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Viability Kernels for Nonlinear Control Systems
Using Bang Controls

Mireille E. Broucke and John Turriff

Abstract—This paper develops a method to construct viability
kernels for multi-input, single-output nonlinear control systems
affine in the control. The safe set is the superlevel set of a
smooth function, and the control is constrained to take values in
a compact polyhedron. The results make use of the Frankowska
method and the notion of viable capture basins.

Index Terms—viability kernels, capture basins, set invariance,
control affine systems, nonsmooth analysis

I. I NTRODUCTION

The purpose of this paper is to develop a methodology to
explicitly construct viability kernels for control affine systems.
The central problem can be roughly described as enforcing a
control system to evolve in a “safe set” of the state space
starting from any initial condition inside the set, by proper
assignment of the control input. When no control exists to
satisfy this requirement, then the problem is to find a largest
subset inside the safe set, called a viability kernel, and an
associated controller, called a viability controller, so that the
system remains inside the safe set, starting from any initial
condition in the viability kernel, using a viability controller.
The theory of viability kernels has been developed over the
last two decades by J.-P. Aubin and his co-workers [1]. It has
numerous applications in diverse disciplines such as ecology,
mathematical biology, economics, and robotics. Several inter-
esting results have recently appeared on numerical methodsto
compute viability kernels [3], [4], [5], [10], [12]. The present
paper is among the first results on explicit construction of
viability kernels.

We study the following situation: we have a multi-input,
single-output nonlinear system affine in the control. The safe
set is the sublevel set of a smooth function and geometrically
is a manifold with boundary. We want to find the viability
kernel associated with the safe set, and a viability controller,
assuming that the control is constrained to take values in a
compact, convex set. The proposed solution is motivated by
features of viability problems arising in applications. First,
we are interested in viability controllers which terminatein
finite time. For example, in collision avoidance of two vehicles
[13], it is desirable that the vehicles can return to a useful
activity after performing collision avoidance. The termination
requirement is addressed by introducing a target set and
formulating the viability problem in terms of viable capture
basins [20]. Second, we focus on systems which satisfy a
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relative degree-like condition. This condition makes it clear
how to select the target set. Finally, we focus on bang controls.
This restriction has the important consequence that a formula
for the viable capture basin can be obtained. To test that the
proposed viable capture basin is correct, one verifies tangential
conditions based on the Frankowska method [14]. In certain
cases, the entire procedure can be carried out analytically. An
example on fisheries management is provided at the end.

Notation. Let K ⊂ R
n be a set. The complement ofK

is ¬K := R
n \ K, the closure isK, and the interior isK◦.

The tangent coneto K at a point x ∈ K is denoted by
TK(x), and the closure of the convex hull ofTK(x) is denoted
co(TK(x)). For x ∈ R

n, ΠK(x) denotes the set of points in
K that achieve the infimal distance tox. Let K1,K2 ⊂ R

n.
If x ∈ K1 ∪ K2, thenTK1∪K2

(x) = TK1
(x) ∪ TK2

(x) [1]. If
f : R

n → R
n, g : R

n → R
n×m, and h : R

n → R, then
Lfh(x) = ∂h

∂x
f(x), LgLfh(x) =

∂(Lf h)
∂x

g(x), and we define

recursively,L0
fh(x) = h(x) andLk

fh(x) =
∂(L

k−1

f
h)

∂x
f(x).

II. PROBLEM FORMULATION

Consider the multi-input, single output nonlinear system

ẋ = f(x) + g(x)u

y = h(x) , (1)

wheref : R
n → R

n andg : R
n → R

n×m are Lipschitz and
smooth functions, andh : R

n → R is a smooth submersion,
i.e. the gradient∇h is non-vanishing everywhere inRn. The
input space is a compact, convex polyhedronU ⊂ R

m. A
control u : [0,∞) → U is a measurable function int which
takes values inU . Let φu(t, x0) denote the unique solution of
(1) starting atx0 and using controlu. The set ofq vertices of
U is denoted asV = {v1, . . . , vq}. Also, let I := {1, . . . , q}
be the set of indices. Abang controlis a control that takes a
single constant control value inV . A bang-bang controlis a
control that is piecewise constant and takes values inV . The
domain of the state space that we want to render positively
invariant by proper choice of control, called thesafe set, is

S = {x ∈ R
n | h(x) ≥ 0} . (2)

Assumption 1:There exists1 < r ≤ n such that for all
x ∈ R

n and for allk < r − 1, LgL
k
fh(x) = 0.

