(t) such that the unique solutionseth;(xo) := —oc. Notice that by construction; is constant
bu(t, z0) of (1) stays ink for all t > 0. If K is not a viability when evaluated along the trajectapy(t, zo) over the interval
domain, then there exists a largest closed (possibly empi§)t:(zo)].
viability domainViab(K) contained inkC, which is called the =~ Forz € K, define the set of indices
viability kernel of K. A control v which rendersViab(KC *roy - 7
viable is called aviability controller. The notion of a vialgilizy I(w) = argmaxe{ hi(z) | 1i(z) < oo}, )
kernel with target was introduced in [20]. A related notisn iNote the cardinality of this set may vary with Define the
that of viable capture basin of a set. function u* : K — V by p*(x) := o7, wherej € I*(z) is

Definition 3: LetC C K. The subse€apt(K,C), called the selected arbitrarily. Finally, for each initial condition € K
viable capture basinis the set of all initial states, € K such we define
that there exists a contred(¢) such that the unique solution . N -
¢u\s\t/, o) of (1) stayg ml? udn_til reﬁchin%c_llin Linite }imfe.h u*(t,z0) := p* (20) t € [0,%(z0)], ®)

e are interested in finding the viability kernel of the s 7 7. PR _ g i i :

K= ST whereS D 1s e closed se of states where gy 1) L) L) 57 et 9 cheee
system is safe but in danger of reaching an unsafe state. We: _ ) .
also impose the practical requirement that the system raachn intervall0, ¢], by using only a single control value in. The

target set’ C K from the set in finite time. This formulation controller«* terminates at the time when, by construction,
is meaningful if we can guarantee that the system can remain- 0 and the targe€ is reached.

in S after arriving atC. To do so, we define the closed sets  Remark 6:Observe that:* is in feedback form: at each
ct {z €R" | h(z) > 0,Lsh(z) >0,..., L7 "h(z) >0} =z €K, the set/*(x) must be evaluated and a control value
c = ctnk. 3) in V' selected. I:|oweve|u* is an open loop control. Its value
and its durationt are computed at = 0 based on the initial
Assumption 4:For all 7o € C, there exists an open-loopcondition only. One deduces that is actually a feedback by
controlu, : RT — U such that4-h(¢y, (t, o)) > 0, for all  using thebarrier property[19]. It says that viable trajectories
t>0. that start in the boundary of the viability kernel remain in
Remark 5:When Assumption 4 holds we say th@t is its boundary until reaching the target. In the same spirit as
the viability core of S. Its importance is in providing concretethe dynamic programming principle for optimal control, we
termination conditions for the viability problem, and it isobtain thatu* is identically equal tq:* at each point, so it is

inspired by applications in ecology, biology and roboticsffectively a state feedback.
where a viability core often arises. Without such a termamat  Define a functiom:* : R” — R by

condition the computation of the viability kernel is signifi _
cantly more complex. h*(x) = I?gx{ hi(z) }.
Our viability problem is formally stated as follows.

Problem 1: Given a control affine system (1), the closed s
K =8nW, and a target sef = C* N KC, find u*, a viability S* .= {x € R" | h*(z) > 0}. (6)
controller, andS* := Capt(K,C), the viable capture basin.

é:tinally, we define

Assumption 7:h* is continuous onDom(h*) = {z €
I1l. ViABLE CAPTURE BASIN R™ | |h*(z)] < oo} andS* is closed.

In this section we present a construction of the viabfdote thatS* C K, because ifzy ¢ K theni;(zo) = oo,
capture basin for the sé€ with targetC. Our construction Vi € 1. Our aim is to show thaf* is the viable capture basin
is centered on bang controls. This is motivated by the fag®lving Problem 1, and we do so in three steps depending on
that, under reasonable conditions, there always existbsesu the class of controls: bang controls, bang-bang controid, a
of K that can reaclt in finite time via a bang control (for if measurable controls. Our main theoretical tool is the Yaithgy
C is not reachable by bang control then it is not reachable Bfaracterization of viable capture basins, adapted frgm [2
bang-bang control). It is also motivated by applicationgreh ~ Theorem 8:Let £ andC be closed sets such thétc K.
it is often known that bang controls are the correct controld1€ Viable capture basi@'apt(KC,C) is the unique closed
for a particular domain, without having explicit knowledge SubsetD satisfyingC ¢ D c K and
system trajectories. (i) For eachz, € D, there exists a contrak(¢) such that

Considerzy € R™ and for eachi € I, defineg;(t, z() to the trajectory starting at, and using control: reaches
be the unique solution of the autonomous system f(z) + C in finite time without first exitingD.



