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Abstract: This paper presents a dynamic model for automated traffic flow. The
model is based on the abstraction of vehicle activities derived from a vehicle’s
automatic control laws by the space and time taken up by the vehicle engaged in
the activity. The paper develops the laws of conservation of vehicles and velocity
dynamics, and defines static, manuever, and interaction capacity obtainable with the

model.
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1. INTRODUCTION

In this paper we describe a model for obtaining
realistic estimates of highway capacity. The model
has features of a traditional traffic flow model;
it also has features that allow it to differenti-
ate among activities performed by vehicles and
thereby capture the capacity limits imposed by
those activities. Activities are used to character-
ized vehicle behavior that results from vehicle-
borne control laws. Activities provide a means to
abstract vehicle behavior without requiring indi-
vidual simulation of vehicles, thus yielding a meso-
scale simulation model. This paper is an extension
of the work in (Broucke and Varaiya, 1996) which
presented theory for a one-lane automated high-
way with stationary input flows.

2. THE DYNAMIC ACTIVITY MODEL

We assume that the AHS consists of several lanes,
with some lanes including entrances and exits, and
the length of the highway divided into sections.
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Referring to Figure 1, we label the sections 7 =
1,..., I with length L(7). Each section can have
at most one entrance and one exit. Vehicles have
types indexed by 6 which may stand for their
origin and destination and all other distinguishing
characteristics of interest; in particular, vehicle
body type: passenger, truck, bus, etc. The model
has two states: n(i,%,6) is the number of vehicles
of type 6 in section ¢ at time ¢ and wv(i,t) is
the average speed of vehicles in section ¢ at time
t, measured in meters/sec. It is required that
v(i,t) < V(4,0), the maximum permissible or free
flow speed. Thus, the state of the system at time
tis z(t) = {n(i,t,0),v(,t)}. Time is indexed
t=20,1,.... Each time period is T seconds long.
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Fig. 1. The highway configuration.



2.1 Activities

At each instant of time every vehicle is engaged in
one of a finite number of activities such as cruis-
ing, changing a lane, entering the highway, exiting
the highway, etc. The passage of a vehicle through
the automated highway can be summarized by the
sequence of activities that the vehicle executes.
The set of vehicle activities is indexed by a. An
actwity plan is an array of non-negative numbers
m = {m(a,i,t,0)} denoting the fraction of n(s,1, 0)
vehicles that are engaged in activity «. Thus, =
satisfies for every i,¢,0 3 w(a,i,t,60) = 1.

While it is engaged in a particular activity, a
vehicle’s motion 1s governed by a feedback control
law which ensures that this activity is carried out
safely; the feedback laws guarantee that a vehicle
will “occupy” some safe distance s meters of a
highway lane for some duration d. This space and
time is determined by the open-loop profile of
the feedback law. We associate with each activity
« the space and time (in meter-sec) A(a) > 0
utilized by each vehicle engaged in that activity.

For example, if the vehicle control law is tracking
a desired velocity profile v(t) for a time 7, then the
instantaneous space usage can be approximated,
assuming the tracking time constant is large, as
s(t) = fOT v(t)dt and A(a) = fOT s(t)dt. The
control law may not be formulated as an open-
loop specification of a desired velocity profile. In
a feedback formulation of the control law (see
(Frankel et al., 1995)) an envelope of safe speed as
a function of the separation between two vehicles
is found. What is known about the maneuver is
the initial separation zo, the final separation z;,
and the allowed speed as a function of separation
v(z). The space-time can be found as follows.
First compute the elapsed time as a function
of separation: t(z) = f:ﬂ v(z)dz. Next integrate
the elapsed time from initial to final separation:

Aa) = f;ﬂf t(z)dz.

