Decidability of hybrid systems with linear and nonlinear
differential inclusions *

M. Broucke and P. Varaiya
Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

mire, varaiya@eclair.eecs.berkeley.edu

January 21, 1997

1 Introduction

Hybrid systems are dynamic systems consisting of a two-level architecture in which the
upper level is a finite automaton and the lower level is a continuous dynamical system.
Models and architectures for hybrid systems have been proposed by a number of research
groups [11, 12, 4, 13].

Applications for the hybrid modeling approach arise in control of systems that cannot
easily be controlled through a single conventional control law, including switched systems;
large scale systems and systems with multiple communicating control agents; systems with
multiple control objectives; and systems modeling the interaction of (digital) computer
processes and continuous plant dynamics. A critical area of investigation is analytical and
algorithmic tools for the verification of qualitative properties of the trajectories of hybrid
systems. The decidability problem is to determine for a given class of hybrid systems
whether a property such as safety or fairness is verifiable by an algorithm that terminates
in a finite number of steps.

Early results on decidability for hybrid systems were for restricted classes of models, begin-
ning with the result in [2, 3] for timed automata that the reachability problem is PSPACE-
hard. This result was extended to initialized multi-rate timed automata (where the value
of a clock is initialized whenever the dynamics for that clock change) by a state transfor-
mation [4, 5]. [1] showed that hybrid automata with rectangular differential inclusions are
equivalent to multi-rate automata. [15, 6] showed that a hybrid automaton with rectangu-
lar differential inclusions could more directly be transformed to a multi-rate automaton, so
that the reachability problem is decidable. Kesten, et. al. [10] introduced a class of hybrid
automata called integration graphs in which clocks that can change dynamics between lo-

*This research is supported by the California Department of Transportation through the California PATH
program.

cations are not tested within loops. It was shown that the reachability problem is decidable
for the case of a single timer and the case of a single test involving integrators.

Undecidability results are built around transformations of classes of automata to an au-
tomaton that can replicate nondeterministic 2-counter machines. It is known that the
halting problem for these systems in undecidable. For example, a two-rate timed system
that is not initialized can model a nondeterministic 2-counter machine. The main results
on undecidability are summarized in the paper [6].

A more detailed account of results on decidability and undecidability can be found in the
review articles [15, 6, 8, 9].

In this paper we extend the decidability result of [1]. The techniques and results presented
are close to those of [7]; here we focus on the problem of hybrid systems with inclusion
dynamics. We consider the following class of hybrid systems. The continuous dynamics
are governed by linear differential inclusions of the form & € [L,U]xz where L and U are
diagonal n x n matrices. The clock values are compared to constants in the guards, and
the assignments of clocks during a transition are to constant, possibly nondeterministic
values. The second class we consider consists of hybrid automata with nonlinear differential
inclusions where the ith clock component follows an inclusion of the form #; € [I;, w;] fi(z;).

Modeling the continuous dynamics using inclusions is well-based. The inclusion can be
thought of as an abstraction of behaviors resulting from a continuous control system. If, for
example, the control is a regulator it may not be necessary to model the continuous dynamics
in detail in a verification of the combined discrete-continuous system: the behavior of the
continuous system has been made predictable by control. The inclusion approach follows
with the philosophy of hybrid modeling that allows for non-unique solutions from one initial
condition. The loosening of precision in defining the behavior of the system is accomodated
by the verification tools for non-deterministic finite automata.

The paper is organized as follows. We first review some terminology and definitions needed
for the rest of the paper. The third section develops the main results for decidability of
the reach set problem for hybrid systems with linear differential inclusions, robustness of
the reach set calculation, and decidability of the reach set problem for hybrid systems with
nonlinear differential inclusions.

2 Preliminaries

Notation (R%) R is the set of (non-negative) reals and (ZT) Z is the set of (non-negative)
integers. For z € R”, we write z; for the 1th component of z. 7 refers to a finite sequence

of events o (i) € ¥ where X is a set of events. s — # means there is an event sequence &
such that final state ¢ can be reached from initial state s. If ¥ is a set of transition relations,

then we write ¥ for the transitive closure of 1. Also, denote s Tt by (s,@,t) € ¥*.
Finite automata A finite automaton is a system A = (L,%,®,I) where L is a finite

set of discrete locations, X is a finite set of events, I C L is a set of initial locations, and
¥ C L x X x L is a set of transition relations. Associated with each transition between

locations / and !’ is an event o € .

The semantics of automaton A are defined on sequences of events o € X. If ¥* is the set
of all finite sequences of events, then we say the language of a finite automata is the set of
sequences over X accepted by A:

L(A)={deX|(l,a!l)ev*}.

