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Abstract. An approximate verification method for hybrid systems in

which sets of the automaton are over-approximated, while leaving the

vector fields intact, is presented. The method is based on a geometrically-

inspired approach, using tangential and transversal foliations, to obtain

bisimulations. Exterior differential systems provide a natural setting to

obtain an analytical representation of the bisimulation, and to obtain

the bisimulation under parallel composition. We define the symbolic ex-

ecution theory and give applications to coordinated aircraft and robots.

1 Introduction

We consider a hybrid system which is viewed as a two level system with a finite
automaton at the top level and a dynamical system corresponding to each loca-
tion at the lower level. Former approaches to reachability problems for hybrid
systems have taken the view that the initial and final regions, and the enabling
conditions and reset conditions are fixed by the problem specification. To obtain
a computationally tractable algorithm, a bisimulation is formed with respect to
these constraints. Here we are interested in obtaining bisimulations for verifi-
cation of the safety problem for multiple autonomous agents modeled by their
kinematics.

A primary focus of research is to extend the class of hybrid systems that have
a finite bisimulation. Two fundamental and potentially compelling questions are:
can a bisimulation of a hybrid system be found analytically? and, what geometric
structure should the continuous dynamics of the hybrid system possess in order to
have a finite bisimulation? We provide some results on these questions, but our
approach is, in general, approximate. In particular, the initial and final regions,
enabling conditions, and reset conditions will be approximated so that they are
compatible with the bisimulation. This work has been inspired by the papers by
Caines [2, 3] and the groundbreaking paper of Alur and Dill [1].

1.1 Notation

x′ refers to the updated value of a variable x after a transition is taken, and
ẋ refers to the time derivative. dH is the Hausdorff metric. σ ∈ Σ∗ refers to a



finite string of events σi ∈ Σ. All manifolds, vector fields, curves and maps are of
class C∞. Manifolds are assumed to be connected, paracompact, and Hausdorff.
C∞(M), X (M), and Ωk(M) denote the sets of smooth real-valued functions,
smooth vector fields, and k-forms defined on a manifold M . The wedge product
of α, β ∈ Ω(M) is denoted α∧ β. Ω(M) = ⊕∞

k=0Ω
k(M) with the wedge product

is the exterior algebra on M . d : Ωk(M) → Ωk+1(M) is the exterior derivative.
ω ∈ Ωk(M) is exact if there exists an α ∈ Ωk−1(M) such that ω = dα.

2 Hybrid automata

A hybrid automaton is a system A = (Q,Σ,D,Q0, I, E, J,Qf ) consisting of the
following components:

State space Q = L × M consists of a finite set L of control locations and
n continuous variables x ∈ M , where M is an n-dimensional differentiable
manifold.

Events Σ is a finite observation alphabet.
Vector fields D : L → X (M) is a function assigning an autonomous vector

field to each location. We will use the notation D(l) = fl. For location l, the
dynamics are given by ẋ = fl(x), fl ∈ X (M).

Initial conditions Q0 : L→ 2M is a function assigning an initial set of states
for each location. If the automaton is started in location l, then x ∈ Q0(l)
at t = 0. We assume Q0(l) ⊆ I(l).

Invariant conditions I : L → 2M is a function assigning for each location
an invariant condition on the continuous states. The invariant condition
I(l) ⊂ M restricts the region on which the continuous states can evolve for
location l.

Control switches E is a set of control switches. e = (l, σ, l′) is a directed edge
between a source location l and a target location l′ with observation σ ∈ Σ.

Jump conditions J : E → G×R is a function assigning to each edge a guard
condition and a reset condition. G is the set of guard conditions g on the
continuous states, where g ⊂M is compact. R is the set of reset conditions
r where r : M → 2M is a compact set-valued map. We use the notation
G(e) = ge and R(e) = re, and we assume for each e = (l, σ, l′) ∈ E, ge ⊆ I(l),
re(ge) ⊆ I(l′).

Final condition Qf ⊂ Q is a set of final states. We will assume there is one
final location so that Qf = {lf}×Xf , Xf ⊂M , and we assume Xf ⊆ I(lf ).

Semantics A state is a pair (l, x) satisfying x ∈ I(l). The invariant can be
used to enforce edges from location l. In location l the continuous state evolves
according to the vector field fl. Σ(l) will denote the set of events possible at
l ∈ L and E(l) will denote the set of edges possible at l ∈ L. An edge is enabled
when the discrete location is l and the continuous state satisfies x ∈ ge, for
e ∈ E(l). When the transition e = (l, σ, l′) is taken, the event σ is recorded,
the discrete location becomes l′, and the continuous state is reset (possibly non-
deterministically) to x′ := re(x).



For σ ∈ Σ a σ-step is a tuple
σ
→⊂ Q×Q and we write q

σ
→ q′. Define φl

t(x)
to be a trajectory of fl at l, starting from x and evolving for time t. For t ∈ IR+,

define a t-step to be the tuple
t
→⊂ Q×Q. We write (l, x)

t
→ (l′, x′) iff (1) l = l′,

(2) at t = 0, x′ = x, and (3) for t ≥ 0, x′ = φl
t(x), where φ̇l

t(x) = fl(φ
l
t(x)). We

will use the label λ to represent a t-step with an arbitrary time passage.
A trajectory π of A is a finite or infinite sequence of the form π : q0

τ0→ q1
τ1→

q2
τ2→ . . . where q0 ∈ Q0, and for all i ≥ 0, qi ∈ Q, τi ∈ Σ ∪ IR+. We assume

throughout a non-zeno condition: every trajectory of A admits a finite number
of σ-steps in any bounded time interval. Finally, given a set of initial states
Q0 ⊆ Q, the reach set of A, ReachA, is the set of states that can be reached by
any trajectory of A.
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ż
100
7

---------– y=

=

=
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Fig. 1. Double scroll hybrid automaton.