For activities involving vehicles in two lanes, as
happens during a lane change and in some imple-
mentations of entry or exit, the vehicle occupies
a minimum safety distance in both lanes. We
denote A; (A;) to be the space taken up in the
adjacent left (right) lane for vehicles engaged in a
left (right) lane change activity. If adjacent lanes
have different speeds, then extra space-time must
be allowed for vehicles either to slow down or
speed up to the desired speed. We assume that
the coordination policy of the automated lanes is
that faster lanes slow down to accomodate slower
incoming vehicles and faster vehicles slow down
in their starting lane to enter a slower lane. For
example, if the starting lane has speed v; and the
receiving lane has speed vy < vy and the decelera-
tion of vehicles is —a, then the extra space needed

to deceleration in the originating lane is (v1—vs)®

for a duration of (v; — ve)/a seconds. If the lane
change requires A; m-sec in the originating lane
and A3 m-sec in the destination lane when the lane
speeds are the same, then the space-time including
lane speed differentials for a right lane change is

(v1 — va)?
Alle) =X - =
(te) 1+ 2a?

Ar(le) = As

When a vehicle engaged in activity a leaves a
section, its A(a) space is available for use by
another vehicle from the upstream section. If the
activities that vehicles are executing are highly
space consuming, the speed in upstream sections
may be forced below the maximum or free flow
speed. In this manner the model captures the
effect of queueing.

Two vehicles with the same (i,¢,6) index and
engaged in the same activity cannot be further
distinguished within the model. We also assume
that vehicles of the same flow type are distributed
uniformly within a section.

2.2 Flow control

The flow is controlled by means of three control
parameters: the activity proportions (e, 1,t,8),
the section desired velocities wvq(i,t), and the
entry flows f(i,t,0). The activity plan, as de-
fined above, is an array of non-negative numbers
m = w(a,i,t,6) denoting the fraction of vehicles
of flow type # that will perform activity « in
time period t in section i. The wvelocity plan is
an array of nonnegative numbers vq = {v(i, )}
(in meters/sec), denoting the desired average ve-
locity of vehicles in section i for time period t.
The vehicles are assumed to be equipped with
longitudinal controllers capable of tracking a de-
sired average velocity. The entry plan is an array
f = {f(i,t,0)}, denoting the number of vehicles
of type # that enter the highway in section ¢ in
period ¢. Each entry point on the AHS is assumed
to be equipped with metering capability. We call
u(t) = [w(t),v4(t), £(2)], t > 0, a TMC plan.

2.3 Conservation of vehicles

Consider a section which has no entrance or exit.
Suppose we are given the state z(t) and an activity
plan 7 at time ¢. Conservation of vehicles provides
that for all t and 1 <i <17,

n(i,t+1,0) = n(i,t,0)+
G (i,t,0) — 67 t,0) + (5, 1,0). (1)



¢'"(i,t, ) is the flow of vehicles entering section i,
#°%*(i,t,0) is the flow of vehicles leaving section ¢,
both in vehicles/sec, and f(i,¢,6) is the number
of vehicles incoming via an entrance during the
period t.

First we will compute ¢°“*(7, ¢, §) which comprises
all vehicles that leave section 7 in the interval
t to t + T. To simplify notation, let «, (o)
index the set of activities that turn right (left)
and m, (m) be the proportion of vehicles that
turn right (left). Also, m; is the proportion of
vehicles that go straight. For example, 7, (4,¢,0) =
Z{a m(a,i,t,0) and m, + m + 7 = 1. We will
assume that m. and m; incorporate all vehicles that
succeed in making the lane change. This means
that the necessary coordination between lanes is
included a priori in the value of .

Considering vehicles that go straight, we define
p(i,t) to be the fraction of vehicles in section
¢ at time ¢ that remain in the section at time
t + 1. Using the assumption of uniform spatial
distribution of vehicles of the same flow type
within a section, we have:

p(iyt) = 1—

[1 — p(i,t)] is the fraction of vehicles in section
1 at time ¢ that leave the section at the end of
that period. p(i,t) must be positive to ensure that
vehicles cannot cross a section in less than one
time period.