A run of a finite automata A over a sequence @ € >* is a sequence of locations visited by
the automaton as it reads &

1(1) 212y 2y i m - 1) 75 i(m)

Timed automata A timed automaton is a system 7' = (Q, X, 9, I) where) = L xR"™ and
Y C LxXXxLxGx.J. Associated with each location is a set of n clocks with valuations,
z € R™. The state of a timed automaton is ¢ = (/,z) € Q. I C () is a set of initial locations
and clock valuations. The clocks record the elapsed time; that is, 2; = 1. Clock values
can be reset upon taking a transition whenever an enabling condition on that transition is
satisfied. Thus, each edge of the automaton has an enabling condition or guard, § € G,
where (G is the set of all enabling conditions. An edge can reset clock values by a reset
condition or jump, A € J, where J is the set of all reset conditions. Edges are labeled
(¢,0,q',8,\) where ¢ and ¢’ are the originating and final locations and clock valuations,
respectively.

Enabling conditions are formulas generated by the grammar:

8= x; < cilzi > eley < eilxg > ¢l A dg|dy Ve where ¢ € Z

The reset condition A € J initializes components of z when a transition is taken. The reset
Ai = [ay, b;] initializes z; nondeterministically to a value between a; and b;, where a;, b; € Z.
When a clock is not reset A; = id.

The semantics of a timed automaton T are defined on timed sequences of events. A timed
sequence is a pair (7,t) where @ € ¥* and ¢ = £(1),¢(2), ... is a time sequence that satisfies
t(k) € RY and t(k) < t(k+1). We say the language of a finite automata is the set of timed
sequences over ¥ x RT accepted by T

L(T)={(@,?) | (9,7, ¢) € &7} .

where we abuse notation and drop reference to the enabling condition and reset of transitions
in . A run of a timed automata T over a timed sequence (7,%) is a sequence of states §
visited by the automaton and if ¢(k) = (I(k),z(k)), there is an edge with event o(k) and
enabling condition §(k) which evaluates to true for clock values z(k) = z(k — 1) + t(k) —
t(k —1). (k) are reset by A(k) at t(k) after the transition is taken.

Decidability of timed automata was shown by Alur and Dill [2] by forming equivalence
classes in the space of continuous clocks. The equivalence classes partition R™ into a finite
number of regions. The enabling conditions can be defined for positive or negative values

of the clocks, and the clocks can be reset to a positive or negative integer value. All the
clocks have rate +1.

we review some notions of relationships between automata that will be useful in the sequel.

We say timed automata Ty = (Q1,%1,¥1, [1) and Ty = (Q2, X, ¢, I3) are isomorphic if
there exists a bijection f : Q)1 — @2 such that for oy € ¥y there exists o9 € X9, such that
(1) f(I1) = Iz, and (2) for all states ¢, ¢' € Q1, (¢,01,¢") € ¥1 iff (f(q), 02, f(¢')) € Pa.

Given timed automata 77 = (Q1,%1,¢1, 1) and Ty = (Q2, X2, 2, I2), we say that T,
simulates T; with relation R C Q1 X Qq, if (p,q) € R and p 25 p/, with oy € Xy, imply
that there exists ¢’ € Q3 and oy € ¥y such that ¢ =2 ¢/ and (p', ¢') € R.

Given timed automata 77 = (Q1, X1, ¥, [1) and T3 = (Q2, X2, P2, [2), we say R C Q1 X Q2
is a bisimulation if T, simulates T} with R and T simulates T, with R™! € Q4 x Q1 where

R™' = {(q,p)|(p,q) € R}.

For the sake of completeness, we state the following well-known result of [2].
Theorem 1 Let T be a timed automaton with n clocks. There exists a finite automaton
U which is a bisimulation for T.

Finally, we define a class of initialized timed automata called PN (positive/negative) timed
automata.

PN timed automata A PN timed automatais a system 7' = (Q, %, D, 9, I). Q@ = L xR",
and L, R", X, and [are the same as for timed automata. As before, associated with each
edge is an event o € X, an enabling condition § € (G, and a reset condition A € .J. What
is new is a set D C Z" of continuous state rates. A rate assignment d € D is associated
with each location such that #; = d;, where the components d; take only one of three values
d; = {—1,0,1}. We require that \; # id if d; changes upon transitioning from one location
to another; therefore, PN timed automata are initialized.

Lemma 2 Let T = (Q,%,D,®,I) be a PN timed automaton. There exists a finite
automaton U which is a bisimulation for 7T'.