Remark 2:The assumption says that each component of the

row vectorLgL
k
fh(x) =

∂(Lk
f h)

∂x
g(x) is zero fork < r − 1;

that is, no input appears beforer differentiations of the output.
One interpretation is that the system does not have relative
degree less than two at any point. The condition arises from a
structural property of the system. It is a reasonable assumption
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for the given problem in the sense that ifLgh(x) 6= 0 on some
set, then the viability kernel is trivially computable on that set
because the control can be used to maintain any value ofh.
Assumption 1 implies that the derivative ofh along solutions
of (1) is dh(t)

dt
= Lfh(φu(t, x0)). Thus, we can define the set

of states whereh is strictly decreasing as

W := { x ∈ R
n | Lfh(x) < 0 } .

A subsetK is said to be aviability domain if for eachx0 ∈
K, there exists a controlu(t) such that the unique solution
φu(t, x0) of (1) stays inK for all t ≥ 0. If K is not a viability
domain, then there exists a largest closed (possibly empty)
viability domainV iab(K) contained inK, which is called the
viability kernel of K. A control u which rendersV iab(K)
viable is called aviability controller. The notion of a viability
kernel with target was introduced in [20]. A related notion is
that of viable capture basin of a set.

Definition 3: Let C ⊂ K. The subsetCapt(K, C), called the
viable capture basin, is the set of all initial statesx0 ∈ K such
that there exists a controlu(t) such that the unique solution
φu(t, x0) of (1) stays inK until reachingC in finite time.

We are interested in finding the viability kernel of the set
K := S∩W , whereS∩W is the closed set of states where the
system is safe but in danger of reaching an unsafe state. We
also impose the practical requirement that the system reacha
target setC ⊂ K from the setK in finite time. This formulation
is meaningful if we can guarantee that the system can remain
in S after arriving atC. To do so, we define the closed sets

C+ :=
˘

x ∈ R
n | h(x) ≥ 0, Lfh(x) ≥ 0, . . . , L

r−1
f h(x) ≥ 0

¯

C := C+ ∩ K . (3)

Assumption 4:For all x0 ∈ C, there exists an open-loop
control up : R

+ → U such that dr

dtr h(φup
(t, x0)) ≥ 0, for all

t ≥ 0.
Remark 5:When Assumption 4 holds we say thatC+ is

theviability coreof S. Its importance is in providing concrete
termination conditions for the viability problem, and it is
inspired by applications in ecology, biology and robotics,
where a viability core often arises. Without such a termination
condition the computation of the viability kernel is signifi-
cantly more complex.
Our viability problem is formally stated as follows.

Problem 1: Given a control affine system (1), the closed set
K = S ∩W , and a target setC = C+ ∩K, find u⋆, a viability
controller, andS⋆ := Capt(K, C), the viable capture basin.

III. V IABLE CAPTURE BASIN

In this section we present a construction of the viable
capture basin for the setK with targetC. Our construction
is centered on bang controls. This is motivated by the fact
that, under reasonable conditions, there always exists a subset
of K that can reachC in finite time via a bang control (for if
C is not reachable by bang control then it is not reachable by
bang-bang control). It is also motivated by applications where
it is often known that bang controls are the correct controls
for a particular domain, without having explicit knowledgeof
system trajectories.

Considerx0 ∈ R
n and for eachi ∈ I, defineφi(t, x0) to

be the unique solution of the autonomous systemẋ = f(x) +

g(x)vi with initial conditionx0. Define thehitting timeti(x0)
to be the first time whenφi(t, x0) reachesC before possibly
leavingK. If φi(t, x0) does not reachC or it leavesK before
reachingC, set ti(x0) = ∞. For x0 ∈ C, set ti(x0) = 0.
Define the setXi := {x0 ∈ R

n | ti(x0) < ∞}. It can be
shown that for eachi ∈ I, ti is lower semicontinuous onXi

[1].
Next, for x0 ∈ R

n, we definehi(x0) to be the value ofh
at ti(x0), i.e., hi(x0) := h(φi(ti(x0), x0)). If ti(x0) = ∞,
sethi(x0) := −∞. Notice that by constructionhi is constant
when evaluated along the trajectoryφi(t, x0) over the interval
[0, ti(x0)].

