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Abstract-This paper presents a theory for automated traffic flow, based on an abstraction of 
vehicle activities like entry, exit and cruising, derived from a vehicle’s automatic control laws. An 
activity is represented in the flow model by the space and time occupied by a vehicle engaged in 
that activity. The theory formulates Traffic Management Center (TMC) plans as the specification 
of the activities and velocity of vehicles, and the entry and exit flows for each highway section. We 
show that flows that achieve capacity can be realized by stationary plans that also minimize travel 
time. These optimum plans can be calculated by solving a linear programming problem. The theory 
permits the study of transient phenomena such as congestion, and TMC feedback traffic rules 
designed to deal with transients. We propose a “greedy” TMC rule that always achieves capacity 
but does not minimize travel time. We undertake a microscopic study of the “entry” activity, and 
show how lack of coordination between entering vehicles and vehicles on the main line disrupts 
traffic flow and increases travel time. We conclude by giving some practical indication of how to 
obtain the space and time usage of activities from vehicle control laws. Finally, we illustrate the 
concepts presented in this paper with two examples of how the model is used to calculate the 
capacities of a one-lane automated highway system. In one example we study market penetration 
of adaptive cruise control and in the second example we study the effect of platooning maneuvers 
in a platooning architecture for AHS. Copyright 0 1996 Elsevier Science Ltd 

I. INTRODUCTION 

This paper proposes a theory of automated highway traffic. The theory predicts the per- 
formance of an automated highway system (AHS) in terms of achievable (steady state) 
flows and travel times. The performance predictions can be used to compare alternative 
AHS designs. 

The theory shows how AHS steady state performance is a function of the character- 
istics of both the control laws that govern the movement of individual vehicles and the 
traffic management rules that guide the vehicle flow. This functional relationship can be used 
to suggest changes in vehicle control laws and. traffic management rules for improving 
highway performance. 

The theory also explains how the automated highway can become congested, and 
what sorts of actions need to be taken to prevent congestion from occurring and to elim- 
inate it once it occurs. Thus the theory may be used to design vehicle control and traffic 
management rules for reducing undesirable transient behavior such as congestion. 

Vehicles in an AHS are under automatic control: the distance a vehicle maintains 
from the vehicle in front, its velocity, and its route from entry into the highway to exit, are 
all determined by the vehicle’s feedback control laws. One may therefore compare the 
effect on the traffic of changes in vehicle control laws, and seek to calculate the “opti- 
mum” control laws. By contrast, in non-automated traffic flow theory, the driver deter- 
mines a vehicle’s headway, its velocity, its movement during a merge, etc. Driver behavior 

‘This research is supported by the California Department of Transportation through the California PATH 
program and the Federal Highway Administration through the National Automated Highway System Con- 
sortium. 
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is difficult to change significantly. One hypothesizes feedback models of driver behavior 
and uses real data or experiments to calibrate the model parameters. 

Similarly, the Traffic Management Center (TMC) for the AHS can directly influence 
the flow by issuing orders to vehicles regarding their velocity and route. Those orders will 
be obeyed because the vehicles are programmed to do so. The TMC for the non-auto- 
mated highway can also make speed and route suggestions, but drivers may ignore these 
suggestions or react to them in an unexpected manner. Thus, the influence of TMC policies 
in the AHS is much stronger and more predictable than its influence on non-automated 
traffic; and so, one may again seek to determine optimum TMC policies. 

Because it is possible to exercise much greater control over the movement of individual 
vehicles and the traffic as a whole, a theory of AHS traffic flow will tend to be prescriptive. 
Non-automated traffic flow theory is more descriptive, by contrast.* The following 
notation will be used in this paper: 

Symbol 

s(a) 
G4 
a 

L(0 
t 
r 

;t 

V 

t;i.r) 
n(i,t,Q 
Na,i,t,Q 

A(a) 
f(i,t,Q 
di,t,W 
dk0 

Interpretation 
space used by activity a in m (meters) 
duration of activity a in s (seconds) 
a vehicle activity 
length of section i in m 
time index 
time period 
section index 
flow type 
vehicle body type 
maximum permissible velocity 
average velocity of vehicles in section i at time t 
number of vehicles in section i, time t, of flow type 8 
proportion of vehicles performing activity a in section i at time t of flow 

type 0 
space-time usage of activity a in m-s 
number of vehicles entering section i at time t of flow type 8 
number of vehicles exiting section i at time t of flow type 8 
fraction of vehicles in section i at time t that remain in the section at time 
t +I. 
the TMC plan consisting of an activity, velocity, entry and exit plan 
average input flow over time t = O,...T 
average output flow over time t = O,... T 
time-averaged input flow in section i of type 8 
time-averaged output flow in section i of type 8 
a flow in vehicles/s 
average flow of type 8 from section i-l to section i 
stationary speed of section i 
stationary number of vehicles in section i at time t of flow type 8 
stationary activity plan 
achievable input flows 
achievable output flows 
maximum number of vehicles in section i 
average space-time used per vehicle in section i 
number of vehicles in section i at time t of all flow types 
maximum flow out of section i in vehicles/s 
minimum of the maximum flow out of any section 
gap required for the entry activity in the receiving lane, in m 
kth free space gap, in m 

%f course, this descriptive theory is used to design and prescribe ramp metering and other traffic manage- 
ment rules. 
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D 
d 
I 
n 

Q 

inter-platoon gap, in m 
intra-platoon gap, in m 
vehicle length, in m 
platoon size 
longitudinal sensor range, in m 

2. GENERAL ASSUMPTIONS 

We introduce the main abstractions and assumptions and the structure of the pro- 
posed theory. The theory is based on an activity model: the movement of a vehicle is 
conceptualized as a sequence of activities, such as entry, cruise, and exit, that are realized 
by vehicle control laws; the highway is viewed as prodding the space necessary to carry 
out each activity; the vehicle control laws and vehicle speed determine the time to com- 
plete an activity.3 

When there is insufficient space in one section of the highway, the rate of activity 
completion in the section imm~iately upstream must be reduced. Since the rate of activity 
completion is proportional to the speed, this causes a reduction in flow. 

In this way, the interaction between the demand for space by vehicle activities and 
the fixed supply of space offered by the highway determines the steady state flows that can 
be realized, as well as the transient congestion effects that can occur. This interaction is 
mediated by the vehicle control policies (which determine the space needed for each 
activity) and the traffic management rules (which determine the activities that are to be 
carried out in different sections of the highway). That is how the theory relates AHS per- 
formance to characteristics of vehicle control and traffic management rules. 

We now introduce the main assumption which we call “safety needs space,” that 
binds together activities, vehicles and highway. 

To fix ideas, we assume that the AHS has a single lane, with entrances and exits. At 
each instant of time, every (automated) vehicle is engaged in one of a finite number of 
activities such as cruising, changing a lane (in case of a multi-lane highway), entering the 
highway, exiting the highway, etc. If vehicles are organized in closely-spaced platoons, 
then cruising in a one-vehicle platoon is a different activity from cruising in a two-vehicle 
platoon, and so on. Cruising in platoons of different sizes are considered different activ- 
ities because the space needed per vehicle in a cruising platoon decreases with the platoon 
size. (See Varaiya, 1993.) 

The highway is divided into sections, and we will assume that a vehicle executes a 
single activity in each section through which it travels. Consequently1 the passage of a 
vehicle through the automated highway can be summarized by the sequence of activities 
that the vehicle executes, starting with the “entry” activity in the section where it enters 
and te~inating with the “exit” activity in the section where it leaves the highway. In this 
model, vehicles are assumed to travel at a constant average speed within each section, and 
an assumption of “one activity per section” can be used to tie the spatial discretization of 
the highway into sections with the temporal discretization of movement into activities. 
Consequently, variation in speed due to interaction of activities is not captured here. 
Although not mathematically necessary, we adopt the one-activity-per-section assumption 
to simplify the model description. (See Daganzo, 1994 for a related modeling move to tie 
together spatial and temporal di~reti~tion.) 

While it is engaged in a particular activity, a vehicle’s motion is governed by a feed- 
back control law which ensures that this activity is carried out safely. These feedback laws 
and the resulting vehicle motion can be complicated.4 But for our purposes we will work 
with the assumption “safety needs space.” 