Proof PN timed automata are initialized multirate timed automata which are isomorphic
to finite automata. [4, 5]. O

3 Hybrid systems

A hybrid automaton is a system H = (@, %, D,®,), where Q@ = L x R", L is a finite set
of discrete locations, ¥ is a set of events, ©» C L x ¥ X L x G x J is the set of transition
relations, and I C @ is the set of initial locations. 1 labels edges of the automaton by
(l,0,I',6,\) € ¥. The edge is from location [to I’, § € GG is an enabling condition, and
A € J is a reset condition. The only change from PN timed automata is that DD now defines
a set of differential inclusions, with one inclusion associated with each component of the
continuous state.

As before, enabling conditions are associated with the edges between discrete locations of

the hybrid automaton and they are of the form:

§:=uxz; <clz; > clz; < c|lz; > c|dy Ad2|dy VEy where c € Z

Likewise, reset conditions are defined on the edges between discrete states for some com-
ponents of the continuous state. The reset is of the form \; = [r;,s;] or A; = id for
ri,8; € Z. When J; is the identity relation, z; is not reset. When X\; = [r;, s;] , #; is reset
non-deterministically to a value between r; and s;.

We require \; # id whenever the inclusion for z; changes in a transition from [to /'

The reach set of a hybrid automaton H, written Reachr(Qo), Qo C @, is the set of states
that can be reached in any run starting from Q.

3.1 Hybrid automata with linear differential inclusions

Now we will extend our definition of hybrid automata to a class with a linear differential
inclusion for the continuous state. We consider a hybrid automata H = (Q,%, D, ¢, I)
where, within each location /, the continuous dynamics satisfy an inclusion @ € [L, U]z € D.
L,U € R™™" are diagonal matrices so that the inclusion for z; is

T; € [li, uz]mz
and u; > ;.

Our objective is to find a decidable bisimulation for a linear hybrid automaton. Several
steps are needed to transform to a decidable class of automata. The trajectories generated
by H form a “funnel” with a rectangular cross-section. The ith coordinate of the extremal
trajectories have derivatives equal to the extreme values I; or ;. Thus these coordinates
are made up of segments of increasing or decreasing exponentials.

The exponential segments may be initialized with a positive or negative reset value for each
clock component. Referring to Figure 1, the essential features of the automaton that will be
transformed for each location [are the reset conditions on transitions entering the location,
the enabling conditions on the transitions leaving the location, and the inclusion in each
location which will dictate how the reset and enabling conditions are modified.

The steps of the transformation are:

1. Convert automaton H of Figure 1 to one with positive trajectories, automaton P of
Figure 2.

2. Convert automaton P with positive trajectories and linear inclusions to one with an
augmented continuous state space and linear differential equations, automaton A of
Figure 4.

3. Convert automaton A to a PN timed automaton 7T.

Summary of transformation We consider each of the four steps above. We start with a
linear hybrid automaton.

Step 1 Within each location the trajectories of each component is either positive or negative,
accordingly as its initial value is positive or negative. If necessary, we use a “change of
variables” z; — —z; to make the initial condition positive. We need to keep track of the
change of variable, and that is done by adding a “discrete” state (equivalently, by “splitting”
the location into several locations). Call the new automaton P.

Step 2 In each location, the continuous state of P satisfies an inclusion of the form:
z; € [li,ui]:vi.

Convert P to an automaton L with 2n states. To state x; of P is associated a pair of states
Yoi_1, y2; of L which satisfy the linear differential equations

Y2i—1 = livai-1, Y2i = uiYa-
The reach set of P is a rectangle whose 2n vertices are given by the reach set of L.

Step 8 Convert L to a PN automaton T as follows. Within each location, each component
y; of a trajectory of L is an exponential. With an appropriate choice of a; the nonlinear
change of variables, a;logy; — z;, the z; trajectories have a constant slope of -1, 0 or 1.
This is the PN automaton 7', except that the guards in T’ need no longer be rational because
of the nonlinear transformation.

Step 4 Change the guards of H so that the guards of T° become rational. This can be done
with arbitrarily small changes. Call the resulting hybrid automaton H’. Using Theorem 7
it follows that H' is a bisimulation of H.

Automaton P The first step is to convert all negative valued components of z to positive
values; in other words, if any reset condition sets a component of z to a negative value, we
will transform it to a positive value. We define two variables h; = sgn(z;) and w; = |z
so that z; = h;w; and construct an automaton P shown in Figure 2. It consists of the
same discrete locations and transitions as the original automaton but has continuous states
w; > 0 and includes an additional discrete state variable A € Z"™ that records the sign
of the continuous components of the original automaton, so that the new discrete state is
I"=(l,h). Thus, if the original automaton has m discrete states, the new automaton has
m3"™ discrete states. Automaton P has only positive valued exponential trajectories.