For x ∈ K, define the set of indices

I⋆(x) = argmaxi∈I{ hi(x) | ti(x) < ∞} . (4)

Note the cardinality of this set may vary withx. Define the
function µ⋆ : K → V by µ⋆(x) := vj , wherej ∈ I⋆(x) is
selected arbitrarily. Finally, for each initial conditionx0 ∈ K
we define

u⋆(t, x0) := µ⋆(x0) , t ∈ [0, t(x0)] , (5)

wheret(x0) := tj(x0) if µ⋆(x0) = vj . Intuitively, this choice
of controller maximizes the first local minimum value ofh on
an interval[0, t], by using only a single control value inV . The
controlleru⋆ terminates at the timet when, by construction,
ḣ = 0 and the targetC is reached.

Remark 6:Observe thatµ⋆ is in feedback form: at each
x ∈ K, the setI⋆(x) must be evaluated and a control value
in V selected. However,u⋆ is an open loop control. Its value
and its durationt are computed att = 0 based on the initial
condition only. One deduces thatu⋆ is actually a feedback by
using thebarrier property [19]. It says that viable trajectories
that start in the boundary of the viability kernel remain in
its boundary until reaching the target. In the same spirit as
the dynamic programming principle for optimal control, we
obtain thatu⋆ is identically equal toµ⋆ at each point, so it is
effectively a state feedback.

Define a functionh⋆ : R
n → R by

h⋆(x) = max
i∈I

{ hi(x) } .

Finally, we define

S⋆ := {x ∈ R
n | h⋆(x) ≥ 0} . (6)

Assumption 7:h⋆ is continuous onDom(h⋆) := {x ∈
R

n | |h⋆(x)| < ∞} andS⋆ is closed.
Note thatS⋆ ⊂ K, because ifx0 6∈ K then ti(x0) = ∞,
∀i ∈ I. Our aim is to show thatS⋆ is the viable capture basin
solving Problem 1, and we do so in three steps depending on
the class of controls: bang controls, bang-bang controls, and
measurable controls. Our main theoretical tool is the following
characterization of viable capture basins, adapted from [2].

Theorem 8:Let K andC be closed sets such thatC ⊂ K.
The viable capture basinCapt(K, C) is the unique closed
subsetD satisfyingC ⊂ D ⊂ K and

(i) For eachx0 ∈ D, there exists a controlu(t) such that
the trajectory starting atx0 and using controlu reaches
C in finite time without first exitingD.
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(ii) D is backward invariant relative toK. That is, for every
x0 ∈ D and every solutionφ(·, x0), if there existsT > 0
such thatφ(t, x0) ∈ K for t ∈ [−T, 0], thenφ(t, x0) ∈ D
for t ∈ [−T, 0].

Remark 9:Theorem 8 is a version of Frankowska’s method
[14] which gives a unique characterization of viability kernels
and capture basins. We use Theorem 8 in the following way.
First we show in Lemma 10 that by constructionu⋆ satisfies
condition (i). Second, we replace condition (ii) by equivalent
tangential conditions (see [2]) given by:

−(f(x) + g(x)u) ∈ TD(x) ,∀x ∈ D ∩ K◦
, ∀u ∈ U (7)

−(f(x) + g(x)u) ∈ TD(x) ∪ T¬K(x) ,∀x ∈ D ∩ ∂K, ∀u ∈ U .
(8)

These are then adapted to obtain our main condition which
guarantees backward invariance ofS⋆ relative toK. Our main
condition says that for allx ∈ ∂D∩¬C and for allj 6∈ I⋆(x),
−(f(x)+g(x)vj) ∈ TD(x). It is clear that this is a refinement
or restriction of (7)-(8). It focuses on a finite set of control
values and a restricted set of points inS⋆ where backward
invariance must be tested. From this restricted test, (7)-(8) can
be deduced to hold. This is useful computationally, becausethe
expression forh⋆ is at times simple enough that the backward
invariance test can be manually performed, whereas (7)-(8)
may be more unwieldy to verify.

Lemma 10:We are given a system (1), a safe set (2), and a
target set (3). Suppose that Assumptions 1, 4, and 7 hold. For
eachx0 ∈ S⋆, the trajectory starting atx0 and using control
u⋆ reachesC in finite time without first exitingS⋆.

Proof: Let x0 ∈ S⋆ and let i ∈ I⋆(x0). Then we have
h⋆(x0) =: c0 ≥ 0 andhi(φi(t, x0)) = c0 for all t ∈ [0, ti(x0)].
Thus, h⋆(φi(t, x0)) ≥ hi(φi(t, x0)) = c0 ≥ 0 for all t ∈
[0, ti(x0)]. This implies that the trajectoryφi(t, x0) is viable
in S⋆ until reaching the targetC in finite time ti(x0).