We can express ¢°“*(i,t,6) as:

% (i, t,0) =n(i,t,0)m, (s,
+n(i,t,0)ms (4,

t,0) +n(i,t,0)m
L)1 = pli,t)]
This equation says that all vehicles changing lanes

move out of the section, while the proportion [1 —
p(i,1)] of those going straight will move out.

(,1,0)

Vehicles that contribute to ¢'"(i,¢,0) come from
upstream and the right and left sections. The
number of vehicles that leave section ¢ — 1 is
n(i—1,t,0)ms(i — 1,¢,0)[1 — p(i — 1,1)]. Vehicles
can change right or left into section ¢z — 1 and
then travel downstream into section i during the
interval ¢ to ¢t + 7. We will assume that those
vehicles adopt the speed of section ¢ — 1 after they
change into it. Therefore, the number of vehicles
doing a lane change from sections j—1 into section
t — 1 and then moving downstream into section
is given by n(j — 1,¢,0)m.(j — 1,¢,0)[1 — p(i —
1,)]. Similarly for vehicles from section k& — 1.
Finally, some vehicles changing into section 7 from
sections j and k will stay in section ¢ at the end
of the period. The number of vehicles staying in
section ¢ after changing lanes from section j is

given by n(j,t,0)m,(4,t,6)p(%,
contributions we obtain:

t). Adding up these

#(1,0) =

n(i—1,t,0)ms(i — 1,¢,0)[1 — p(i — 1,1)]
Hn(j—1,t,Nm. (G — 1,4,0)[1 — p(i — 1,1)]
+n(k —1,¢0)m((k —1,¢t,0)[1 — p(i — 1,%)]
+n(j,t,0)m (4,1, 0)p(i, 1)
+n(k,t,0)m(k,t,0)p(i,t) .

We can simplify the conservations equations just
derived by breaking up the movement of vehicles
in two steps: first move vehicles laterally; second,
move them downstream. We let njon4(7,¢,6) be
the number of vehicles in section ¢ at time ¢ of
flow type # after lane changes are done, given by:

Niong(i,t,0) = n(i,t,0)m,(i,t,0)+
n(j,t,0)m (4, t,0) +n(k,t,0)m(k,t,0). (3)

If we apply this definition to Equation 1 we obtain

n(i,t+1,0) = niong(i,t,0)p(i, 1)+
1,6,0)[1—p(i —1,0)] + f(4,¢,0). (4)

Equations (3) and (4) constitute the conservation
of vehicles law for multi-lane flow.

nlong(

2.4 Velocity dynamics

For each period [t,t + 1) and every section, the
TMC commands a set of activities summarized
by (e, 1,t,0), a desired average velocity vq(7,1).
and an input flow f(¢,¢,6). Each vehicle will
attempt to track vg(4,%) as the nominal velocity
of each activity. The dynamics of the tracking
law will determine whether there is any delay in
tracking vqy. Here we assume that the tracking
time constants of the longitudinal controller are
much faster than the time scale of maneuvers so
that by the end of a time period (after maneuvers
are completed) vehicles have achieved the nominal
velocity (in free flow conditions). The velocity
in section 7 is limited by the space available
in the downstream section. Let w;(i,#) be the
maximum speed in section i so as not to exceed
the space available in section 7 + 1. Finally, the
speed achieved in a section, which can be no larger
than the desired velocity and the space-filling
velocity can be reduced by interactions among
vehicles. This loss in speed due to interactions (see
(Prigogine, 1971) for a related treatment), called
dv, is subtracted from the speed achievable in a
section 1n non-interacting flow. Thus, the speed
with which vehicles move on average over period
tis

v(i,t) = min{ug(i,1), vs(2,8)} — dv(i, 1) .