To motivate this assumption, consider the “cruising” activity, in which a vehicle 
keeps in one lane and its cruise control law guarantees safety by maintaining a minimum 

>This activity model is inspired by the work in Hall, 1995. 
4Examples of such f’etdback laws are given in Sheikhoteslam and Desoer. 1990, McMahon ef a/., 1990; Peng 

and Tomizuka. 1990; and Franked er al., 1995. 
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safe distance between its vehicle and the vehicle in front of it. This distance is an increas- 
ing function of vehicle speed.5 We shall assume a maximum permissible speed and let 
s(cruise) be the corresponding minimum safe distance between a cruising vehicle and the 
vehicle in front of it. Thus the safety-needs-space assumption says that its feedback law 
will guarantee that a cruising vehicle will “occupy” s(cnrise) meters of a highway lane for 
a duration t(cruise). 

In general, safety-needs-space says that vehicle control laws cause a vehicle engaged 
in activity (Y to occupy a distance s(u) from which, for a specified duration t(a), all other 
vehicles are excluded. For activities involving vehicles in two lanes, as happens during a 
lane change and in some implementations of entry/exit, the vehicle occupies a minimum 
safety distance in both lanes. 

The time the vehicle spends in a section is equal to the section length divided by the 
vehicle velocity. When a vehicle engaged in activity LT leaves this section, its s(ar) space is 
available for use by another vehicle from the upstream section. The longer the vehicle 
stays in its section, the later will its space become available, and this may slow down 
upstream vehicles. Thus, if the activities that vehicles are executing in different sections are 
not well coordinated, the speed in some sections may be forced below the maximum or 
free flow speed, causing congestion. Traffic management rules determine the activities that 
vehicles undertake and their speed, and thus, ultimately, the AHS steady state perfor- 
mance as well as how well congestion is dissipated. 

The remainder of the paper is organized as follows. In section 3 we introduce the 
formal activity model. This is a system of differential equations, several parameters of 
which are set by TMC plans, induding vehicle speed and activity, and entry and exit 
flows. 

TMC plans and achievable flows are studied in section 4. An achievable flow is any 
vector of flows (indexed by origin-destination pairs or other characteristics) that can be 
sustained in the long run. The main result of this section is that the set of achievable flows 
is convex. 

In section 5 we define AHS capacity as the set of undominated achievable flows, and 
efficient TMC plans as those which minimize travel time. We show that every undomi- 
nated flow, together with an efficient plan that achieves this fiow, can be computed by 
solving a linear programming problem. 

In section 6 we consider transient behavior: how congestion can develop and how 
TMC feedback rules can mitigate its effects. We exhibit a “greedy” rule that is easy to 
implement and always achieves capacity, but does not minimize travel time. 

In section 7 we focus on two particular activities-entry and exit. These activities are 
likely to be the most important in limiting AHS performance. In section 8 we discuss the 
substantive modeling questions of how to define an activity and how to compute 
the amount of space-time an activity needs. In section 9 we compare two alternative 
AHS designs using the proposed theory. Finally, section 10 collects some concluding 
remarks. 

3. THE ACTWTY MODEL 

We study a one-lane automated highway, divided into sections. Sections are indexed i 
=T 1 ,..., k section i is L(i) m in length. Section i - 1 is upstream of section i. Time is indexed 
t =o, I,.... Each time period is t seconds long. 

3.1. Vehicles 
Vehicles have types indexed by 8 which may stand for their body type (passenger, 

truck, bus), origin and destination and any other distinguishing characteristics of 
interest. 

?bis function depends on other parameters such as maximum vehicle braking torque, road surfam and tire 
conditions, etc. 



Traffif flow theory in AHS 185 

All vehicles in section i at time t have the same velocity, denoted v(i,t), and measured 
in m/s. It is required that v(i,t) 5 v, the maximum permissible or free flow speed. (P’, too, 
may be indexed by i, but we don’t do that to ease the notational burden.) 

Let n(i,t,@ be the number of vehicles of type 9 in section i at time t. We adopt the 
notational convention that n(i,t) is the array indexed by 0, n(r) is the array indexed by 
(t,@), and so on. 

3.2. Activity plan 
There are finitely many activities, indexed by CY. An activity plan is any array of non- 

negative numbers R = (n(a,i,t$)> such that for every i,t$ 

x(a,i,t,Q) is the fraction of the n(i,r,O) vehicles engaged in activity a. 
Associated with each activity a is the space-time (in m-s) l(a) >O of the section 

occupied by each vehicle engaged in that activity. Thus n&t) vehicles engaged in activities 
x(&t) will occupy 

m-s of section i in a period T. 
Two vehicles with the same (i,t,O) index and engaged in the same activity cannot be 

further distinguished within the model. In that sense, this is a theory of vehicle flow. The 
theory aggregates individual vehicle movement through the use of activities. 

3.3. Velocity plan 
A velocity pfan is an array of nonnegative numbers v = (v(i,t)j (in m/s), each less 

than V. All n(i,t) vehicles move at v&t) m/s to conform to the plan. This restriction, in 
part, is imposed by the single lane highway: since vehicles cannot pass each other, relative 
velocities cannot be too great. However, the restriction also presupposes that the sections 
are not so long that vehicles with significantly different speeds can coexist in the same 
section. 

It is possible, at the cost of further notational complexity, to introduce the following 
features. Suppose the vehicle type 8 also signifies vehicle body type: light duty, truck, bus, 
etc. Then we can insist that the space-time required depends also on vehicle type, i.e. we 
have A(a,e). We can also insist that vehicle maximum velocity is a function of 8, V(e), and 
require that the velocity v(Q) be smaller than the maximum permissible velocity, 
i.e. n(~,t,~) > 0 implies v(i,t) 5 V(@ These features are very useful and easy to introduce in 
the simulation system, but they would make this paper difficult to read. 

3.4. Highway configuration 
We have already specified parts of the highway configuration. We have a one-lane 

highway, divided into sections i = l,..., I of length L(i). Section i is imm~iately down- 
stream of section i - 1. Each section has at most one entrance and one exit. Vehicles can 
make an entry through some dedicated infrastructure that connects a non-automated 
highway or street to the AHS entrance. Vehicles can exit the AHS through another tran- 
sitional infrastructure.’ We can require that an entering vehicle must engage in a dis- 
tinguished “entry” activity, and an exiting vehicle must engage in “exit”. These activities 
will occupy more space-time than most other activities because they will involve merging 
from a ramp or a transition lane into the main AHS lane. 

%ee Godbole et 01.. 1995 for several transitional infrastructure designs, and Rao and Varaiya. 1994 for a 
similar highway configuration. 
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In a following paper we will extend the model to a multi-lane AHS. Such an exten- 
sion then permits one to consider the “tane change” activity. It aIso permits the possibility 
of modeling entry and exit as a kind of lane change. 

3.5. Entry and exit plans 
An entry plan is an arrayf= {f(i,t$)} of non-negative numbers.f(i,t,O) is the number 

of vehicles of type 0 that enter the highway in section i in period t. 
An exit plan is an array g = {g(i,t,@)} of non-negative numbers. g&r,@) is the number 

of vehicles of type 8 that exit the highway in section i in period t. 
If entry or exit in a particular section, say j, is forbidden, one merely adds the con- 

straint: f(Q$)zO or g(j,t,B)zO, for all t,8. We will shortly impose more complex con- 
straints on all the plans. 

3.6, dynamics 
The state of the system at time f is n(t) = (n(i,t,B)). Suppose that we are given an 

activity plan rr, a velocity plan V, an entry planf, and an exit plan g. Let n(t) be the state at 
time t. Then, for all t and 15 i 5 Z, 

n(i, t + 1,&) = pCi, t)n(i, t, 0) + [I - p(i - 1, t)]n(i - 1, t, 8) +f(i, t. @) - g(i, t, ~9). (1) 

Since the AHS sections are i = I,.,., I, we also have the boundary conditions, 

n(0, t, e) = 0, for all t, 8, (2) 

n(l+l,r,@)=O, forallt,@. (3) 

Equation (1) should be interpreted as follows. First, by definition, 

1 - p(i, t) := V(l*;;; f. (4) 

Here p(i,t) is the fraction of vehicles in section i at time t that remain in that section for 
time t + 1. Thus, [I-&J)] is the fraction of vehicles in section i at time t that leave that 
section at the end of that period. By definition (4), the fraction of vehicles that leave is 
equal to the fraction of the section length L(o that is traveled in time r by vehicles moving 
at velocity v(i,t). Thus this definition assumes a spatial homogeneity of the disposition of 
vehicles in each section. Obviously this is not the case at the level of individual vehicles. 
But in our model, a homogeneity assumption of this kind is necessary since we want the 
state simply to be the number of vehicles in each section.’ 