Remark 11:A situation when our method does not apply is
whenK 6= ∅ but C = ∅, which can happen, in particular, when
∂W = ∅. The computations would yieldti(x0) = ∞ and
hi(x0) = −∞ for all i ∈ I andx0 ∈ W . Therefore,h⋆(x0) =
−∞, S⋆ = ∅, andu⋆ is undefined. Evidently another notion
of viability kernel must be considered for this case, such as
one that does not require finite termination.

A. Main results

In this section we obtain the main theoretical results when
the problem is restricted to bang controls, bang-bang controls,
and measurable controls. First, due to the properties of bang
controls and the special structure ofS⋆, we have the following
straightforward result.

Proposition 12: We are given a system (1), a safe set (2),
and a target set (3). Suppose that Assumptions 1, 4, and 7
hold. ThenS⋆ is the viable capture basin ofK with target
C under the restriction to bang controls, andu⋆ is a viability
controller.

Proof: From Lemma 10 we know that for eachx0 ∈ S⋆,
there is a bang control and associated trajectory that reachesC
in finite time without leavingS⋆. Next, considerx0 ∈ K\S⋆.
For eachi ∈ I, it must be that either the trajectoryφi never
reachesC (andh⋆(x0) = −∞), or alternatively,φi reachesC

in a finite timeti with h(x0) ≥ 0 and h(φi(ti, x0)) ≥ 0 but
φi first exitsK (and againh⋆(x0) = −∞). Since this holds
for all i ∈ I, it is clear thatx0 cannot belong to the viable
capture basin, soS⋆ is the unique viable capture basin under
the restriction to bang controls.

In the previous result, the restrictive assumption that the
control may not switch implies that a trajectory starting
at x0 ∈ K \ S⋆ may not be viable, even if it has the
opportunity to enterS⋆ by switching control. Therefore, to
obtain a characterization of the viability kernel using bang-
bang controls, the backward invariance conditions (7)-(8)have
to be introduced. We first expose some useful properties of the
boundaryS⋆ ∩∂K which allow us to state a restricted version
of (7)-(8).

Lemma 13:S⋆ ∩ ∂S ∩W = ∅.
Proof: Let x0 ∈ S⋆ ∩ ∂S ∩ W. Then h(x0) = 0 and

Lfh(x0) < 0. Thus, there existsδ > 0 sufficiently small
such that for alli ∈ I, h(φi(t, x0)) < 0 and φi(t, x0) ∈ W ,
∀t ∈ (0, δ], and φi(t, x0) 6∈ C, ∀t ∈ [0, δ]. This contradicts
Lemma 10 which says that fori ∈ I⋆(x0) 6= ∅, φi(t, x0) ∈ S⋆

for all t ∈ [0, ti(x0)].
Let ∂W∩S be partitioned as the disjoint union∂W∩S =

∂W1e ∪ ∂W1o ∪ ∂W2 ∪ C where

∂W1e =
˘

x ∈ ∂W ∩ S ∩ ¬C | (∃ 2 ≤ k(x) ≤ r − 1, k(x) even)

Lf h(x) = · · · = L
(k(x)−1)
f

h(x) = 0, L
k(x)
f

h(x) < 0
¯

∂W1o =
˘

x ∈ ∂W ∩ S ∩ ¬C | (∃ 2 < k(x) ≤ r − 1, k(x) odd)

Lf h(x) = · · · = L
(k(x)−1)
f

h(x) = 0, L
k(x)
f

h(x) < 0
¯

∂W2 = {x ∈ ∂W ∩ S ∩ ¬C | (∃ 2 ≤ k(x) ≤ r − 2)

Lf h(x) = · · · = L
(k(x)−1)
f

h(x) = 0, L
k(x)
f

h(x) > 0
o

.

Note that forr = 2, ∂W1e = ∂W1o = ∂W2 = ∅, and for
r = 3, ∂W1o = ∂W2 = ∅.

Lemma 14:Trajectories arrive atS ∩∂W1e only from¬K.
Proof: Consider x0 ∈ ∂W1e. We haveh(x0) ≥ 0,

Lfh(x0) = · · · = L
(k(x0)−1)
f h(x0) = 0 andL

(k(x0))
f h(x0) <

0, with k(x0) even. This implies there existsδ > 0 sufficiently
small such that for allt ∈ (−δ, 0) and for all controlsu,
L

j
fh(φu(t, x0)) > 0 for j odd and1 ≤ j ≤ k(x0) − 1.