(i) D is backward invariant relative t&£. That is, for every in a finite time?; with h(x¢) > 0 and h(¢;(t;,x0)) > 0 but
xo € D and every solutiorp(-, o), if there existsT > 0 ¢, first exits £ (and againh*(zy) = —o0). Since this holds
such thatp(t, z¢) € K for t € [-T,0], theng(t,z9) € D for all i € I, it is clear thatzy cannot belong to the viable
for t € [-T,0]. capture basin, s&* is the unique viable capture basin under
Remark 9: Theorem 8 is a version of Frankowska’s methothe restriction to bang controls. [
[14] which gives a unique characterization of viability kefs |5 the previous result, the restrictive assumption that the

and capture basins. We use Theorem 8 in the following w : P . -
First we show in Lemma 10 that by constructioh satisfies Tontrol may not switch implies that a trajectory starting

condition (i). Second, we replace condition (i) by equéml &t Zo € K\ §* may not be viable, even if it has the
tangential conditions (see [2]) given by: opportunity to entetS* by switching control. Therefore, to

obtain a characterization of the viability kernel using ¢pan
bang controls, the backward invariance conditions (7}aé8)e
—(f(z) + g(2)u) € Tp(z) UT-x(z) Yo €DNOK, Yu e U. to be introduced. We first expose some useful propertieseof th

8 . - .
® boundaryS* N 9K which allow us to state a restricted version
These are then adapted to obtain our main condition whigh (7)-(8).

guargntees backward invarianceSf relative tokC. ’Our main Lemma 13:S* N9S N W = 0.

condition says that for alk € DN —C and for allj ¢ I*(x), Proof: Let 2o € &* N AS N W. Then h(zy) = 0 and
_(f(x)f’_g(x)vj) € Tp(x). Itis clear that th's. IS areflnementhh(IO) < 0. Thus, there exists > 0 sufficiently small
or restriction of (7)_-(8). It focuses_ on a finite set of COIhtroSuch that for alli € T, h(éi(t,20)) < 0 and ¢y (t, z0) € W,

values and a restricted set of points&i where backward Vi € (0,8], and éi(t,z0) & C, ¥t € [0,4). This contradicts

invariance must be tested. From this restricted test,g§y#n L 10 which that fore I* (4 S*
be deduced to hold. This is useful computationally, becthese EPern;rIF?e [0w¥‘|(cxoiays afore I*(zo) # 0, ¢:(t, 20) € -

expression fof* is at times simple enough that the backward | ¢t 9101 S be partitioned as the disjoint unighV NS =
invariance test can be manually performed, whereas (7)-@WV,. U W, U W, UC where
may be more unwieldy to verify.

—(f(x) 4+ g(z)u) € Tp(x) Ve € DNK°, Yu e U (7)

. Wie = {zedwnsSn—C|32<k() <r-—1,k(z) even
Lemma 10:We are given a system (1), a safe set (2), and a (k(z)-1) k(2)
target set (3). Suppose that Assumptions 1, 4, and 7 hold. For Lyh(z) == L; h(z) = 0,L; " h(z) < 0}
eachz, € S*, the trajectory starting at, and using control ie = {z€dWNSN-C| (32 <k(@)<r—1,k(x) odd
u* reacheg in finite time without first exitingS*. Lih(z) =+ = LFO D h(z) = 0, L5 n(z) < 0}
Proof: Let zp € S* and leti € I*(xzp). Then we have oW, = {zcdwnSn-C|(32<k(x) <r—2)
h*(ZC()) =:co > 0 andhi(gf)i(t, Io)) = Cp forallt € [O,EZ(IQ)] th(x) — = Lgck(z)il)h(x) =0, L?(z)h(x) > 0} )

ThUS,h*((bi(t,xo)) > Ei(@(t,xo)) =c >0 for all ¢ €
[0,%;(0)]. This implies that the trajectony;(t, z) is viable Note that forr = 2, 9Wi. = OW1, = W, = (), and for
in $* until reaching the targe in finite time #; (o). B =3 Wi,=0W,=0.