Thus, the first term on the right in (1) is the number of vehicles in i at time t that 
remain in i at time t + 1, and the second term is the number of vehicles in i- 1 at time t that 
move into i at time t + 1, The last two terms are straightforward: f(i,t,O) is the number of 
vehicles of type 9 that enter the AHS according to the entry plan, and g(i,t$) is the 
number that leave the AHS. 

The boundary condition (3) implies that all vehicles in section I leave the AHS: 

g(f + 1 I t, f3) = f 1 - pfr, t)&(l, t, e), f(l + 1, f, e) = 0. (9 

Fact I. n(t) is indeed a state, i.e. given n(0) and activity, velocity, entry and exit plans 
u(t = [~(t),v(t),f(t)&t)], t 20, there is a unique state trajectory n(t), t 20, that satisfies (l)-(4). 

7Equation (4) also ties together the time and space d~~~tizatjon parameters r and L{I). Since the maximum 
velocity is V. the maximum value of the right hand side of (4) is b’xr/f.(i). This ratio must be less than one. 
Typical values are Y f 25 m/s. 5 = i 0 s, and t(fi = 500 m. 
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4. ACHIEVABLE FLOWS AND A STATIONARY TMC PLAN 

In this section we will specify the constraints that a flow must satisfy in order to be a 
feasible solution of (1). We define what stationary, or time-invariant flows are achievable 
and construct a TMC plan that can realize the achievable flows. 

We will call u(t) = [~(t),v(t),f(t),g(t)], t 20, a TMC plan. By choosing this plan, the 
TMC controls the traffic flow. In this section we study the flows and throughput that 
TMC plans can achieve. 

4.1. Feasibility constraint 
A trajectory-plan (n(t),u,(t)) must satisfy two physical constraints 

n(i, t, 0) ? 0, (6) 

cc n(a, i, t, @n(i, t, @A(a) 5 L(z]T. 
a 6 

(7) 

The non-negativity requirement (6) is clear. Constraint (7) expresses the requirement that 
there is enough space and time in the section over the period r to safely carry out the 
activities assigned by the plan. 

There are, in addition, three constraints dealing with entry and exit. First, vehicles of 
certain types may not be allowed to enter or exit from certain 
of the form 

f(i, t, 13) s 0, or g(i, t, 8 = 0, 

for all I and for specified values of i$. 

sections. This constraint is 

Second, suppose that a vehicle’s body type, entry and exit are encoded in its type, 
i.e. 0 is of the form 8 = (n&k) where n is the body type, j is the entry section and k is the 
exit section. Then vehicles of type (v&k) can enter only from section j. That is, 

f(i, t, (n,j, k)) = 0, i #j. 

Similarly, vehicles of type (Qk) exit only from section k. That is, 

g(k, t, (q, j, k)) = [l - P(k - 1, t)ln(k - 1, L h_A Ml, 

or, equivalently, 

n(k, 1, (9, j, k)) = 0. 

Lastly, we may require that when a vehicle of type (v&k) enters, it must first carry out an 
entry activity. If this activity is labeled ai,,, the requirement may be expressed as 
7++j,t,(qj,k)) = 1, or n(cqj,t,(q,j,k)) = 0 for a#ain. Other maneuver restrictions can be 
expressed in a similar way.’ 

All these constraints can more generally and more uniformly be expressed by speci- 
fying three subsets Tfi T, and T,, of section-type pairs, and one subset T, of activity- 
section-type triples, and the requirement that for all t, 

f(i, t, 0) = 0, for all (i, t3) E Tf, (8) 

g(i, t, 0) = 0, for all (i, 0) E TR, (9) 

sFor example, one may require that vehicles of a particular type must execute maneuver Q, in section it, ~2 
in sectioh i2, and so on. 
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n(i, t, 0) = 0, for all (i, 6) E T,, (10) 

a$, i, t, @) = 0, for all (ar, i, 8) E T,. (1 I) 

We will say that a trajectory-plan (n,u) isfeasible if the constraints (($-o-(l) are satisfied. 
To prevent trivial cases we will not allow f(i,r,0) and g(i,t,@) both to be positive, by 
insisting that every (i&l) is either in T/or in Ts. 

We note some properties of feasible trajectories that will be used to define achievable 
flows. 

Fact 2. There is a uniform bound which applies to all feasible traj~tory-plans. 
Proof. From (7), n(i,t,O) 5 L(r)r/min&x), i.e. all trajectories are uniformly bounded. 

From (1) it follows that entry and exit plans must be uniformly bounded. III 
Let (n(t),u(t)), t = 0,i ,... be a feasible trajectory-plan. Summing (1) over i, and can- 

celling some terms, gives 

Using the boundary conditions (2), (3) gives 

2 [n(i, t + 1 , 0) - n(i, t, @)I = 2 Lf(i, t, e) - g(& t, @)I. 
kl i=l 

Summing over r = 0, I,..., T - 1 and dividing by T gives 

i& [n(i, T, 0) - n(i, 0, @)I = F(7; 0) - WY @h 
ICI 

where 

F(T, 0) := $yA k f(i, t, e), G(T, 0) 
t=O irl 

are, respectively, the average number of vehicles of type 8 that enter and leave the AHS 
during t =O,..., T- 1. It follows from Fact 2 that 

Dejnition. A vector F = (F(O)) of flows is achievable if there is a feasible trajectory-plan 
and a sequence of times Tk -+ 00, such that 

,pT&F(Tk, e) = ,“% G( Tk, 8) = F(8), for all 8. (13) --+ 

A feasible t~j~to~-plan (n(t~,~(t)), t=O, I,... is ~t~rion~r~ if the sequence (~(t),~(t)) does 
not depend on t. 

Theorem 1. Every achievable flow can be realized by a stationary plan which, more- 
over, minimizes travel time. 

Proof. Let (n(f),~(t~ = ~~t),~t~,~~t)~t)]) be a feasible pair and Tk + co such that (I 3) 
holds, i.e. the flow F= (F(B)) is realized. We will construct a stationary pair, (n, d which 
realizes F. 

Because F is achievable we define the limits 

_#l 0) = j$= Tk 
_!_ y f(i, t, e), 

f=O 
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g(i, 0) = )ln& ‘2 g(i, r,f3). 
r=O 

Summing over t = O,l,..., Tk- 1, dividing by Tk. and taking the limit T, + cc of the right- 
and left-hand sides of(l), one obtains 

, Tk-I 

,‘iim_ rk C (n(i, t + 1 , 0) - p(i, r)n(i, r, 0)) = $j(i - 1, e) +f(i, e) - g(i, e). (14) 
0 

@(i-1,0) is the average flow from section i-l to section i and is defined as 

m(i_l,e)=!im_~T~[l -p(i- l,t)]n(i- l,f,e). - --P 
0 

This limit exists by the uniform boundedness of n (Fact 2) and by taking a subsequence of 
{ Tk} if necessary. Thus, the limit on the left-hand side of (14) exists and we are interested 
in the stationary case where n(i,r + l&l) = n(i,r,e). In other words, 

tii, e) = @i - 1, e) +f(i, 0) - g(i, 69, - (15) 

where, as above, 

1 Tk-1 

$<i, 0) = p-tTk C[l - Ai, r)ln(i, r, e). 
0 

Now we construct a stationary plan u = [n,v,f,g] and a stationary trajectory as follows. We 
- 

--- 
first define the velocity plan 

v(i, r) E V, 

where V is the maximum permissible velocity, which we assume is the same for all 
sections. This gives 

f(i):= 1-%. 

Next we define the trajectory 

g(i, r, e) = 
e = <t 0) x L(i) 
l-f-49 vxr . - 

n(i,r,e) is a valid stationary trajectory because n(i,r,O)>O, it satisfies the stationary flow 
equation (15), and it satisfies constraint (10): if n(i,r,O) = 0 for all (i&l) E T,, then $i,r,B) = 0 
for all (i$) E Tn. 

It remains only to define the activity plan rt and to show that the space-time _ 
constraint (7) holds. Define 

0 if (a, i, 0) E T,, 
z(a, i, r, e) = 1 if a = arg min A(a) 

0 otherwise. 
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Thus, while respecting the constraint (1 I), K assigns activities that occupy the least space- 
time. We verify that (7) holds with the following chain of inequalities: 

The first inequality holds since (n,u) is feasible; the second follows from the fact that 
x is the least space-occupying activity plan; the third inequality is a consequence of the 
~e~nition of E and that [l - p(i, r)] 2 [l - p(i, t)] for all i, I, so that 

di, 1, e) 5 lim K-+bO k? n(i, t, e). 
0 

Since vehicles in (n,u) are traveling at the maximum velocity, their travel time is mini- 
mized’ and the as&&on is proved. 