Also, L
j
fh(φu(t, x0)) < 0 for j even and2 ≤ j ≤ k(x0).

In particular, forj = 1, Lfh(φu(t, x0)) > 0, ∀t ∈ (−δ, 0).
That is,φu(t, x0) ∈ ¬K, ∀t ∈ (−δ, 0).

Lemma 15:S⋆ ∩ ∂W2 = ∅.
Proof: Considerx0 ∈ S⋆ ∩ ∂W2. We haveh(x0) ≥ 0,

h⋆(x0) ≥ 0, Lfh(x0) = · · · = L
(k(x0)−1)
f h(x0) = 0,

and L
k(x0)
f h(x0) > 0. Using the fact that¬C is open,

there existsδ > 0 such that for all t ∈ (0, δ) and for
all i ∈ I, φi(t, x0) ∈ ¬C and Lfh(φi(t, x0)) > 0. Thus,
φi(t, x0) ∈ ¬C ∩ ¬(W) ⊂ ¬K, ∀t ∈ (0, δ), and x0 ∈ ¬C.
This contradicts Lemma 10 which says that fori ∈ I⋆(x0),
φi(t, x0) ∈ S⋆, ∀t ∈ [0, ti(x0)].

Remark 16:Lemma 13 and 15 show that, moreover, for all
x0 ∈ (∂S ∩W)∪∂W2 and for all trajectoriesφu(t, x0), there
existsδ > 0 such thatφu(t, x0) ∈ ¬K, ∀t ∈ (0, δ).

Theorem 17:We are given a system (1), a safe set (2), and
a target set (3). Suppose that Assumptions 1, 4, and 7 hold.
In addition, suppose that for allx ∈ ∂S⋆ ∩ ¬C and for all
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j 6∈ I⋆(x),
−(f(x) + g(x)vj) ∈ TS⋆(x) . (9)

ThenS⋆ is the viable capture basin ofK with targetC under
the restriction to bang-bang controls, andu⋆ is a viability
controller.

Proof: We show conditions (i) and (ii) of Theorem 8 hold
for bang-bang controls, which is equivalent to verifying they
hold for bang controls. Condition (i) holds by Lemma 10, so
we only need to verify backward invariance relative toK. We
consider the following types of points ofS⋆: (S⋆)◦, ∂S⋆ ∩
(K)◦, andS⋆ ∩ ∂K. By Lemmas 13 and 15

S⋆ ∩ ∂K = (S⋆ ∩ ∂W ∩ S) ∪ (S⋆ ∩ ∂S ∩W)

= (S⋆ ∩ ∂W ∩ S)

= (S⋆ ∩ ∂W1e) ∪ (S⋆ ∩ ∂W1o) ∪ (S⋆ ∩ ∂C) .

Thus, there are five cases.

(a) Let x0 ∈ (S⋆)◦. Then TS⋆ = R
n and the result is

immediate.
(b) Letx0 ∈ ∂S⋆∩S◦∩W . In light of condition (9), we must

only verify that for alli ∈ I⋆(x0), −(f(x0)+g(x0)v
i) ∈

TS⋆(x0). Note thath⋆(x0) = hi(x0) ≥ 0. Consider the
bang trajectoryφi which arrives atx0 at t = 0. On some
interval (−δ, 0], δ > 0, the segmentφi|(−δ,0] ⊂ S◦ ∩
W . Also, h⋆(φi(t, x0)) ≥ hi(φi(t, x0)) = 0, for all t ∈
(−δ, 0]. Therefore, for allt ∈ (−δ, 0], φi(t, x0) ∈ S⋆.
This implies, by the continuity off(x) + g(x)vi, that
−(f(x0) + g(x0)v

i) ∈ TS⋆(x0).
(c) Let x0 ∈ S⋆ ∩ C. Let i ∈ I and consider the bang trajec-

tory φi that arrives atx0 in a finite time. First, consider
the case when there exists a segment ofφi that reaches
C from K for the first time atx0. That is, there exists
δ > 0 such that for allt ∈ [−δ, 0), φi(t, x0) ∈ K \ C.
This means thathi is defined and constant along the
segmentφi|[−δ,0]. In particular,hi(φi(t, x0)) = hi(x0) =
h(x0) ≥ 0, ∀t ∈ [−δ, 0]. Thus,h⋆(φi(t, x0)) ≥ 0, for all
t ∈ [−δ, 0], or φi|[−δ,0] ∈ S⋆. Therefore, by continuity of
f(x) + g(x)vi, −(f(x0) + g(x0)v