Remark 11:A situation when our method does not apply is Lemma 14:Trajectories arrive aé N9V, only from —K.
whenK # () butC = (), which can happen, in particular, when Proof: Considerzy € OW;.. We haveh(zy) > 0,

OW = (). The computations would yield;(zo) = oo and L h(zg) = -+ = L(fk(““)*l)h(xo) =0 andL(fk(”“))h(:zro) <
hi(xg) = —oo forall i € I andzg € W. Thereforep*(z0) = 0, with k(zo) even. This implies there exists> 0 sufficiently

—o0, §* = (), andu* is undefined. Evidently another notionsmall such that for alk € (—§,0) and for all controlsu,
of viability kernel must be considered for this case, such d3.h(pu(t,z0)) > 0 for j odd andl < j < k(zo) — 1.

one that does not require finite termination. Also, L;h(qﬁu(t,xo)) < 0 for j even and2 < j < k(o).
In particular, forj = 1, Lyh(éu(t,z0)) > 0, Vt € (=0,0).
A. Main results That iS,¢u(t,$0) e -IC, Vt € (—5, O) |

In this section we obtain the main theoretical results when Lemma 15:5” N oW, = 0.
Proof: Considerzy € S* N OW,. We haveh(zg) > 0,

the problem is restricted to bang controls, bang-bang otsatr B T (k(wo)—1)

and measurable controls. First, due to the properties of bh (xo)k > 0, Lyh(zo) = - = Ly h(o) 0,

controls and the special structure®f, we have the following and Lf(m)h(fo) > 0. Using the fact that-C is open,

straightforward result. there existso > 0 such that for allt € (0,6) and for
Proposition 12: We are given a system (1), a safe set (28!l i € I, ¢i(t,z0) € —=C and Lyh(¢;(t,z0)) > 0. Thus,

and a target set (3). Suppose that Assumptions 1, 4, an¢:ft,;z0) € =C N =(W) C =K, vt € (0,9), andzy € —C.

hold. ThenS* is the viable capture basin df with target This contradicts Lemma 10 which says that foe [*(zo),

C under the restriction to bang controls, antlis a viability ~®i(t,z0) € S*, Vt € [0,;(x0)]. u

controller. Remark 16:Lemma 13 and 15 show that, moreover, for all

Proof: From Lemma 10 we know that for eagh € S*, o € (0SNW)UOW, and for all trajectories,, (¢, o), there

there is a bang control and associated trajectory that esgch existsé > 0 such thate, (¢, zo) € -IC, Vt € (0,9).

in finite time without leavingS*. Next, consider, € K\ S*. Theorem 17:We are given a system (1), a safe set (2), and

For eachi € I, it must be that either the trajectory never a target set (3). Suppose that Assumptions 1, 4, and 7 hold.

reache< (and h*(zp) = —o0), or alternatively; reache< In addition, suppose that for af € 9S* N —C and for all



j & I*(x), 2 < j < k(zo) — 1. Moreover, becausé(zy) > 0, we
—(f(x) + g(x)v?) € Ts«(x). 9) also haveh(g, (t,z0)) > 0, Vt € (—4,0), Yu. Therefore,

Yt € (—9,0), Yu, ¢y (t,x0) € SCNW.

Now let i € I*(x¢) and note thath*(zo) > 0.