Theorem 2. The set of achievable flows is convex and compact. 
Proof. Let (&, uk) be the stationary trajectory-plan defined in the proof of Theorem 1 

that achieves flow (t;k(Q)), k = I, 2. Then 

nk(i, 8) = p*(z@(i, e) f [I - p”(i - I)]nk(i - 1, e) +f*(i, @) - g”(i, e); 

Vxr 
1 -#(i,=--. 

L(i) 

Note that pk = p, independent of k. 
Let ~~20, CL’ + /.L* = I. We will find a stationary trajectory-plan (x, U) that realizes the 

flow ZtikFk. Define x := h’n’ + p*n*. Then, 

_~(i. 8) = C ~k~k(~nk~i, e) + C pk[l - pk(i - l)]nk(i - 1, 0) + C fikLfk(k 0) - &L @I 

= p(i)x(i, e) + [ 1 - p(i - I)]x(i - I,69 +f(t 0) - gG e), 

whereS(i, 0) := Q..tkfk(i, 0) and g(i, 8) := Chk&i, 0). 

Finally, we define the activity plan by 

t: pknk(i, e)dyu, i, 19) 
~(a, i, e) s k 

F clk&i, 0) ’ 

91f vehicles can travel over different routes in an AHS network, it is more complicated to find a plan that 
minimizes travel time. 
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It is now straightforward to check that (x, u = [n, V, J g]) is a feasible pair. Thus the 
set of achievable flows is convex. 

To show that it is closed, consider a convergent sequence of feasible stationary pairs 
(nk, uk), k= 1, 2 . . . . It is easy to see that the limiting pair is feasible. Boundedness of 
achievable flows follows from Fact 2. 

The next result is intuitively obvious. 
Fact 3. If F is achievable and if O<H(O)<F@), then H is achievable. 
Proof. Let (n. u = [n, v, 5 g]) be a plan that achieves F: 

n(i, t + 1,0) = p(i, t)n(i, t, 0) + [I - p(i - 1, t)]n(i - 1, t, 0) +f(i, t, 0) - g(i, t,@. (16) 

Define 01 v(6)< 1 by H(B) = )c(@flO). Then it is easy to check by multiplying (16) by v(O) 
that H is achieved by the trajectory-plan (n’, U’ = [n-‘, v’, f’, g’]): 

7s’ = n, v’ = v, f’(i, t, 0) E v(e)f(i, t, e), g’(i, t, e) E v(e)g(i, t, e), n’(i, t, e) G v(e)n(i, t, e). 

This proves the claim. 0 

5. CAPACITY AND OPTIMAL PLANS 

We first show that the set of achievable flows is a convex polygon. 
Fact 4. {F(e)} is achievable if and only if there exist stationary flows &$I), a tra- 

jectory (n(i,O)}, and plans (f(i,e),g(i,O),n(a,i,8)), all of them non-negative, such that the 
following linear constraints hold: 

&i, e) = Hi - 1, e) +f(i, e) - g(i, e), (17) 

w, 0) = 0, (18) 

&(I+ 1.0) = 0, (19 

n(i e) _ fP0.e) x W 
I - 

Vxr ’ 

C C Nat i, eMi, ep(0f) p L(~T, 
a 8 

CJ@, i, e) = 1, 
(1 

(20) 

(21) 

(22) 

f(i, t, 0) = 0, for all (i, 0) E Tf, (23) 

g(i, t, 0) = 0, for all (i, 0) E T,, (24) 

n(i, t, 0) = 0, for all (i, 0) E T,,, (25) 

n(o, i, t, 0) = 0, for all (u, i, 0) E T,. (26) 

Constraint (20) is linearized by the nonlinear transformation p&i,@ = r(a,i,B)n(i,O). 
Definitions. An achievable flow F= {F(O)} is undominated if for any achievable flow 

H with If(tZ@F(t.J), H(O)= F(8) for all 8. The capacity of the AHS is the set of all 
undominated flows. See Fig. 1. A trajectory-plan is eficient if it minimizes travel time. 
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flows or capacity 

Fig. I. The convex polygon is the set of feasible flows. The bold boundary is the set of undominated flows. 

Theorem 3. A flow F’ is undominated if and only if it is the optimal solution of the 
linear programming problem: 

subject to constraints (17) - (26) 

for some weights w(O)zO, not all zero. Moreover, the optimal solution yields an efficient 
pair that achieves F’. 

Proof. This follows from Fact 4 and the theory of linear programming. IJ 

6. TRANSIENT BEHAVIOR AND TMC RULES 

A TMC plan specifies activities, velocity, entry and exit flows in each section and for 
all times. The plan may be specified ahead of time, with no measurement of the traffic 
state. (In control engineering, this is said to be an “open loop” specification.) Open loop 
specifications are very useful for analytical study but they should not be implemented in 
practice. This is because the state equation model (1) is an idealization which ignores the 
uncertainty in model parameters and the presence of random fluctuations. These depar- 
tures from idealization cause the actual traffic trajectory to be different from the open 
loop trajectory predicted by the model. 

It is, therefore, preferable to design a TMC plan in the form of a (feedback) rule. The 
rule gives the plan values at time I as a function of the state n(t) at that time. A rule can be 
evaluated by its steady state and transient behaviors. A well-designed rule would achieve 
capacity and minimum travel time in the absence of fluctuations, independent of the initial 
state; and small fluctuations would cause small departures of the achieved flow from 
capacity. 

Since a rule specifies the plan as a function of the state, implementation of the rule 
requires sensors that measure the state, and communicating measurements to appropriate 
locations where the plan is computed. A rule requiring fewer state measurements is, 
everything else being equal, preferable to one that requires more measurements. A rule in 
which a plan for section i requires state measurements in sections near i, is preferable to 
one which requires measurements in sections remote from i, because the former will 
require less communications facilities. 

We illustrate some of the issues using the example of Fig. 2. The figure shows two 
trajectory-plan pairs. The highway configuration is as follows. Each section is 100 m 
long. There is only one entry (in section 1) with flow f, and one exit (in section I) with 
flow g. There are two activities. Activity 1 must be carried out in all sections except I 
and activity 2 (the exit activity) must be carried out in section I. k(l) = 10r m-s, 
A(2) = 20r m-s. The maximum speed is 20 m/s. Section I is a “capacity bottleneck.” At 
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flow = 0.5 

f = *+&:_1_:::--;;---, -9 = 0.5 

i = 1 i = I 

V/2 flow = 0.5 

f = ~~~~~~~~~:~::~:_~~~l I_) g = 0.5 

i = 1 i = I 

Fig. 2. Both trajectory-plan pairs achieve the maximum flow of 0.5. The upper pair minimi~ travel time; the 
lower pair nearly doubles travel time because vehicies travel at Y/2 in sections 1 through I- I. 

most, 5 vehicles can be accommodated in section Z, and so the maximum value of g, using 
the fundamental equation of traffic flow, g = &20 = 1. Hence the highway capacity is 1 vps. 

Both traj~tory-plan pairs in Fig. 2 achieve the capacity. In the upper pair, the velo- 
city is 20 m/s, so the travel time is minimized. In the lower pair, the velocity is 10 m/s, so 
the travel time is twice the minimum in sections 1 through I- 1. 

A rule must specify the velocity in each section, and f, g in the sections 1 and Z 
respectively. The rule for the last section g is obvious: v(t) = 20 m/s, and g(t) = [ 1 -p]n(Z, 1). 
A reasonable velocity rule for all other sections is to have the maximum possible velocity 
(up to 20 m/s). Of course, what the maximum velocity in section i turns out to be at any 
time depends on the space available in section i+ 1. If the state n is as shown in the lower 
part of Fig. 2, the maximum possible speed is 10 m/s; if it is as in the upper part, the 
maximum speed is 20 m/s. 

6.1. A greedy rule 

The example motivates the need for rules or policies, both for velocity and entry, in 
order to achieve the maximum achievable flow, while not exceeding the space limit in each 
section. We will specify *‘greedy” policies for velocity and the entry flowfand show that 
they achieve the maximum steady-state flow. 