The variable h is assigned upon entering a discrete location by recording the sign of the
trajectory in the original automaton after a reset occurs. For a reset of the form z; := [r;, s;]
with r;,8; > 0, h; = 1. If r;,8; < 0, then h; = —1. If there is no reset on z; then h; = id.
Finally, if r; < 0 and s; > 0 for any component of z, the transition can be split into three
transitions. The first transition includes all negative resets x; := [r;, s;], i, 8; < 0 and for
any reset with r; < 0 and s; > 0, a new reset z; := [r;,0). The second transition includes
for any reset with r; < 0 and s; > 0, a new reset z; := 0. The third transition consists
of all resets x; := [ry, s;], 7, 8; > 0 and for any reset with r; < 0 and s; > 0, a new reset
z; == (0, s;]. Thus, for all ¢, the first transition assigns h; = —1, the second assigns h; = 0,
and the third assigns h; = 1. This case is shown in Figure 3. If there is no reset for x;, then
h; = i1d in each of the three transitions.

Enabling conditions of P are of the form w; € [a}, b}] where a} = a; if h; =0 or h; = 1, and

al = —a; if h; = —1. A similar transformation applies to b..

Lemma 4 Automaton H and automaton P are isomorphic.

Proof Automaton H and automaton P have identical discrete locations and transitions,
and the tranformation of the continuous states is described by the bijection z; = h;w;. The
transformation of the resets and enabling conditions is explained above. |

A consequence of Lemma 4 is that if the bijection from automaton H to automaton P is f
then Reachp(f(Qo)) = f(Reachr(Qo)).

Automaton A In the second step we consider the automaton P with positive trajectories
and follow the approach of [6] where an automaton with differential inclusions for the
continuous dynamics is converted to an automaton with linear dynamics. Thus, we form a
new automaton A with an augmented continuous state space in R?" such that corresponding
to each component z; there are two components, ;1 and yo; in automaton A, whose
dynamics are specified by

Y21 = liyaia
Yo, = Uy .

See Figure 4. y9;_1 and yo; satisfy yg;_1 < x; < yg;. Further, the reach sets are related
as follows. When automaton P reaches (/,w), automaton A reaches {/} x [y, y2] X ... X

[an— 1 y?n] .

The reset condition w; := [r}, s] is transformed to yg;—1 := r; and yy; := s;. To obtain
the new enabling conditions for automaton A consider an enabling condition of the form
al < w; < b If w; of automaton P satisfies w; > a}, then in automaton A, yy; > a;. When
the transition is taken and ys;,_; < @, it is necessary to reset the lower trajectory yq;_1 to

ai. Thus, the enabling condition w; > a! becomes

(y2i > a; A ((y2im1 < @f) — (y2im1 = @) (1)

Similarly, if w; < bf, then yo;—1 < b} and if yg; > %, it must be reset to b., so the enabling
condition becomes
(y2i—1 < bEA ((y2i > b)) — (y2i :=b7)). (2)

The next theorem will show that there is a simulation relation between automaton A4 and
automaton P and this relation will allow us to relate the reach sets of the two types of
automata.

First we need a definition and a fact. If H is a hybrid automaton, then the reverse system
is H=! where if ({,0,l',8,X) € ¢y then (I',0,1,8,\) € ¥yy—1 and D_g = —Dp, that is all
rates are reversed.

Fact 4 If A and B are automata, and B simulates A with simulation relation S C
Qa x Qp and A~! simulates B™! with S=! and Qo C @Qp, then Reacha(S™'(Qo)) =
S~ (Reachp(Qo)) -

The next theorem gives the required relation between automaton A and automaton P,
whose proof is found in [16].

Theorem 5 Let P = (Q,%, D,,I) be a hybrid automaton with linear differential inclu-
sions w € [L,U]w € D where L,U € R"*" are diagonal matrices and w;(t) > 0 Vt. There

exists an automaton A with linear dynamics that simulates P with relation S~!' and P~!
simulates A~! with relation S. The simulation relation is S C (L, R™) x (L, R**)

S={(l,y), (l,w)) | y2i-1 < w; < ya;} -

Automaton T The last step of our procedure is to apply a transformation to the variables
y of A to obtain a PN timed automaton T. Consider the upper trajectory formed by ys;.
Define a new state variable z9; = wy9; + v9; and pick the feedback wy; to satisfy 0y =
—u;yo; + d;. Then,
Z2i = Yoi + V2 = d; .