Since ¢;(t,x0) € S° N W,vt € (-6,0), we have

" - . h*(gi(t, > hi(ei(t, = h; = h* >0,

Proof: We show conditions (i) and (ii) of Theorem 8 hold for(ill(t 50(25) 0] Th(e¢re(forxe0)f)or alt éﬂC(o_)a 0] gb(-aég) ) e

for bang-bang controls, which is equivalent to verifyingyh Y e ' o b Pills 2o i
hold for bang controls. Condition (i) holds by Lemma 10, so <" This implies, by the continuity off (x) + g(x)v",

ThenS* is the viable capture basin & with targetC under
the restriction to bang-bang controls, and is a viability
controller.

we only need to verify backward invariance relativekioWe that —(f(xo) + g(xo)v®) € Ts-(z0). Instead, suppose
consider the following types of points &*: (S§*)°, dS* N i & I*(20). Then by (9),—(f(xo) + g(wo)v?) € Ts+ (o).
(K)°, andS* N 9K. By Lemmas 13 and 15 -
S*NIK = (S"NawnNS)U (S NasSnw) Finally, we extend the previous results to show tatis
= (& nowns) the viable capture basin even when measurable controls are
(S NOW1) U (ST NOW1,) U (S*NC). permitted. The proof is adapted from Theorem 3.2.4, p. 85, in

[1].

Theorem 18:We are given a system (1), a safe set (2), and
(@) Letzy € (S*)°. ThenTs. = R” and the result is @ target set (3). Suppose that Assumptions 1, 4, and 7 hold.
immediate. In addition, suppose that for alt € 9S* N —=C and for all
(b) Letzo € 8S*NS°NWV. In light of condition (9), we must J & I*(z), (9) holds. ThenS* is the viable capture basin of

only verify that for alli € I*(z0), —(f(zo) +g(xo)v’) € K with targetC andw* is a viability controller.

Ts+(z0). Note thath*(xzo) = hi(zo) > 0. Consider the Proof: We apply Theorem 8. By Lemma 10, condition (i)
bang trajectorys; which arrives at, att = 0. On some holds, so we only have to verify condition (ii). Cases (a) and
interval (—4,0], § > 0, the segmentp;|_s C S°n (d) are already proved in Theorem 17.

W. Also, h*(¢i(t,z0)) > hi(¢i(t,x0)) = 0, forall t €  (b) Letzy € dS* NS° NWV. In the proof of Theorem 17 we

Thus, there are five cases.

(—9,0]. Therefore, for allt € (—0,0], ¢i(t,z9) € S*. showed that for all € I, —(f(z0)+g(x0)v?) € Ts+(x0).
This implies, by the continuity off(z) + g(x)v?, that It follows by convexity that for allz € 9S* N S° N W,
—(f(0) + g(x0)v*) € Ts+(x0). L

(c) Lét :1(00 €St r(wC. Lgti el (and consider the bang trajec- —(f(z) +g(z)u) € T(Ts(x)), weU. (10)
tory ¢; that arrives atcy in a finite time. First, consider We must show—(f(zo) + g(zo)u) € Ts-(xo) for all
the case when there exists a segmendothat reaches u e U. Fixug € U and definey := —(f(z0)+g(zo)uo).
C from K for the first time atz,. That is, there exists Let v € Ts-(x0) achieve the distance betweep and
d > 0 such that for allt € [-0,0), ¢i(t,z0) € K\ C. Ts«(z0): |lvo — v|| = infeers, () lvo — & Let w =
This means that; is defined and constant along the vo_;v Sincev € Ts-(z) there exist sequencés,, > 0},
segmenty; |[_s ). In particularh;(¢;(t, v0)) = hi(zo) = hn, — 0, and{uv, }, v, — v such thatg+h,v, € S* for
h(zo) = 0, Vt € [=6,0]. Thus,h*(¢;i(t,z0)) = 0, for all all n > 0. Let z,, € Is+(20 + how) be the projection
t € [=4,0], or ¢;|(_5,0 € S*. Therefore, by continuity of of 2o + h,w onto S*. Setz, := £==%0_ Observe that
f(@) +g(@)v', =(f(xo) + g(wo)v") € Tis+ (o). w— 2y = 7- (20 + hpw — x,) SO by Proposition 3.2.3 of
Second, suppose; reachesry, € C and there exists a [1] "
sequence of timege® < 0} with ¢ — 0 such that
¢i(€*,z0) € C C S*. Then again we have-(f(zo) + (w—2n,8) <0, £ € Tse(an). (11)
g(xo)vz) € Ts-(@o)- o Sincez,, — x, for h,, > 0 sufficiently small,z,, € S*N
Finally, supposep; reache< for the first time atzy and S°AW. Therefore, by (10)y, := —(f(n)+g(n)u0) €

there exists a sequence of timgg’ < 0} with ¥ — 0
such thate; (¥, zo) € =K. Then—(f(zg) + g(xo)v') €
Tﬂjc(iro). <w_zn7yn> <0. (12)