To obtain the velocity policy, consider the space-time freed up by vehicles leaving 
section i over time t to t + 1 

Thus the free space-time in i is 

L(i)r - [ 1 - S] 7 ‘)i7 ~(+ro, i, t, @z(i, t, 0). 
lz e 

We will choose v(i- 1 ,t) so that the space needed by vehicles leaving section i- 1 

(27) 

is exactly the space-time available in section i, as long as the velocity does not exceed V. 
Let us simplify notation by eliminating indices for 8 and (Y. Define n(i, t), the total 

number of vehicles in section i as 

n(i, t) = x n(i, 2, f?) 
6 
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and K((Y,~J), the proportion of vehicles performing activity (r as 

C n(cr, i, 1, e)n(i, I,@ 
n(a, i, 1) = e 

pi. t,@ 

Then J.(i), the average space-time used per vehicle in section i, is 

A(i) = c A(cY)7r((r, i. 1). 
a 

J.(i)n(i,l) is the space-time used by vehicles in section i. Also, the maximum number of 
vehicles in section i, N(i) is given by 

Using this notation the appropriate expression for velocity in section i- I is 

V(i-1,1)=min V, 
1 

L(i)L(i - 1)r _ (1 _ v(i, t) n(i, r)L(i - 1) -- 
n(i - I, f)A(i) LO+ n(i - I, I) 1 

(29) 

We can check that if one applies (29) and v(i- l,l) < Y in section i- 1, then section i 

achieves its space limit. This can be seen by substituting (29) in the flow equation (1) (after 
summing over e) 

n(i, t + 1) = (1 - qo W)n(i, 1) + ‘hi !’ :,” n( i - l(1) 

Now the flow out of section i is 

Hi, I) = [ 1 - p(i, f))n(i. 1) = !+$ n(i, 1). 

while the maximum flow &i> is 

We will need the minimum of these flows to prove existence of an equilibrium solu- 
tion of the flows; therefore, we make the following definition. 

Definirion. I#’ is the minimum of the maximum possible flow out of any section or 

. vr2 
C = my A(l.) 

- = mjnqji). 

We will assume for simplicity that section I is the “bottleneck,” i.e. 4’ =$(<r> and 
t$* < @) for i#I. 
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Theorem 5. Assume the velocity policy (29) is applied and v(l,t)rV, then for every i 
and f, either v(i,r) = V or #(i,t)&$*. 

Proof. The proof follows by induction. Considering first i= Z, by assumption we have 
v(f,t) = V. Now assume that the statement of the theorem is true for section i. We will 
show that it is true for section i- 1. Fixing I, we must show either 

(a) v(i - 1, t) = V, or 

(b) [l - p(i- 1, r)]n(i- 1, r) 2 @. 

Equivalently, we will assume that v(i- 1~) < Vand show that [ I-p(i- I ,t)]n(i - 1 ,t)2#*. 
The first case is when v(Q) = V. We calculate the flow out of section i- 1 

f#(i- l,t):= [l - p(i-- 1, t)]n(i- 1, t) 

v(i- 1, f)r 

= L(i-- 1) 
n(i - 1, t). 

Substituting the velocity policy (29) and using v(i-1, I) < V 

#(i - I, t) = $g - [l - ql(i, 1) 
L(i) 

The second case is when +((i,@#‘_ Then using the fact that n(Q) never exceeds the 
space limit L(z)r/l(i) 

$((i-- 1, t) ,$L[1 - y&i, t) 

L(i)r > - - n(i, t) + (o* 
- WI 

Thus, if v(i- 1,t) < V, then #@- l,r)>#’ which proves that (a) or (b) is true. This 
completes the induction and the proof of the theorem. q 

It only remains to find a rule for controlling entry, i.e. J As above, we propose 
a greedy policy for f that fills the available space in section 1. We assume there is no 
limit on f so the first section will remain filled after t =O. One can easily check that the 
rule forfis 

(30) 



196 M. Broucke and P. Varaiya 

Corollary 1. Using (30) as the rule forland (29) as the rule for v.j(r)>#’ for all r. 
Proof. Following Theorem 5, there are two cases to examine. First, when v( I ,I) = Y, 

The second case is when #(l,r)>r$‘, so that 

f(t) yl)r =-----~(l,f)+f#J(l,f) 
A(l) 

zw-n(l.z)+@ 
- k(l) 

Fact 5. If at time t section i is full, i.e. n(i,z)= N(i), then #(i,r)>q?. 
Proof. Suppose Hi, t) < t$‘. Then by Theorem 5 v(i,t) = V and 

which is a contradiction. (7 
Fact 6. If n(i,t) = N(I) and 

for all I, then n(i+ l,r)=ZV(i+ 1) and qb(i+ l,t)>#’ for all 1. 
Proof. Since #(i, 1) < fi N( ) i and n(i,t)= N(i) for all 1, it must be that v(i,r) < V. 

Hence v(i,r) is space-filling, and so n(i+ l,f)= N(i+ 1). From Fact 5 this implies 
#(i+ 1,t) >#*. 0 

Theorem 6. Using the greedy policies (29) and (30) for Y and J respectively, and 
assuming v(l.t)= V for all t, then f, g, n and v converge to a unique equilibrium solution 
for (l), i.e. as f -+ 00 

f(r) + 9' 

m -+ 4; 

tii, 0 -b 4' 

n(i, 1) + N(t) 
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Proof. From Corollary 1 we know f(t)L#* for all t. Also, g(t)Q*. Since 
&f(r)-g(t) < 00, we must havef(t) ---) 4’ and g(r) -+ 4’. We must now show that n(i,t) + 
N(i). This can be done by induction. Because f(t) is space-filling n( l&N (1). Assume 
n(i,r)=l\r(i) for t > T. We will show that n(i+ 1,~) = N(i+ 1) for t > Ti, for some Ti. 

We know from Theorem 5 that either v(i,t)= V or #((i,t)L$*. If Ni,t)>t$*, section i 
is space-filling so n(i+ 1~) = N(i+ 1). If v(i,t) = V then #(i,t) = ai). Since C,+(i, r) - g(f) 
is bounded, &i,r) can equal $(i> only a finite number of times. So there exists Ti such 
that $(i,l) < s(r), for t > T,. By Fact 6 n(i+ 1 ,t) = N(i+ l), t > TI, completing the induction. 

Next we will show by induction that #((i,t) + 4’. Since section I is the bottleneck, 
$((I, t) = 4’ =g. Assume t#(i,t) = 4’ for t > T. After T, n(i,t) = N(i) so t#~((i - 1 ,f) = Hi,?) = 4 
which completes the induction. Finally, by substituting $((i,t) and n(i,t) in an expression 
for v(i,t) we obtain v&t) + $$!, which completes the proof. 0 

As a final note observe that the information needed for the greedy velocity policy can 
be obtained from vehicle-borne sensors and requires no extra sensor information from the 
roadside. The policy can be implemented by a vehicle longitudinal control law that tracks 
velocity V while maintaining a safe distance from the vehicle ahead. 

7. ENTRY AND EXIT 

An automated highway will make contact with a non-automated highway at points 
of entry and exit. In current design proposals (Godbole et al., 1995) a “transition area” serves 
as interface between the two highways where vehicles undergo “check-in” and “check- 
out” and where vehicle control is transferred from driver to system upon entry to the 
AHS and from system to driver upon exit. We call these two activities “entry” and “exit.” 

Automation of these activities is a complex task. A vehicle entering the AHS must 
negotiate its passage through the transition area and coordinate its entry with vehicles on 
the automated lane. If this coordination is poor, there will be congestion at the entrance, 
slowing down upstream vehicles. A vehicle leaving the AHS may similarly disrupt traffic, 
thereby reducing capacity. By contrast, in between entry and exit, traffic on the automated 
lane should proceed very smoothly. Thus, it seems that AHS capacity and transient 
behavior are likely to be limited by the entry and exit activities. In this section we will 
formulate a micro-level queuing model for entry and show how the space occupied by the 
entry activity may determine the capacity of the highway. Then we show that the amount 
of delay incurred by upstream vehicles due to an entering vehicle depends on the sophis- 
tication of the feedback control law that implements entry. 

Figure 3 shows a long automated lane, with one entrance. Distance along the highway 
is denoted by d, and the entrance is located at d= E. Vehicles are organized in platoons of 
closely spaced vehicles. (For simplicity assume that platoons have a fixed number of 
vehicles.) Platoons can engage in two activities: cruise and entry, with l(cruise) = D m (D 
does not include the platoon length) and A(entry) = S m, with S> D. The maximum 
velocity is V m/s. Let f(c) denote the number of platoons per hour that come cruising 
from upstream of the entrance; and letf(e) be the flow of entering platoons. An entering 
platoon must first engage in the entry activity; it then switches to cruise. 