i) ∈ TS⋆(x0).
Second, supposeφi reachesx0 ∈ C and there exists a
sequence of times{ǫk < 0} with ǫk → 0 such that
φi(ǫ

k, x0) ∈ C ⊂ S∗. Then again we have−(f(x0) +
g(x0)v

i) ∈ TS∗(x0).
Finally, supposeφi reachesC for the first time atx0 and
there exists a sequence of times{ǫk < 0} with ǫk → 0
such thatφi(ǫ

k, x0) ∈ ¬K. Then−(f(x0) + g(x0)v
i) ∈

T¬K(x0).
(d) Let x0 ∈ S⋆ ∩ ∂W1e. We must verify that for alli ∈ I,

−(f(x0)+g(x0)v
i) ∈ TS⋆(x0)∪T¬K(x0). By Lemma 14

and the continuity off(x)+g(x)u we immediately obtain
that for all u ∈ U , −(f(x0) + g(x0)u) ∈ T¬K(x0).

(e) Let x0 ∈ S⋆ ∩ ∂W1o. We must verify that for all
i ∈ I, −(f(x0) + g(x0)v

i) ∈ TS⋆(x0) ∪ T¬K(x0). We
know there exists an odd number2 < k(x0) ≤ r − 1

such thatLfh(x0) = · · · = L
(k(x0)−1)
f h(x0) = 0, and

L
(k(x0))
f h(x0) < 0. It follows that there existsδ > 0

sufficiently small such that for allt ∈ (−δ, 0) and for
all controls u(·), L

j
fh(φu(t, x0)) < 0 for j odd and

1 ≤ j ≤ k(x0). Also, Lj
fh(φu(t, x0)) > 0 for j even and

2 ≤ j ≤ k(x0) − 1. Moreover, becauseh(x0) ≥ 0, we
also haveh(φu(t, x0)) > 0, ∀t ∈ (−δ, 0), ∀u. Therefore,
∀t ∈ (−δ, 0), ∀u, φu(t, x0) ∈ S◦ ∩W .
Now let i ∈ I⋆(x0) and note thath⋆(x0) ≥ 0.
Since φi(t, x0) ∈ S◦ ∩ W , ∀t ∈ (−δ, 0), we have
h⋆(φi(t, x0)) ≥ hi(φi(t, x0)) = hi(x0) = h⋆(x0) ≥ 0,
for all t ∈ (δ, 0]. Therefore, for allt ∈ (−δ, 0], φi(t, x0) ∈
S⋆. This implies, by the continuity off(x) + g(x)vi,
that −(f(x0) + g(x0)v

i) ∈ TS⋆(x0). Instead, suppose
i 6∈ I⋆(x0). Then by (9),−(f(x0)+g(x0)v

i) ∈ TS⋆(x0).

Finally, we extend the previous results to show thatS⋆ is
the viable capture basin even when measurable controls are
permitted. The proof is adapted from Theorem 3.2.4, p. 85, in
[1].

Theorem 18:We are given a system (1), a safe set (2), and
a target set (3). Suppose that Assumptions 1, 4, and 7 hold.
In addition, suppose that for allx ∈ ∂S⋆ ∩ ¬C and for all
j 6∈ I⋆(x), (9) holds. ThenS⋆ is the viable capture basin of
K with targetC andu⋆ is a viability controller.

Proof: We apply Theorem 8. By Lemma 10, condition (i)
holds, so we only have to verify condition (ii). Cases (a) and
(d) are already proved in Theorem 17.

(b) Let x0 ∈ ∂S⋆ ∩S◦ ∩W . In the proof of Theorem 17 we
showed that for alli ∈ I, −(f(x0)+g(x0)v

i) ∈ TS⋆(x0).
It follows by convexity that for allx ∈ ∂S⋆ ∩ S◦ ∩W ,

−(f(x)+ g(x)u) ∈ co(TS⋆(x)) , u ∈ U . (10)

We must show−(f(x0) + g(x0)u) ∈ TS⋆(x0) for all
u ∈ U . Fix u0 ∈ U and definev0 := −(f(x0)+g(x0)u0).
Let v ∈ TS⋆(x0) achieve the distance betweenv0 and
TS⋆(x0): ‖v0 − v‖ = infξ∈TS⋆ (x0) ‖v0 − ξ‖. Let w =
v0+v