(d) Letzo € §* N OWi.. We must verify that for alk € 1,
—(f(z0)+g(wo)v") € Ts« (o) UT-xc(z0). By Lemma 14
and the continuity of (x)+g(z)u we immediately obtain
that for allu € U, —(f(xo) + g(zo)u) € T-x(z0).

(e) Letzyp € S* N OWi,. We must verify that for all
i€ I, —(f(zo) + glaxo)v") € Tsw(xo) U T-xc(x0). We
know there exists an odd numb2r< k(zg) < r — 1

o(Ts+(xy,)). Using (11) and convexity,

Sincez,, — x9, we havey, — vy. Also, by the same ar-
gumentin [1], pp. 86-87, we havg, — v. Now consider
again (12) and passing to the limit, we det—v, vg) < 0.

However,w — v = #-2, s0 (vg — v,v9) < 0. Since

Ts+(zo) is a cone and € Ts«(zo) is the projection of
v ontoTs- (xg), we also havévy —v,v) = 0. Therefore,
lvo — v||? = (vo — v, v0) — (vg — v, v) < 0. We conclude

such thatL sh(zg) = - = L;k(z(’)*l)h(wo) = 0, and vo = v € Ts+(20)

L(fk(_m‘f))h(xo) < 0. It follows that there existd > 0 (c,e) Letzy € (S* NC) U (S* NOWy,). From the proof of
sufficiently small such that for alt € (—4,0) and for Theorem 17 we showed that for alle I, —(f(zo) +
all controls u(-), L-}h(%(t,xo)) < 0 for 5 odd and g(z0)v?") € Ts+u-x(xo). Furthermore, if we collect all

1 <7 < k(xg). Also, LJf'h(gbu(t,xo)) > 0 for j even and of the results of Theorem 17, we note that foe —/C,



T_x(z) = R™, and we apply convexity, we obtain thata time?; such thatr,(¢;) = r1. Substitutingzs(Z;) = r1 in
for all x € S* UK, (15) and solving fort; we get

~(f(2) + g(o)u) € TO(Ts-smla) CEU. Ly () — «frn — maO + 20
9 s Oy 1= e as0) = s —a@p +2m T @D

We must show-(f(z0) + g(xo)u) € Ts+u-x(xo) for all - 1
u € U. The proof is now the same as for (b) except that 2 = (r2 — 23(0)) + \/(r2 —3(0))? = 2In 22(0) (18)
we work with the setS* U —/C (instead ofS*), and we

: . The analysis shows that fon = =+1, the set of initial
;n(\;(zl;i)(ls)TgnstiaEg O())f_(lgw)‘z' (\;\(/)e) SOTnCLU(ii()f(éor) (;_” conditions inS NV that can reaclf in finite time are:
fUm = Ts» L ,

uel. X1:{l’€$ﬂw 1’327’24—1/—21112}.
[ T2
Xo=S8S nNW.
IV. EXAMPLE Finally, substituting (17) and (18) into the expression/oxe

We present an example adapted from [3] of managinggaet

fishery. The model captures the effect of fishing activity on Ty (o) = @1 (0)em o2 Omat) _
a prey-predator system. Lat; denote the population level - r1Ta—22(0)ma (T

of a prey species, let, denote the population level of a ha(wo) = 21 (0)e et —c.
predator species and lat; denote the effort expended bylt can be shown [23] that
humans in fishing the predator species. We assume that in N — —

the absence of any predation, the prey population follows an h*(z) = ha(z), VeESNW.

exponential growth model with intrinsic growth rate > 0 Therefore,u* = 1. The final step of the design is to
(see [21]). Similarly, in the absence of any fishing activile  verify condition (9). For allz € 9S* N W, we have that
predator population follows an exponential growth modehwi 1*(;) = {2}. Therefore, for allz € S NW, the boundary
intrinsic growth rater; > 0. We do not assume any carryingof the viable capture basin is given By (z) = 0 and since

capacity limitations (see [21]) on either the prey or predaty, is differentiable, condition (9) reduces to verifying ttiat

populations. The system model is given by all x € 98* N —C,

&y = (r1 — x2)a Vha(x) - (f(z) + g(a)v') 0.