We want to compute the achievable throughput vectors F= (f(c), f(e)). By Theorem 
1, we may assume that a stationary trajectory-plan achieves F, with platoons traveling at 
maximum velocity V. Let L be the length of the entry section, so a platoon stays in this 
section for time L/V hours. Hence the number of cruising platoons in this section is 
n(c) =f(c)xL/V, and the number of entering platoons is n(e) =f(e)x L/V. The space 
constraint is Dxn(c) + Sxn(e)<L, or 

Dxf(c)+Sxf(e)s V, 

so the capacity of this AHS is the set of all vectors F= (f(c), f(e))>0 that satisfy 

D xf(c)+Sxf(e) i V. (31) 
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This capacity estimate is optimistic. The estimate is based on our model which 
assumes that the inter-platoon distance among the cruising platoons is distributed in such 
a way that a gap of size S meters appears every time a platoon is about to enter. This 
requires perfect coordination between the cruising platoons and the entry platoons. If this 
perfect coordination is lacking, then the cruising platoons will be forced to slow down in 
order to create the needed gap of S meters for an entering platoon, resulting in an increase 
in total travel time. In order to estimate the total delay, we need to know the distribution 
of inter-platoon distances. We will assume a random distribution. 

Suppose that the inter-platoon distances are iid (independent, identically distributed) 
random variables, denoted z. The cruise control law guarantees that z>D (the safe cruis- 
ing distance) with probability 1, and we assume that x: = z-D is an exponentially dis- 
tributed random variable with mean CL-‘, i.e. x has the probability density 

p(x) = FeMKx, x 2 0. 

For convenience, also denote pi(x)+x). 
Suppose that a platoon enters at some time t at distance E. This is platoon #/O in Fig. 3. 

(Note: in the figure, platoons are indicated by points.) Number the cruising platoons that 
follow #0 by #l, #2,..., and the distance between the end of platoon #i- 1 and the begin- 
ning of platoon #i by Zi = D + xi. If xi < S, then platoon #l will have to slow down until it 
creates a distance of S, if xl + x2 < S, then #2 will have to slow down, too, and so on. This 
“shock wave” will affect a random number A4 of platoons, where 

M=mQ~XijS<mfXia 

I I 

We want to calculate the statistics of 44, and the amount of slowdown. 
It will be convenient to consider the distribution of C; Xi, 

h(X) :=p(c Xi = X) = pn&empx, x 2 0. 
1 

.~.....~...........~. 
f(c) - cruise 

. . . . . .._.......-_..-. 

d- 

f(e) 

(32) 

S 

D 

D 

time 

Fig. 3. There is one entry in a long highway. The trajectories show how entry of platoon #O slows down platoons 
#I,..., #m. 
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So the probability that M=m, i.e. m platoons will be disturbed, is given by 

Ps(m)=Prob pxi5S<mgXi 
I 

. 
I I I 

One can calculate the probabilities Ps(m) from the P,, by observing that 

s 

Ps(m) = 
J 

PI(XI 2 S - Y) x p,cV)&. 

0 

A little calculus then gives the following formula: 

Ps(m)=e-‘S~=Ps(m-I)x@,m=O,l,... 
m 

As expected, eq. (33) is the formula for a Poisson distribution. Thus the number M of 
platoons disturbed by the deviation S has a Poisson distribution. In particular, the mean 
number of disturbed (or delayed) platoons is E[w = pS. If we write the mean inter-platoon 
distance as Z = az], and recall the definition CL-’ = ax] = 4z-01, we conclude that 

Average number of delayed platoons = E[Mj = A. (34) 

Observe that the average flow of cruising platoons is f(c) = V/Z, whose maximum 
value is V/D. As expected, (34) implies that as Z + D, E[MJ + 00, i.e. as the flow of 
cruising platoons increases, the shock wave from each entering platoon passes through 
an increasing number of platoons, on average. Another interesting point in (34) is that 
the average number of delayed platoons grows linearly with the size of the safe entry 
distance, S. 

We can now calculate the total delay incurred by upstream traffic due to the entering 
platoon, platoon #jO. The entering platoon will require S m; however, if the entering 
platoon encounters a free space gap, then the actual space B “borrowed” from the 
upstream cruise platoons will be between 0 and S. We will consider the probability 
distribution of B after first examining the case of a fixed space S. 

In order to create a gap of S m, platoons #I,..., #M are slowed down, where M is the 
random variable above. Platoon #i is slowed down ‘by a distance 

S-fJzj--D)=S-gXj,i= l,.**,M. 
j=l j=l 

So the total slowdown 6 {measured in platoon x meters) is the sum of these M 
numbers, 

slowdown := 6 = ~[S-~xj]=MS-~~xj. 
i=l j=l i=l j=l 

(35) 

We want to calculate qS], the average slowdown. 
Introduce the partial sums yo = 0, yi= & xj for i > 0, and write 6 = MS-C? yi. 

Then 

/@I= 2 mS - 2 OilM = m] Pdm). 
m=O i-l 

(36) 
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Since in (33) we have an expression for F’s(m), the 
delayed given that the space borrowed upstream is S, 
remains to calculate EL#I = m]. 

Fact 7. We have 

probability that m platoons are 
and we found E[M’j in (34), it 

Pt_Yl,-~* *Ym+l) =PCvl,~~~,ymlym+lldvm+l) 

=&Pm+dYm+w* -=Y2 < ... <Ym+i) 

=ti 
m+l eqgy*' lbt < y2 < . -. -z ym+l), 

where pm + IW is g iven by (32) and I(.) is the indicator function. 
Proof. The first equation in (37) is Bayes rule. Since 

(37) 

Ym+I = xxi* AYm+l =V) =Pm+lcY) 

I 

from (32). Second, since Yi-Yi-t =x; are iid and exponential, therefore, given y,,,+ t, the y, 
are uniformly and independently distributed over [O,y,+ t], constrained to yl < y2 < ... 
< ym+ 1. This gives the second relation. The third relation now follows upon substitution 
for pm+ I from (32). 

We now calculate ELJQ(M = m): 

ELYilM = ml = ElyilYm < S I Ym+ll 

=1: ElYilCVm <SIYm+l)l=[, say 

E[~CV,<SS~m+l)l Q ’ 

where 

00 00 

P= 
J J 

*** YilCym (SIym+l)poII, 
0 0 

*Ym+l)dYl "'dYm+l 

.I’? ?‘I ?i 

=J~Y,J~Y2...J,rn-,j,i~,,...,~rn+,~~ym+, 

0 0 0 0 s 

00s 

= JJ Y-’ Adym x pm+‘e-~~m+ldym+, 
(m - I)! 

so 

S”Prn -ps 

=m!e ’ 
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A slightly more laborious calculation gives 

P= 
is SCLrn +s 

--e , 
m+l m! 

and so 

201 

(38) 

Substituting this into (36) gives 

E[S] = fjmS - $ ---&lPs(m) 
m=O 

=zgmPs(m) 
m=O 

s2 
=2(2-D) 

platoon - meters, 

where we used (34) in the last relation. 
Fact 8. Each entering platoon on average disturbs S/(2-D) platoons and they suffer 

a total slowdown of P/2(Z-D) platoon-meters.” 
As noted above, if the entering platoon is aligned with a free space gap in the cruise 

lane the actual space borrowed from upstream B will be between 0 and S. As an example, 
suppose B is a uniformly distributed random variable with probability density 

p(B)=;,OqBjS. 

Using the expression for E[6] above, the average slowdown now is 

s2 
=6(Z-D) 

platoon - meters. 

As expected, the average slowdown is reduced when we account for the borrowed 
space B. 

7.1. Total time delay constraint 
As we have seen, lack of coordination causes an increase in travel time for cruise 

vehicles but does not reduce capacity. It is interesting to consider what happens if we 

‘we can compare this slowdown with the case when inter-platoon distance is exactly 2. (This requires a 
cruising control strategy that achieves equal inter-platoon distana.) In this case platoon #I is slowed down dis- 
tana S-(2-D). #2 is slowed down S-2(2-D)...., #M by S-M(Z-D) and M= S/(Z-D). (We are neglecting the 
requirement that M has to be an integer.) The sum of these slowdowns is d/2(Z-D)-S/2. Thus, exponentially 
distributed inter-platoon distances cause an extra slowdown of S/2, on average, compared with the case of equal 
intra-platoon distances. 
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impose the requirement that the total time delay per cruise vehicle from a given entry 
maneuver does not exceed cr. This requirement introduces an extra constraint on the 
cruise and entry flows, namely 

(39) 

Substituting for E[6] and recalling that Z= V/f(c), (39) can be rewritten as 

S’f(e) + 2 VoDf(c) 5 2 V’a. (40) 

(40) is an extra linear constraint on f(c) and f(e) which may be appended to the con- 
straints (37x26) of the linear programming problem of Theorem 3. 

Observe that iff(e) = 0 the constraint reduces to 

which is equivalent to the space constraint (31), in this case. As expected, there is no 
additional constraint for total time delay if there are no entering vehicles. 