2 . Sincev ∈ TS⋆(x0) there exist sequences{hn > 0},
hn → 0, and{vn}, vn → v such thatx0+hnvn ∈ S⋆ for
all n ≥ 0. Let xn ∈ ΠS⋆(x0 + hnw) be the projection
of x0 + hnw onto S⋆. Set zn := xn−x0

hn
. Observe that

w− zn = 1
hn

(x0 +hnw−xn) so by Proposition 3.2.3 of
[1]

〈w − zn, ξ〉 ≤ 0 , ξ ∈ TS⋆(xn) . (11)

Sincexn → x0, for hn > 0 sufficiently small,xn ∈ S⋆∩
S◦∩W . Therefore, by (10),yn := −(f(xn)+g(xn)u0) ∈
co(TS⋆(xn)). Using (11) and convexity,

〈w − zn, yn〉 ≤ 0 . (12)

Sincexn → x0, we haveyn → v0. Also, by the same ar-
gument in [1], pp. 86-87, we havezn → v. Now consider
again (12) and passing to the limit, we get〈w−v, v0〉 ≤ 0.
However,w − v = v0−v

2 , so 〈v0 − v, v0〉 ≤ 0. Since
TS⋆(x0) is a cone andv ∈ TS⋆(x0) is the projection of
v0 ontoTS⋆(x0), we also have〈v0−v, v〉 = 0. Therefore,
‖v0 − v‖2 = 〈v0 − v, v0〉 − 〈v0 − v, v〉 ≤ 0. We conclude
v0 = v ∈ TS⋆(x0).

(c,e) Letx0 ∈ (S⋆ ∩ C) ∪ (S⋆ ∩ ∂W1o). From the proof of
Theorem 17 we showed that for alli ∈ I, −(f(x0) +
g(x0)v

i) ∈ TS⋆∪¬K(x0). Furthermore, if we collect all
of the results of Theorem 17, we note that forx ∈ ¬K,
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T¬K(x) = R
n, and we apply convexity, we obtain that

for all x ∈ S⋆ ∪ ¬K,

−(f(x) + g(x)u) ∈ co(TS⋆∪¬K(x)) , u ∈ U .

(13)
We must show−(f(x0)+g(x0)u) ∈ TS⋆∪¬K(x0) for all
u ∈ U . The proof is now the same as for (b) except that
we work with the setS⋆ ∪ ¬K (instead ofS⋆), and we
invoke (13) (instead of (10)). We conclude−(f(x0) +
g(x0)u) ∈ TS⋆∪¬K(x0) = TS⋆(x0) ∪ T¬K(x0), for all
u ∈ U .

IV. EXAMPLE

We present an example adapted from [3] of managing a
fishery. The model captures the effect of fishing activity on
a prey-predator system. Letx1 denote the population level
of a prey species, letx2 denote the population level of a
predator species and letx3 denote the effort expended by
humans in fishing the predator species. We assume that in
the absence of any predation, the prey population follows an
exponential growth model with intrinsic growth rater1 > 0
(see [21]). Similarly, in the absence of any fishing activity, the
predator population follows an exponential growth model with
intrinsic growth rater2 > 0. We do not assume any carrying
capacity limitations (see [21]) on either the prey or predator
populations. The system model is given by

ẋ1 = (r1 − x2)x1

ẋ2 = (r2 − x3)x2

ẋ3 = u

where x ∈ R
3 and U := [−1, 1] ⊂ R. Let v1 = −1

and v2 = 1. The viability problem is to keep the stock
level of the prey above some positive levelc > 0. We
define h(x) = x1 − c, so Lfh(x) = (r1 − x2)x1 and
S =

{

x ∈ R
3 | x1 − c ≥ 0

}

. Assumption 1 holds withr = 3,
soW =

{

x ∈ R
3 | (r1 − x2)x1 < 0

}

. If x0 ∈ S ∩W, then
x1(0) ≥ c > 0 andx2(0) > r1 > 0. Thus, we compute

C+ = {x : x1 ≥ c, x2 ≤ r1, (r1 − x2)
2
x1 − (r2 − x3)x1x2 ≥ 0}

C = {x : x1 ≥ c, x2 = r1, x3 ≥ r2} .

Using the expression forC it can be easily verified that
Assumption 4 holds withup = 1.

Define the functionsm1(t) :=
∫ t

0
e(r2−x3(0))τ+ 1

2
τ2

dτ and
m2(t) :=

∫ t

0 e(r2−x3(0))τ− 1

2
τ2

dτ . Note that these are express-
ible in terms of the error functionerf(x) = 2√

π

∫ x

0
e−t2 dt.