In the z state space the linear dynamics have been transformed to constant rates: 29,1 = ¢;
and 29; = d; and we may pick ¢;,d; € R, ¢; < d;. If we apply this technique to all continuous
state components, we obtain a new automaton T with constant rate continuous states.

Note that the transformation from y to z variables can be achieved more directly by applying
the bijection:

Flnyyy if L #0
. — l;
= { Yai—1 it ;=0 3)
d; .
Sy if u; A0
i = Usg . 4
& { Yoi if u; =0 4)

Next we must transform the y enabling conditions to z coordinates. Consider yy; > a}. Let
y5; > 0 be the initial condition for yy; in a discrete location /. Suppose first that a > 0.
If w; > 0 we can find a time when yo; first reaches @} after which the enabling condition is

satisfied, i.e., t > UL In ;—g At that time the upper component zy; will have reached
? 21

Z dz 0 (o}
29; = dit + 23, = u_1n|a2|_;1n|y2i|+zzi . (5)

k3 k3

To eliminate the dependence on initial conditions, pick 2§, = % In|ys;|. If we pick a d; > 0,

then the enabling condition becomes z9; > % In |af|.

If u; < 0 then we are interested in the first time that yy; no longer satisfies yo; > al.
This translates to the condition ¢ < X In ;—o‘ Note that if a} > yJ, the condition is never

22
satisfied, as expected. Now if we pick initial conditions as before and select d; < 0 the
enabling condition is the same as before: zy; > % In |af|.

The third case, when a} > 0 and u; = 0 corresponds to the transformation zy; = ys;; thus
the enabling condition becomes z5; > a). When a! < 0 the enabling condition is always
satisfied because ys; is positive-valued, so the enabling condition is true.

Finally, we must consider what happens when y3;, = 0. This case arises whenever a transition
is taken that sets h; = 0 and yz; > a! is either always true or always false. We transform
the enabling condition by setting u; = 0, which implies z; = yqi; thus, 29; > @’ is the
transformed enabling condition.

We can now pick values for the rate d; following the choices that simplified the enabling
conditions in the preceding discussion:

1 u; > 0
d; = -1 u; <0
0 hiu; =0

This selection of rates is almost in the form of a PN timed automaton, except that the rates
cannot be assigned a priori because of the dependence on h;. To remove this dependence,
recall that we have partitioned the transitions so that they assign h; uniquely. Consider
transitions with the label A; = 0. We can create a new discrete location [° which has as
input transitions, those transitions of location [, with A; = 0 and with the same output
transitions of /. Also, we redefine u; = 0 in location [° since this does not change the
dynamics. With this modification of the automaton, we may assign rates for d;:

1 u; > 0
d; = -1 u; <0 (6)
0 u; =0

To summarize, the transformation of enabling condition expressions y,; > a! is:

(@: > 0)A (u; #0) — (29; > 5—2111 |at])
(a¢; > 0) A (ui =0) — (221 2 aj) (7)
(e} <0) — (true) .

After repeating the above procedure for enabling condition expressions yg;_1 < b; for the
lower component, the transformed expression is:
B:>0)A (L #£0) — (22

1<)
(li =0) — (220 <b) .

(8)

where we do not include the case of (b} < 0) because it always evaluates to false. The rate
for z9;_1 is selected by:

1 ;>0
c; = -1 ;<0 (9)
0 ;=0

after creating new locations [° with input transitions that set h; = 0 and then setting {; = 0
in [°.

The resets are transformed according to the bijection from y to z. y;—1 := r} becomes

>

29i_1 Inrl ifrl >0

L 10
22i—1 - T’g lf T; =0 or ll =0 ()
Similarly, for resets yq; := s,
29 = i—iln stoif st >0 1)
224 = S;' lf S;' = O or u; = 0

Theorem 6 Automaton A and automaton T are isomorphic.

Proof We construct a bijection from locations and transitions of A to locations and tran-
sitions of T': either the locations are identical, or locations in A with h; = 0 can be mapped
to a location in T uniquely. The continuous states are related by the bijection of Equation
3. The enabling conditions are related by Equations 7 and 8, and the reset conditions are
related by Equations 10 and 11. a

A consequence of Theorem 6 is that we can relate the reach sets of the two automata;
namely, if the bijection from automaton A to automaton 7" is f then Reachr(f(Qo)) =

f(Reach4(Qo)).

Theorem 7 Let H = (Q,%, D, ¥, 1) be a linear hybrid automaton with differential inclu-
sions & € [L,Ulz € D where L,U € R"*" are diagonal matrices. There exists a decidable
hybrid automaton H' = (@, 3, D, ¢', I) with @), ¥, D, and I the same asin H. The enabling
conditions ¢’ of H' can be made arbitrarily close to 4.