7.2. Entry dkturbance length 
We have calculated the average slowdown from the entry maneuver. We would like 

to know how far up the highway the disturbance propagates on average. Ideally, the dis- 
tance between entrances should be more than the average distance of vehicles delayed 
upstream. Let’s call W the distance the disturbance propagates upstream. W is given by 

W= fJnif+d(nj- l)+D+Xi] 
i=l 

(41) 

=m(D-.d)+y,+~ni(l+d), 
i=l 

(42) 

where d is the inter-vehicle spacing within a platoon, I is the vehicle length, and ni is the 
size of the ith platoon. We will assume that ni are independent randomly distributed 
variables with mean E[n] = q. We calculate E[ WlZ$ 

0000 
00 

E[ WjS] = SE tm(D - d) + Y, + 2 Ml + 4lph ym W)dydn 
0 0 m=O i=l 

= (D -d)E[MIS] + E[ymlS] + (I+ d)E[n]E[MlS]* 

Using ~fy~[S] = E[E[y,lm,S]JS] = SE[ml(m + I)lS], we obtain 

I e-fls 
E[wls]=(D-d)pS+S-cc+ - + (I + d)tlpS. 

CL 
(43) 

For plausible values of 0=60 m, S= 149 m, d= I m, 1=5 m, P= l/20, and n= 15, 
we find E[ WlS]= 1239 m. 

It is interesting to consider the effect of the size of free space gaps and the size of 
platoons on W. First, let us rewrite (43) in terms of E[x] and drop the fourth term which is 
small 

EIWIS]=(~~cl)S+S-E[x]+(‘+~~~‘nlS. 
X 
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We can see that as E[x] increases E[ WlS] will decrease. Now suppose we increase the 
average platoon size while keeping the cruise flow constant. This gives a relation between 
E[n] and E(x] 

f(c) = 
nV 

E[x]+D+E[n]l+(n- I)d 
=J 

Then 

E[x] = E[n](; - I - d) - D + d. 

Since -D + d< 0 and x20 the coefficient multiplying E[n] must be positive. Thus, for 
a given cruise flow, as the average platoon size increases the distance that the disturbance 
propagates upstream decreases. 

7.3. Free space distance 
We will show that a good entry metering policy is one that uses upstream free space 

when it is “closer” in a sense to be elaborated below. At time I the free space is the dis- 
tance in meters in a section not reserved by an activity and equals 

L(i)r - C C A(ar)n(cr. i. 1, O)n(i, t, 0). 
(I 0 

We adopt the convention, as before, that free space appears immediately downstream 
from the safety gap in front of a vehicle or a platoon. We will index the free space by k if it 
is the kth free space gap from a pointy on the highway (see Fig. 4). 

Definition. The free space distance of a segment of free space k of length xk from a 
point y along the highway is 

k-l 

xk ni, 
c 
i=l 

where ni is the number of vehicles in platoon i, nl is the number of vehicles in the first 
platoon upstream from y, and nk is the number of vehicles in the platoon directly down- 
stream from the free space k. 

Thus the distance of the free space is merely the number of vehicles between a refer- 
ence point on the highway and the location of the free space. Distance does not depend on 
the Euclidean distance but the density of the flow. Distance is indirectly a function of 
inter-platoon distance, intra-platoon distance, and safety gaps. We find a simple relation 
between free-space distance and total time delay caused by the entry maneuver. 

Fact 9. The total time delay due to the entry maneuver increases as the total distance 
of free space from the maneuver increases. 

Proof. The total delay is given by 

= c m !!LJ-!--xi~nja 
i=l !=I j=i 
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Fig. 4. The arrangement of vehicles, safety gaps and free space in an automated lane. 

Now the total distance of free space K is 

k=l 

Also, let’s call 

AS=S-X. 

Then 

= +N+ K]. 

The first term is an ad~~onal delay because slightly more free space is needed than 
that provided by x1,..., x,,,. The second term shows that as K increases the slowdown 6 
increases, which completes the proof.0 

8. ACTIVITY MODEL AND VEHICLE CONTROL 

With the exception of the di~ussion on entry and exit, our Trident of “activity” 
has been formal: an activity consumes space and time, and the movement of a vehicle 
through the AHS can be described by a finite activity sequence. In this section we address 
two pragmatic questions: How should one define an activity in practical terms? How 
should one determine the space that it consumes? It will turn out that these are questions 
of AHS design, more particularly, the design of the feedback laws that control vehicle 
maneuvers, and the TMC rules that govern the flow of traffic. Different AHS designs yield 
different activities. The designs can then be compared in terms of their steady state capa- 
city and transient behavior using the theory proposed above. 

In our theory of automated traffic flow we introduced the notion of a vehicle activity 
in order to account for the differing amounts of space vehicles take up when they are 
engaged in maneuvers. Maneuvers are realized by control laws, in automated trafhc, and 
by driver actions, in manual traffic. Thus, it makes sense for activities to be defined in 
terms of one or a sequence of maneuvers and to examine the control laws that realize 
maneuvers to characterize the activity. 

Since we are dealing with a one-lane AHS, it is necessary only to examine long 
itudinal control laws. A simplified vehicle model for longitudinal control in the form of a 
third-order nonlinear ~~e~ntial equation was obtained in Sheikholeslam and Desoer, 
1990 

Xi = bi(ii, ij) + Ui(ii)4, 
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where the subscript i is an index for the ith vehicle, and xi is its distance along the high- 
way. This model is linearized using the feedback law 

U! = & [-b(ij, ii) + Ui] 
I 

I 

to obtain 

x; = uj. 

Vehicle maneuvers are specified through Ui. Generally, ui will consist of a sum of two 
terms: one term for the desired open loop behavior and a feedback term for tracking the 
desired open loop behavior. The control objective typically is tracking a velocity profile as 
a function of time or maintaining a time or distance headway from the vehicle ahead. For 
example, the control law for the leader of a platoon tracks the velocity of the vehicle 
ahead (with index i-l) and maintains a safe distance by specifying the desired velocity, 
idi = ii-1 and a desired spacing, xdi = Xi-1 - I- (a,,+ + a,,). I is the vehicle length and a, 
and a,, are constants. Then, Ui is given by (see Godbole and Lygeros, 1994) 

ui = -3ski - 3(ii - idi) - (xi - xdi). 

We will assume that the time constants for closed-loop tracking of vehicle maneuvers 
are much faster than the traffic flow time scale, so perturbations due to inexact tracking 
are ignored and we restrict our attention to the open loop behavior. Then we may define 
an activity as one or more consecutive vehicle maneuvers characterized by a sequence of 
desired open loop behaviors. 

In this manner, activities are derived from vehicle control laws, and the space used by 
an activity A(a) is the abstraction that brings activities into our traffic flow theory. 

Calling S(t) the space reserved by an activity at time t, and T the duration of the 
activity, the space-time used by activity (r is computed as 

S(Z) can be extracted either directly from the control specification or after some 
manipulation of the expression for the open loop behavior. s(r) may be parametrized by 
the vehicle velocity and the initial distance between the given vehicle and the vehicle 
ahead. We make these points clear by some examples. 

Going back to the example of the leader of a platoon, the space reserved by the 
control law is evident from the expression for desired spacing between platoons, 

S(t) = I+ U@k_i(f)+ Up. 

Plausible values (see Ioannou and Xu, 1994; Godbole and Lygeros, 1994) are 1= 5 m, 
a,, = 1 s, a,, = 10 m, and i = 25 m/s, so that s = 40 m. Note that if there is no vehicle ahead, 
the control law will track a desired velocity and the space is effectively reserved. 

Vehicles in a platoon with inter-platoon distance d use a velocity-independent spacing 

s=l+d. 

For manual driving, we suppose that the driver’s control objective is to track a time 
headway of two seconds to the vehicle ahead. This objective is independent of the relative 
position or velocities of the vehicles, but depends on the vehicle’s own velocity. In this 
case 

S(t) = 2ii(t). 
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These examples do not require examination of the vehicle control laws as the space 
requirement is implicitly expressed by the control objective. 

More complicated maneuvers including lane change, platoon merge, platoon split, 
etc. may be specified as a desired velocity profile ii(t) (assuming the vehicle ahead main- 
tains constant velocity) and an initial relative distance Axi = xi-1 - xi (which may be 
fixed by the longitudinal sensor range). From this specification, one can extract the space 
requirement by numerical integration. These aspects are addressed in Haddon, 1996 and 
Broucke and Varaiya, 1996. 