Space-filling velocity The space-filling velocity
is found by a backward recursion through the
sections, by computing the space freed in each
section and the space demanded by the upstream
sections. Once the space-filling velocity of section ¢
is known, the space-filling velocity of section i — 1
can be computed. We derive the expression for
vs(i — 1,) given v,(3,1).

1 € I.zir, has a maxi-
mum exit flow gmaz(7) in vehicles/sec. We assume
that exit sections cannot have entry flows. The
flow that exits over period t consists of vehicles
traveling straight and those that change lanes
into the section, i.e., nyong(?,t). Vehicles chang-
ing into the section are assumed to adopt the
destination lane speed. The exit flow is given by

( ) 29 M Letting nlong(iat) =
5 thong (i 1,0) we fin (i, ) = Em=lSL0

Niong(i,t)

Each exit section, i.e.,

Next, consider all other sections i € T\ ILgit.
To determine vs(z — 1,t), we need to know the
free space available in section i at the end of
time period ¢. This is the total free space L(i)T
minus the space-time used by vehicles that stay
in section i for the time period ¢. The vehicles
that stay in the section are either going straight
or they are changing lanes into the section but do
not travel out of the section in the time period. We
let A(e) be the space-time used by vehicles in the
section they currently occupy and A, () (A(e))
be the space-time used by vehicles in the section
to the right (left), if a involves a right (left) lane
change. The free space is

Spr(i ) = L(i)T . (5)
_ZZ it 0)m(a, i t, 0)[1 — %]A(Q)
t

—3° S (G, 0y g1, 0)[1 - L'(’Z,) A ()
—ZZ (k,t,0)m(a, k. t,0)[1 vs(LiEZ))T]Al(a)

Next, we need the space used by vehicles from
upstream and incoming via entrances into section
t. The vehicles arriving from upstream sections
travel at their current speed of v(i — 1,¢) and
continue doing the activity plan commanded at
time ¢ for section ¢ — 1, inspite of the fact that
they can enter section ¢ during the time period.
We assume that = percent of the available space
in section ¢ can be used by upstream vehicles, and
y percent can be used by the entry flow, where
z+y = 1. We call S;,,(4,t) the space-time used by
the entry flow and S,p(i,t) the space-time used
by upstream vehicles. The objective 1s to balance
Str with S;, and Sy, by adjusting v(7 — 1,t) and
1(i,1).

The incoming space taken by upstream vehicles
assuming they travel at maximum speed V is
given by:

Sup(i,t):
ZZ —1,t,60)7(a, —1,t,9)%)\(a)+

Zg:;n(j —1,t,0)7(a,j— 1, 9)%}»@) +

Zﬁ:;n(k —1,t,0)m(o, k — 1,1, 9)%)\,(@).

The incoming space taken by entry flows S;, (7,1)
is analogous to the expression for Sy, and is
omitted for the sake of brevity.

Finally, to compute v;(i,1), we fill the downstream
section, 1.e.,

Sup(ist) =2 - Spr(i1),
Sin(i,t) =y - Spr(3,1).

Defining v(i — 1,¢) = min{1, M} we obtain

»(i,t)
the result vs(i — 1,4) = v(: — 1 t)V

Speed loss from interactions

At each instant of time, the automated flow con-
sists of vehicles and the safety distance they re-
serve by their longitudinal control laws. Each sec-
tion has some average free space in meters over
the period ¢ that is not reserved by an activity,
given by: L(7)— % Sadan(it,0)m(a,1,t,0)A(a).
We adopt the convention that free space appears
immediately downstream from the safety gap in
front of a vehicle. Vehicles that require free space
to perform a new activity (that uses more space,
on average, than the last activity) always obtain
the space from upstream by slowing down. This
causes a disturbance in velocity to vehicles that
are caught between the vehicle demanding the free
space and the desired free space.