For constant values ofu we have that

x1(t) =

{

x1(0)er1t−x2(0)m1(t) , if u = v1

x1(0)er1t−x2(0)m2(t) , if u = v2 .
(14)

x2(t) = x2(0)e(r2−x3(0))t− 1

2
ut2 (15)

x3(t) = ut + x3(0) . (16)

To compute ti, we remark that foru = ±1 the set
{

x ∈ R
3 | x1 = 0

}

is an asymptote of the system and hence
thex1 = 0 component of∂W cannot be reached in finite time.
Therefore, we must consider (15) to determine if there exists

a time ti such thatx2(ti) = r1. Substitutingx2(ti) = r1 in
(15) and solving forti we get

t1 = −(r2 − x3(0)) −

√

(r2 − x3(0))2 + 2 ln
r1

x2(0)
. (17)

t2 = (r2 − x3(0)) +

√

(r2 − x3(0))2 − 2 ln
r1

x2(0)
. (18)

The analysis shows that foru = ±1, the set of initial
conditions inS ∩W that can reachC in finite time are:

X1 =



x ∈ S ∩W

˛

˛

˛

˛

x3 ≥ r2 +

r

−2 ln
r1

x2

ff

.

X2 = S ∩W .

Finally, substituting (17) and (18) into the expression forh we
get

h1(x0) = x1(0)er1t1−x2(0)m1(t1) − c ,

h2(x0) = x1(0)er1t2−x2(0)m2(t2) − c .

It can be shown [23] that

h⋆(x) = h2(x) , ∀x ∈ S ∩W .

Therefore, u⋆ = 1. The final step of the design is to
verify condition (9). For allx ∈ ∂S⋆ ∩ W , we have that
I⋆(x) = {2}. Therefore, for allx ∈ S ∩ W , the boundary
of the viable capture basin is given byh2(x) = 0 and since
h2 is differentiable, condition (9) reduces to verifying thatfor
all x ∈ ∂S⋆ ∩ ¬C,

∇h2(x) · (f(x) + g(x)v1) ≤ 0 .

We obtain

∇h2(x) · (f(x)+ g(x)v1) =
`

(r1 − x2) − (r2 − x3)x2m2(t2)
´

2c .

For x ∈ S ∩ W , we have thatx2 ≥ r1 > 0. Moreover,
since erf(·) is an increasing function, the value ofm2(t2)
is always nonnegative (this is also obvious from the integral
definition of m2(t)). Therefore, if(r2 − x3) ≥ 0 the result
follows immediately. Now, if(r2 − x3) < 0, then

(r1 − x2) − (r2 − x3)x2m2(t2)

≤ (r1 − x2) − (r2 − x3)x2

Z t2

0

e
(r2−x3)τ

dτ

= (r1 − x2) − (r2 − x3)x2
1

(r2 − x3)

“

e
(r2−x3)t2 − 1

”

= (r1 − x2) + x2

“

1 − e
(r2−x3)t2

”

= r1 − x2e
(r2−x3)t2

≤ r1 − x2e
(r2−x3)t2−

1

2
t2
2

= r1 − x2e
ln

r1

x2 = 0 .

Therefore condition (9) is satisfied.

Remark 19:In the fisheries example the viability problem
reduces to increasing (or decreasing) the growth of a particular
species, for which the obvious solution is to decrease (or
increase) the effort spent on fishing the particular species.
Therefore, it is fairly obvious what control strategy should be
implemented to maintain viability. However, a viability anal-
ysis provides relevant information for policy developmentin
the fisheries industry because the viability procedure provides
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a mathematical proof that can be used toguaranteethe results
of a particular policy. Moreover, the results provide an explicit
characterization for the boundary of the viable capture basin
(h⋆(x) = 0) which can be used to analyze the current status
of the fishery (with respect to long term viability).

V. CONCLUSION

The paper proposes and solves a viability problem for
control affine systems. The problem formulation is based on
the notion of viable capture basins, it is shaped by the practical
concern to be able to conclude execution of the viability
controller in a finite time, and it is relevant in many nonlinear
control applications of current interest. An explicit formula for
the viability kernel and a viability controller are derived, and
these formulas are shown to be valid using the Frankowska
method, which provides the essential backward invariance
condition to obtain the result. A next step would be to extend
the results to multi-output systems.
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