Proof The proof relies on invoking the steps of the transformation just described. First,
Lemma 4 says we can calculate Reachy from Reachp. Theorem 5 says we can calculate
Reachp from Reach 4. Finally, Theorem 6 says we can calculate Reach 4 from Reachr. We
want to show that by a perturbation of the enabling conditions of H, P will be a PN timed
automaton, and we showed in Lemma 2 that we can obtain a finite computation of Reachr;
that is, reachability of T, a PN timed automaton, is decidable.

To construct the adjusted enabling conditions of H’, partition the real line in intervals of
length é, q € Z,. Considering Equations 7 and 8, we require that the expressions on the
right-hand sides are rational, so we can find the smallest 3; € Z and largest «; € Z such
that

%sﬁmw;%mmsﬁ.
We define
no_ QU
= o2
1
bl! — ﬁl K3 .
' = o2
Then given any € > 0
a1+ o()] = ai] 2 |af]
671[1 —o(e)] < [bi] <157
This follows by picking ¢ = max{%, &} and noting that
ot 1 > %ln|a2| > &
q Ug q

ws
= laflexp(—) > |ai] > |af]

k3

= |a|[L +o(e)] 2 |a] = |af] .

10

The same argument applies for b7. Thus, if we use @/ and b/ in Equations 7 and 8 for
automaton H’, then after transformation to automaton 7', the enabling conditions are
defined on rationals and the result follows. |

Lemma 8 The set of decidable hybrid automata with linear differential inclusions is dense.

Proof Follows from the fact that the rationals are dense. O

3.2 Robustness

Theorem 7 constructs a modified automaton whose reach set is an approximation of the
original automaton’s reach set. The modified automaton is an over-approximation in that
it has more permissive enabling conditions and thus will allow more trajectories than the
original automaton H.

It is interesting to ask what is the robustness of the reach set calculation to perturbations
of the enabling conditions. To make progress on this question, it is helpful to characterize
the form of the reach set. Let S[OJL](:CO) be the set of trajectories ¢ on the interval [0,]
starting from z°, and let R(z%¢) be the reach set for a time transition starting from the
continuous state z°. That is, R(z%,t) = {¢ | ¢ € S[OJ](.rO)}. Each component ¢; satisfies

2 exp(lit) < ¢i(t) < 29 exp(ugt)
where ¢;(0) = 22, so we can write
R(z°,t) = {F(t)z° | exp(lit) < F;(t) < exp(u;t)},

where F(t) is a diagonal n x n matrix with diagonal elements F;(t).

Now consider hybrid trajectories. Define the set of hybrid trajectories on an interval [0,]
to be Hpg(z°). As before, Reach(z,t) is the set of states that can be reached from the
initial state ¢¥ = [x 20. We write 7 € Hpo4 a hybrid trajectory as

m: (1% ¢% 1, ..., (1™, 6™, ™)

where I* = [ti,tix1] is the time interval of the ith phase, 7; = ;41 —¢; is the duration, and
¢ :I' = R, ¢ € S[ti7ti+1]($i).

The kth phase (lk, ", Ik) of a hybrid trajectory consists of three components:

1) initial condition: ¢*~1,

2) time transition: R(¢*~1) ,

3) enabling condition and reset, forming the graph Ej : Gy x Ag, where G, is the enabling
condition and A is the reset which can be represented in general form as the map Ax(z) =
Apz + B, where Ay is an n X n matrix and By C R"™ is convex. We can write the kth phase
in the form of a discrete update of the continuous states:

¢ = AR(S*N, 7)) NGL + Br
= OF(¢F 1 7). (12)

11

where R(¢*1, 71.) = F(r4)¢" !, as defined above. Thus, the reach set at time ¢ is:

Reach(2°t) = U O™ (... 0% (2% 1),)y)
ZZL:lTk:t
= U (™ o...0¢"(z")
D her RSt

where we take the union over hybrid trajectories on [0, ¢].

Now the approximate reach set is obtained by small perturbations of the enabling regions
G%. The outer reach set approximation is obtained from Equation (12) be replacing Gj,
by G¢ = G}, + B, where B, is an e-ball, and it is denoted by Reach®(z° t). The main
result for the outer reach set approximation is that under certain conditions, as € goes to
zero, the outer reach set approximation will approach the original reach set. The necessary
conditions and result are summarized in the following theorem, whose proof can be found

in [14].