A pair of activities (a1, az) is said to be interact-
ing at time ¢ if vehicle 5 performs the activity a;
in period ¢ — 1, activity as in period ¢, and

)\( 2) > /\(011) if a1 € ay
Aaz) > Ap(a1) if a1 €
Alag) > N(aq) if oy € oy

We call a;,; the set of interacting activity pairs.
The pair (a1, ag) is said to be non-interacting if it
is not interacting. Non-interacting activities result
in new free space in period ¢.

We can think of the activity plan 7(a,i,t,0) as
assigning a probability that a vehicle of type 6
will perform activity a in section ¢ at time ¢. The
probability that a vehicle will perform the activity
pair (a1, as) is w(aq, h,t,Nr(ar,i — 1,t — 1,6)



where h € {i — 1,4,7,k}. We define N;,:(i,1) as
the number of vehicles that perform interacting
activity pairs in section ¢ at time ¢. For brevity,
we omit the expression for N;,(¢,t) here.

To investigate the effect of interacting activity
pairs, we employ a queueing model developed
in (Broucke and Varaiya, 1996). Consider one
interacting activity pair (a1, az). Let AS be the
extra space in meters needed on average by vehicle
7 in the time period t; that is, AS = %[A(az) —
A(a1)]. Suppose that the free space distance z;
is an exponentially distributed random variable
with mean =1, i.e., it has the probability density,
p(x) = pe ", x > 0. If we label the free space
distance directly upstream from vehicle i as zq,
the next free space distance from vehicle 5 as
xz9, and so forth, then the number of vehicles
upstream affected by a disturbance AS is M
where:

M+1

Zm]<5< ZCL‘]

The slowdown to each vehicle & is AS—Z?:l xj, k
1, ..., M.so the total slowdown § to the M vehicles
is

M k M k
=D AS=D 2] =MAS =D w;.(7)
k=1 j=1

k=1j=1

Let us compute the new average speed in sec-
tion ¢ taking into consideration the disturbance
from one interacting activity pair. Call this speed
v(i,t)T. The average velocity is found by averag-
ing over the individual vehicle velocities:

v 1,1
U(i, t) Zk 1 Yk ( )
n(i, 1)
Thus if M vehicles are disrupted by one interact-
ing activity pair, the new average velocity is:

v(i, 1)t = v(i,t) — %

where d is given in Equation 7.

We have found the new speed taking into con-
sideration one interacting activity pair. There are
Nint(i,t) such slowdowns in section 7 for time
period ¢. Calling ¢ the index of the gth interacting
activity pair, and é(q) the total slowdown from the
gth interacting activity pair, we find

1 Nint(i,t)
v(i,t)+ =u(i,t) — T d(q)

g=1

Therefore,

1 Nini(i,t)
i) =7 Y. 3()

q=1

3. FEASIBLE TRAJECTORIES AND PLANS

A trajectory is a sequence of states [n(i,t, 0), v(i,t)]
where n(i,1, ) is the number of vehicles in section
i of type # at time ¢t and v(7,t) is the average
velocity in section ¢ over the half-open interval
[t,t+1). We call the pair (n, u) a trajectory-plan.

A trajectory is said to be feasible if is satisfies four
physical constraints. In addition to conservation
of vehicles it must satisfy

n(i,t,0) >0, (8)
0 <w(i,t) < V(i,0), ()
L(i) - TZ (10)
ZZ (e, i,t, )M () +

(Ol,j,t, 6))\,.(0[) +

EZn(j,t,Q)ﬁ
EZ (k,t,0)m

The non-negativity requirement and the limit on
velocity are clear. The third constraint expresses
the requirement that there is enough space in the
section to safely carry out the activities assigned
by the plan.

(a, k,t,0) M ()

An additional constraint on lane change flows is
that

L(i)-T > (11)

S tuong (i t,0)m(a, i, 0)A(a).

This constraint says that after vehicles change
lanes they have sufficient space in the section they
arrive in to perform the activities of that section.