Ty = (r2 — a3)T2 We obtain

e Vha(x) - (f(x) +g(@)v') = ((r1 = 22) = (r2 = wa)azma(2)) 2.
wherez € R?® and U := [-1,1] C R. Let v! = —1 5

2 P Y : Forz € SN W, we have thatt, > r; > 0. Moreover,

%r\l/%lvof _thel .p-lr-g)? ;t;acl)k\)/ltleltysopl%oeblg[)nsiéiletolel\(/gellr; trg).e \?\}ng_since erf(-) is an increasing function, the value of,(t>)
define h(z) = 21 — ¢, SO Lih(z) = (r1 — o)z and is always nonnegative (this is also obvious from the integra

definition of m2(t)). Therefore, if(ro — x3) > 0 the result

§={z € R®| 2y —c>0}. Assumption 1 holds with = 3, fojions immediately. Now, if(ry — x3) < 0, then

soW={z€eR3 | (r —x2)a; <0 }. If 20 € SN, then

21(0) > ¢ > 0 andz2(0) > r1 > 0. Thus, we compute (11— @2) = (r2 — z3)z2m2(t2)
i
Ct = {z : a1 >cme <ri,(r1—22)’21 — (r2 — a3)T122 > 0} < (r1—x2) —(r2— 333)332/ e dr
C = {x : x120,$2:7’1,$327’2}- ’

= (11— 22) — (r2 — w8)2 ——— (e”r””?’ﬁ? — 1)
Using the expression fo€ it can be easily verified that (r2 — x3)

Assumption 4 holds withi, = 1. = (r1 — 2) + 2 (1 _ e(rz—wgﬁz)
Define the functionsn, (t) := [ e(>=s(0)7+37* 47 and

0 _ _ (ro—z3)t2
ma(t) = fot e(r2=22(0)7=57% 4 Note that these are express- " :m( )12
ible in terms of the error functionrf(z) = 2 [ e~ dt. e
For constant values af we have that =7 — 226" 0.
@ (0)ertmmOmalt) if gy = ! Therefore condition (9) is satisfied.
nt) =1, (0)erit==2(0ma(®) | jf 4 = o2 (14) : o
1 ’ -0 Remark 19:1n the fisheries example the viability problem
wo(t) = ;152(o)e(rz—ws(O))t—%ut2 (15) reduces to increasing (or decreasing) the growth of a jdatic
_ species, for which the obvious solution is to decrease (or
t) = ut + x3(0). 16) e . :
z3(t) = ut +23(0) (16) increase) the effort spent on fishing the particular species
To computet;, we remark that foru = 41 the set Therefore, it is fairly obvious what control strategy shibble

{zeR? |z, =0} is an asymptote of the system and hendenplemented to maintain viability. However, a viability &n
thexz; = 0 component 0BV cannot be reached in finite time.ysis provides relevant information for policy developmént
Therefore, we must consider (15) to determine if there sxighe fisheries industry because the viability procedure iges/



a mathematical proof that can be usedjt@ranteehe results [18] V. Martinet and L. Doyen. Sustainability of an economyitwan
of a particular policy. Moreover, the results provide anl&p

characterization for the boundary of the viable capturerbag;q
(h*(x) = 0) which can be used to analyze the current status

of the fishery (with respect to long term viability).

The paper proposes and solves a viability problem f

V. CONCLUSION

control affine systems. The problem formulation is based

the notion of viable capture basins, it is shaped by the malct [23]
concern to be able to conclude execution of the viability
controller in a finite time, and it is relevant in many nonkne

control applications of current interest. An explicit fanta for
the viability kernel and a viability controller are deriveahd

these formulas are shown to be valid using the Frankowska
method, which provides the essential backward invariance
condition to obtain the result. A next step would be to extend

the results to multi-output systems.
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