Theorem 9 Assume that the enabling regions are closed, the initial region X° is compact,
and there are at most a finite number of steps over a finite time interval. Then the outer
reach set approximation approachs the original reach set; that is, as e — 0,

ﬂ Reach®(X°,t) = Reach(X°,t).
e>0

We consider next the inner reach set approximation which is obtained from Equation (12)
by replacing G, by Gis = {z | d(z,5¢) > 6}. The inner reach set approximation is denoted
Reachs(X°,t). It is clear that UssoReachs(X° t) C Reach(X°t). If € Reach(X°,t) it
can be shown that every neighborhood of z contains a point of UssqReachs(X?,t) so z is a
limit point. Therefore, z € cl(UssoReachs(X°,¢)). The main result for the inner reach set
approximation is the following.

Theorem 10 Assume that the enabling regions are closed, the initial region X is compact,
and there are at most a finite number of steps over a finite time interval. Then the inner
reach set approximation will approach the interior of the original reach set; that is

cl(U Reachs(X°,t)) = Reach(X").
§>0

3.3 Hybrid automata with nonlinear differential inclusions

We consider nonlinear hybrid automata in which the ith state component z; follows an
inclusion of the form #; € [I;, w;] fi(z;), with {; < w;, l;,u; € R, and

Jilzi) = 1] 2 | fi(wi).

We will use a transformation technique analogous to the linear case to show that reachability
for this class of nonlinear hybrid automata is decidable.

12

First, we will consider the ith clock component of location [of automaton H. We assume
fi(z;) has a finite number of zeros, so that we can identify a finite number of regions of
fi, labeled p;i, ordered from left to right, and corresponding to the positive, negative, and
zero-valued segments of f;. Each p;; identifies a range of values of z;, i.e. pir = [k, Bixl,
ik, Bir € R. pii can be closed such as p;z = [—1, —1] or open, such as p;z = (—1,0). We
also identify the sign of each region: h;x = {sgn(fi(z;)) | zi € pir}-

The procedure, as before, is to convert automaton H with inclusions to automaton P with
clock components labeled by the regions defined above. Then convert automaton P to
automaton A with linear differential equations. Finally, convert automaton A to PN timed
automaton 7.

We first construct automaton P. Suppose there are n clocks and each f; has k; regions.
For each location [of automaton H, we create II7_, k; locations in automaton P. Define
h = [hy...h,]) with h; = sgn(fi(z;)) Observe that in the linear case we kept track of
the sign of the trajectory which could not change without a reset, because of the linear
dynamics. Here we record invariant regions p;; of the components of the trajectories and
the clock components only change regions through a reset.

Any edge from location !’ to [of H must have an edge from !’ to each of the [1"_, k; locations
of P. Correspondingly, each reset z; := [r;, s;] is split into o = k; resets:

Ty = [r2.17521]7 [r},s}]ghﬂ

T = [rzc'r7 85]7 [T‘g, 8?] C his

The edges are now labeled with the modified resets. That is, if the resets corresponding to

one of the new edges are z; := [r!,s!], i = 1,...n, then h; = sgn(fi(z;)) with z; € p;;. Thus,
we have ensured that within the new location, the invariant regions encoded in p are fixed.
Automaton P, in summary, has an augmented set of locations, modified resets z; := [r}, 5]
for each edge, a vector h associated with each location, inclusions &; € [l;, u;] fi(z;), and the

same enabling conditions z; € [a;, b;] as for automaton H.

The second step is to transform the nonlinear inclusions to nonlinear differential equations.
The resulting automaton A has differential equations

Y21 = lif(y?i—l)
Ui = uif(y2i)

The reset condition z; := [r}, s!] is transformed to yz;—1 := r} and yy; := ., as before. The

enabling conditions are given in Equations (1) and (2) with a} = a; and b} = b;.

The last step is to transform automaton A to automaton T with linear dynamics. We
consider first the upper trajectory of component 7, formed by yo;. As before, define a new
state variable z9; = y3; + vq; and pick the feedback vy; to satisfy v9; = —u; f(ysi) +d;. Then
Consider the transformation of the enabling condition y,; > a;. Here we make use of the
fact that the location records the invariant region of each clock component and retains the

13

sign of the derivative in the vector h. The transformed enabling condition has three cases.
Case (a) is
if(y2i € pir A a; € pij,j < k) — (true)

in which yo; stays in a region whose values are larger than a;. Case (b) is
if(y2i € pix A a; € pij, j > k) — (false)

in which yy; stays in a region whose values are smaller than a;. The last case is when
Yy2i € pir, and a; € p;p. In this case, there are three subcases. First, if h;pu; > 0 the ¢th
clock has positive derivative. Define the indefinite integral

dw
F =/ —.
() / u; fi(w)
Then, yo; = a; when ¢ = F(a;) — F(y9,. Then

29; (t) = dit+ Zgi
= di(F(a;) — F(y3)) + 23;.