Additional constraints can be imposed on the
TMC plan to satisfy requirements of vehicles mak-
ing their exits and entering at the appropriate sec-
tion and constraints on allowed activities. These
are discussed in greater detail in (Broucke and

Varaiya, 1996).

We will say that a trajectory-plan (n, u) is feasible
if the constraints (3)-(4) and (8)-(10) are satis-
fied. We say a trajectory-plan (n,u) is laterally
feasible if in addition constraint (11) is satisfied.
A feasible trajectory-plan (n(t), u(t)), t =0,1,...
is stationary if the sequence (n(t), u(t)) does not
depend on ¢.



4. CAPACITY

The activity model enables different types of ca-
pacity estimates of automated highways to be
obtained. All capacity estimates assume quiescent
conditions of the flows, but we will further dis-
tinguish among types of capacity by the level of
dynamic activity included in the quiescent state.
This distinction is based on the claim that capac-
ity limits are imposed by three conditions:

(1) Highway topology, routing constraints, and
headway policy,

(2) Persistent lowering of density from vehicle
activities,

(3) Persistent lowering of speed from vehicle in-
teractions.

Corresponding to these conditions we define three
types of capacity: static capacity, maneuver ca-
pacity, and interaction capacity. We assume that
the activity plan is stationary and that n(i,,6)
and v(i,t) have converged to steady-state values
in each section.

We simplify notation by eliminating indices for
and a. Define n(i), the total number of vehicles
in section 7 as n(i) = > ,n(i,0) and 7(e,1), the
proportion of vehicles performing activity «a as

(i) = Yo mla, i, 0)n(i,0) .
’ > n(i,0)

Let A(7) be the average space-time used per vehi-
cle in section i, so that A(Z)n(7) is the space-time
used by vehicles in section 2. The maximum num-
ber of vehicles in a section N (%) is N(i) = %
We obtain the steady-state flow out of section ¢
é(i) = %(%n(z) , while the maximum flow ¢(3) is
— VT

o(i) = ()

Define ¢* as the minimum of the maximum pos-
sible flow out of any section of a lane or

vT —
* = min —— = min ¢(?). 12
& =min D oming. (12

We showed in (Broucke and Varaiya, 1996) that
¢* is the capacity of a lane. Now we define network
capacity.

Ford Fulkerson Theorem Suppose we are
given a network of highway links consisting of one
or more lanes. We construct a graph consisting of
a set of nodes N corresponding to the intersection
of links, and a set of lanes £ that connect between
nodes. A cut of the graph i1s a partition of the
nodes into two sets § and /' — §. The set of lanes
of a cut @, indexed by ¢, consists of those lanes
that connect a node in 8 to a node in N — 8.
Then, the maximum flow from node A to node B
of the network 1s found by taking the minimum of

the sum of the flows ¢* over all cuts QQ separating
A from B. That 1s,

$hp =min Y _ ¢ (13)
@ q€Q

where ¢7 is the maximum flow of lane g.

The static capacity Cs of a network from node A
to B is given by (13) where ¢} is given in (12).
Vehicles of type  perform activity «(6). Thus,

1 if a = ()

0 otherwise.

n(a,i,0) = {

Also, m(a, i) = n:(’g)

Static capacity takes into consideration the high-
way geometry by capturing the sum of the flows
through the lanes of a link. The headway policy
is summarized by A(a) and we assume that each
automated vehicle performs only one activity for
the duration of its trip.

The maneuver capacity C,, of a network from
node A to B is given by (13) where ¢} is given
by (12). The activity plan is m(a;, ¢, ). In this def-
inition of capacity, vehicles will perform activities
such entry, exit, lane change, and other activities
required for routing, safety and load balancing. It
is assumed by the activity plan being stationary,
that the activities are fixed for a given section and
flow type.

The interaction capacity C; of a network from
node A to B is given by:

% = HSHZ¢; minw.

= i€q A(7) (14)

dV (i) > 0 is a steady-state loss in velocity in
section 7 due to persistence vehicle interactions.
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