9. STEADY-STATE CAPACITIES 

We consider two alternative designs. We call one design the platoon organization or 
PO design (Varaiya, 1993). We call the second the adaptive cruise control or ACC design 
(Ioannou and Xu, 1994). 

9.1. PO design 
There are five activities in the PO design: merge, split, 15 vehicle platoon, entry, and 

exit. We will determine the steady-state capacity of an automated lane with these 
activities. We first specify the lane configuration. The lane consists of sections of equal 
length L. There are three types of sections. In entry sections entry and platoon 15 are 
allowed; in exit sections exit and platoon 15 are allowed; in all other sections, called cruise 
sections, either piuroon 15, merge, or split are allowed. (In a merge maneuver, one platoon 
first accelerates and then decelerates to join the platoon in front of it; in split, the rear of 
one platoon first decelerates and then accelerates to form two platoons.) 

In order to calculate steady-state capacities, it is necessary to determine the space 
requirement for each activity, to specify the com~sition of activities in each section, and 
to find the section with the strictest space limit which determines the maximum flow. 

We specify some physical and design parameters. D is the safety distance maintained 
by the leaders of platoons, d is the inter-vehicle spacing within a platoon, 1 is the vehicle 
length, I/ is the maximum velocity, n is the platoon size, Q is the range of the lon~tudinal 
sensor, amin is the maximum vehicle deceleration, u,- is the maximum vehicle accelera- 
tion. Representative values used in the PO design are L= 500 m, 7=20 s, D= 60 m, 
d= 1 m, I=5 m, V=25 m/s, n= 15, Q=60 m, a,,=2 m/s-t, and ami@=- m/s-‘. 

The space requirement for entry is s(t)= D+ I= 65 m, so A(enrrr) = 657 m-s; also, 
Atexit) = 65~ m-s. The space requirement for pfuroon 15 is 

or IO m, so )L(pfatoon 15) = 107 m-s. 
The space requirement for merge requires some calculation. We assume that the 

merge is initiated by one vehicle when the platoon ahead is within the vehicle’s sensor 
range Q. The relative velocity and acceleration between the two cars is initially zero. The 
merging vehicle accelerates up to a,,, while keeping a safe relative distance and velocity 
from the car ahead. The maneuver ends when the vehicle is within distance d m of the 
platoon ahead. If the activity lasts for less than the time period 7, some extra space must 
be allotted. Two maneuvers constitute this activity: 

s(t) =fWV, Au, Q>; lo 5 t 5 6 

s(t) = 
dyn-l)+ni+D 

; t[<t<=r. 
n 

Av is the relative velocity of the two vehicles at the beginning of the merge, and Au is 
the relative acceleration of the two vehicles at the beginning of the merge. tt is the time 
when the merging vehicle is within d m of the vehicle ahead. 
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Using the equations for the safe merge developed in Frankel et al., 1995 we obtain a 
space requirement of 27 m with a duration of tl = 16 s. To this we add the length of the 
vehicle I. For the remaining time from fi to r the vehicle requires IO m. Thus, 
li(merge) = 32 ‘16+ 10.4= 28r m-s. A similar exercise for split, which takes a vehicle 
from d m to D m from the platoon ahead and uses ami, for deceleration yields 
A(split) = 28t m-s. 

We must define the proportion of activities in each section, n, (n,) is the proportion 
of vehicles doing entry (exit) in an entry (exit) section, z,,, (nJ is the proportion of vehicles 
doing merge (split) in a cruise section, n, is the proportion of vehicles doing platoon 15 in a 
cruise section, and 7cP is the proportion of vehicles doing platoon15 in an entry or exit 
section. There are some constraints on the proportions: 

The constraints capture that the proportion of vehicles exiting equals the proportion 
entering, the proportion of vehicles merging equals the proportion splitting, and the sum 
of proportions of activities in each section type must equal one. 

Using these constraints, calling the flowf, and substituting values for A(a), the space 
constraint for entry/exit sections is 

[65x, + lO(1 - np)]S= 25. 

The space constraint for cruise sections is 

[lo(l - 2~s) + 2831s + 28n,Jf= 25. 

If we set R,= .l and n,= .l, the limiting section is the entry or exit section, and the 
maximum flow isf= 5,806 vph. 

Suppose we keep rr, fixed but vary or, between 0 and 0.5. The constraint on the flow 
due to the entry (exit) sections is 5,806 vph. The constraint due to the cruise section as rr, 
is varied is shown in Fig. 5. 

9.2. ACC &sign 
In this design, some of the vehicles are manually driven, and the rest are under 

adaptive cruise control. So there are four activities: automatic cruise, manual cruise, 
manual entry, and manual exit. The lane consists of entry, exit and cruise sections. In 
entry (exit) sections, automatic cruise, manual cruise and entry (exit) are allowed. In cruise 
sections, automatic and manual cruise are allowed. 

The space requirement for manual entry is A(entry) = D + I= 65~ m. The requirement 
for manual exit is A(exit)= D + I=657 m. The requirement for manual cruise is 
h(mc)=2Vr= 507 m. The requirement for automatic cruise is k(ac)= Y+ I+ 10=4Or m. 
The only constraint on activity proportions is nc = n,, and we set n= = .I. Now we write 
the space constraint for the three types of sections. For entry (exit) sections 

[(I - %QC - . I)50 + z,# + 6.5fJ= 25. 

For cruise sections 

[(I - %c - .I)50 + %?&Olf= 25. 

We can now compute the capacity. If for example, the proportion of automated 
vehicles is 0.5, then the maximum flow in an entry (exit) section is 1935.5 vph. Figure 6 
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Fig. 5. Maximum flow in cruise sections as a function of the proportion of vehicles doing splits (merges). 
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Fig. 6. Maximum flow in cruise sections as a function of the proportion of automated vehicles. 

shows the increase in capacity as the proportion of automated vehicles in a cruise section 
increases. 

IO. CONCLUSIONS 

We have presented a theory for automated traffic flow, based on the notion of vehicle 
activities. An activity is a sequence of vehicle maneuvers executed by vehicle control laws. 
The space that it takes up is the abstraction used to represent an activity in the traffic flow 
model. A plan is defined as the proportion of activities, velocity, entry flow and exit flow 
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in each section. The TMC controls the flow by selection of this plan. We showed that 
achievable flows can be realized by stationary plans, and maximal achievable flows are 
obtained by solving a linear programming problem. 

These are results about steady-state conditions. However, since conditions may vary 
over time, perhaps because of incidents, one should use adaptive policies for the entry 
flow and velocity. We proposed one such policy: the greedy policy attempts to fill up the 
free space in the next section as quickly as possible. We showed that the greedy policy 
maximizes steady-state flow, although it does not minimize travel time. 

Next we studied entry and exit, which are likely to be the capacity-limiting activities 
because of the large space they require. We studied the effect of lack of coordination at the 
entry and found that, although it does not affect capacity, it does increase the travel time 
of the upstream vehicles. We estimated the upstream distance traveled by the disturbance 
created by entry and determined that a good metering policy is to carry out the entry 
maneuver when free space is nearby. 

The proposed theory can be compared with the theory of manual traffic flow. The 
safety-needs-space assumption makes space the crucial resource in our model, and in a 
one-lane highway, the maximum flow is determined by the most space-constraining sec- 
tion. This insight holds for a network of highways, and the Ford-Fulkerson theorem 
can be used to relate the maximal or undominated flows with the most constraining 
sections. The insight is equally valuable in manual traffic. Perhaps the only important 
distinction is that in manual traffic the “consumption” of space by vehicles has a negative 
externality, because drivers interact. This interaction between vehicles is absent in our 
model. 

The model has some obvious limitations. The one-activity-per-section assumption 
means that activities are of roughly the same length and there is one control command per 
section. We may wish to allow for sequences of activities to be performed in a section and 
to make sections and activities independent. This can be accommodated at the cost of 
greater notational burden. 

Abstracting activities using space requires care in its application. The space usage is 
averaged over the duration of the activity, i.e. the time it takes to traverse the section. If 
the section length is increased, the space usage will change because the activity may 
require extra space only for a short interval. The selection of section length therefore also 
affects the space abstraction and should be chosen at a scale where the extra space usage 
from activities is significant. The space requirement may not be numerically easy to 
extract from the vehicle control laws which are defined in terms of velocity and relative 
position of the vehicle ahead. 

The usefulness of the proposed theory must be judged by its ability to open up for 
investigation related questions and in application. Our future work will take steps in both 
directions, by developing the multi-lane, dynamic case (Broucke and Varaiya, 1996) and 
by demonstrating the application of the theory to manual driving. 
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