We pick 29, = d; F(yY;) to cancel initial conditions. Then we obtain the transformed enabling
condition
z9i > F(a;)

where we choose d; = 1. The transformed reset condition for this case is z9; := F'(r;).

The second subcase is when h;pu; < 0 and the i¢th clock has negative derivative. One can
check that the correct transformed enabling condition is z3; > —F'(a;) and the transformed
reset condition is zg; := —F(r;). Finally, the last subcase is when y; = 0 and the enabling
condition and reset condition are unchanged.

The transformation for the lower trajectory yq;_1 follows in a similar manner as above.
The steps outlined above lead to the follow result.

Theorem 11 Let H = (@, %, D, v, I) be a nonlinear hybrid automaton with differential
inclusions &; € [l;, u;]fi(z;) with l; < u;, l;,u; € R and f : R® — R”. There exists a
decidable hybrid automaton H' = (Q, X, D, ¢/, I) with @, ¥, D, and T the same as in H.
The enabling conditions & of H' can be made arbitrarily close to é.

Acknowledgements The authors are grateful to Anuj Puri and Tom Henzinger for their
helpful suggestions on this problem.

References

[1] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular differential
inclusions. In D.L. Dill, ed., Computer-Aided Verification, LNCS 818, pp. 95-104,
Springer-Verlag, 1994.

[2] R. Alur and D. L. Dill. Automata for modeling real-time systems. In ”Proc. 17th
ICALP: Automata, Languages and Programming, LNCS 443, Springer-Verlag, 1990.

14

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[14]

[15]

[16]

R. Alur, D. L. Dill. A theory of timed automata. Theoretical Computer Science, no.
126, pp. 183-235, 1994.

R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid Automaton: An
algorithmic approach to the specification and verification of hybrid systems. In R. L.
Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds., Hybrid Systems I, LNCS 736,
pp- 209-229, Springer-Verlag, 1993.

R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, no. 138, pp. 3-34, 1995.

T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? In Proc. 27th Annual Symp. Theory of Computing Science, pp. 373-382,
ACM Press, 1995.

T. Henzinger and P. Ho. Algorithmic analysis of nonlinear hybrid systems. In P. Wolper,
ed., Computer Aided Verification, LNCS 939, pp. 225-238, Springer-Verlag, 1995.

T. Henzinger. Hybrid automata with finite bisimulations. In ”"Proc. 22nd ICALP: Au-
tomata, Languages and Programming, LNCS 944, pp. 324-335, Springer-Verlag, 1995.

T. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Symposium on Logic
in Computer Science, pp. 278-292, New Brunswick, NJ, 1996.

Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class of decidable
hybrid systems. In R. L.. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds., Hybrid
Systems I, LNCS 736, pp. 179-208, Springer-Verlag, 1993.

A. Nerode and W. Kohn. Multiple agent hybrid control architecture. In R. .. Grossman,
A. Nerode, A. P. Ravn, and H. Rischel, eds., Hybrid Systems I, LNCS 736, pp. 297-316,
Springer-Verlag, 1993.

A. Nerode and W. Kohn. Models for hybrid systems: automata, topologies, controlla-
bility, observability. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds.,
Hybrid Systems I, LNCS 736, pp. 317-356, Springer-Verlag, 1993.

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description and
analysis of hybrid systems. In R. L.. Grossman, A. Nerode, A. P. Ravn, and H. Rischel,
eds., Hybrid Systems I, LNCS 736, pp. 149-178, Springer-Verlag, 1993.

A. Puri, M. Broucke, and P. Varaiya. On the trajectories of hybrid systems. Presented
at Int. Conf. Hybrid Systems, Cornell University, [thaca, NY, October 1996.

A. Puri, and P. Varaiya. Decidable hybrid systems. Mathematical and Computer Mod-
eling, vol. 23, no. 11-12, pp. 191-202, June 1996.

A. Puri. Theory of hybrid systems and discrete event systems. University of California,
Berkeley, 1995.

15

Figure 1: Automata H: hybrid system with linear differential inclusions.

16

h. 0{-1, 0, 1}

Figure 2: Automaton P: hybrid system with linear differential inclusions and positive-valued
trajectories.

17

Figure 3: Automata P: hybrid system with linear differential inclusions.

18

yzi—lsbi'D((yziZbi') - (yzi:bi'))
Yoizd O((Yy_qsa) - (Yy_1=&))

- O0{-1, 0, 1}

Figure 4: Automaton A: hybrid system with linear clock rates.

19