Example 1. Consider the hybrid automata of Figure 1. The invariants for loca-
tions l1, l2, l3 are x ≥ 1, |x| ≤ 1, x ≤ −1, respectively. The dynamics in each
location are either affine linear or linear. It has been shown that this hybrid
automaton has a homoclinic orbit and by Shilnikov’s theorem the system has a
Smale horseshoe implying the existence of a chaotic attractor [4].

Bisimulation A bisimulation of A is a binary relation '⊂ Q×Q satisfying the
condition that for all states p, q ∈ Q, if p ' q and σ ∈ Σ ∪ {λ}, then

(1) if p
σ
→ p′, then there exists q′ such that q

σ
→ q′ and p′ ' q′, and

(2) if q
σ
→ q′, then there exists p′ such that p

σ
→ p′ and p′ ' q′.

3 Verification

In this section we develop an approach to verification that approximates the
enabling, reset, initial and final conditions, but leaves the vector fields intact.
An equivalence relation that gives a bisimulation is defined, and its existence for
a vector field will be shown, in a local sense.

Let K be a subset of an n-dimensional manifold M homeomorphic to the
closed, unit n-cube in IRn. For each l ∈ L we construct a finite cover of K,
denoted Cl, consisting of a finite collection of compact n-dimensional cells ci

such that K = ∪m
i ci. The boundary of each cell consists of a set of 2n faces of



dimension (n− 1) and a collection of edges of dimension n− 2 to 1 and a set of
2n vertices. We require int(ci) 6= ∅ and int(ci) ∩ int(cj) = ∅, ∀i 6= j, ci, cj ∈ Cl.

Let C be such a cover ofK. The diameter of c ∈ C is ρ(c) = sup{d(x, y)|x, y ∈ c},
where d is a Riemannian metric defined on M . The mesh of C is µ(C) =
sup{ρ(c)|c ∈ C}. The resolution α of C is α(C) = inf{ρ(c)|c ∈ C}. A cover
C ′ refines1 cover C if µ(C ′) < α(C).
Fact If C has a resolution α(C) > 0, then there exists a refinement of C,
denoted C ′ with α(C ′) > 0.

If V is a closed subset of K, we say (V )µ is a µ-approximation of V with
respect to C with mesh µ, given by

(V )µ = {c ∈ C | c ∩ V 6= ∅, µ(C) = µ}.

If P = {l}× U ⊂ Q, then we write (P )µ = {l} × (U)µ.
Fact dH (V, (V )µ) ≤ µ.

Let C(K) = {Cl | l ∈ L} be the set of covers of K for automaton A. C(K)
induces an equivalence relation ' on Q. We say q ' q′, where q = (l, x) and
q′ = (l′, x′) iff
(1) l = l′,
(2) x 6∈ K iff x′ 6∈ K,
(3) if x, x′ ∈ K, then x ∈ c iff x′ ∈ c, ∀c ∈ Cl.

We say cover Cl of K at l is a stable partition of the flow if for all l, x, x′, y
and t ≥ 0, if (l, x) ' (l, x′) and y = φt(x), then there exists a y′ and t′ ≥ 0 such
that y′ = φt′(x

′) and (l, y) ' (l, y′).
Suppose we are given a collection of stable partitions C(K) of K ⊂ M for

hybrid automaton A. We write C(K,µ) if µ(Cl) = µ > 0 for all l ∈ L. We define
the approximate hybrid automaton

Aµ = (Q,Σ,D,Q0
µ, Iµ, E, Jµ, Q

f
µ).

Q,Σ,D, and E are unchanged. Q0
µ, Iµ, Jµ, and Qf

µ are the µ-approximations of
the respective sets. That is,

Q0
µ(l) = (Q0(l) ∩K)µ,

Iµ(l) = (I(l) ∩K)µ,

Jµ(e) = ((ge ∩K)µ, (re)µ)

Qf
µ = lf × (Xf ∩K)µ.

Let e = (l, σ, l′) and m(x) be the number of cells having non-empty intersection
with the point x. We define Ox to be the set of points that lie in the same
intersection of cells as x. That is,

Ox =
{

y ∈

m(x)
⋂

i=1

ci
∣

∣ ∀ci ∈ Cl . x ∈ ci

}

. (1)

1 We use a nonstandard definition of refinement of covers.



The set-valued map (re)µ is defined point-wise by

(re)µ(x) = (re(Ox) ∩K)µ.

The modified reset map ensures that the points of Ox are “indistinguishable”
after the reset. This operation introduces extra non-determinacy in the approx-
imated model because the identity map is not preserved, in general.

We will say Aµ is an over-approximation of A on K if the following additional
conditions are satisfied: (1) Q0(l) ⊆ K, each l ∈ L, (2) ge, re(ge) ⊆ K, each
e ∈ E, (3) Xf ⊆ K, and (4) I(l) ⊆ K.
Fact If Aµ is an over-approximation of A on K, then ReachA

∣

∣

K
⊆ ReachAµ

∣

∣

K
.

Approximate Verification Problem:
Given hybrid automaton A, C(K,µ) with µ > 0, and P ⊂ L ×K, determine if
(P )µ ∩ ReachAµ

= ∅.

Remarks:

1. If (P )µ ∩ ReachAµ
= ∅ and Aµ is an over-approximation of A on K, then

P ∩ReachA = ∅. However, if either (P )µ∩ReachAµ
6= ∅ or Aµ is not an over-

approximation of A on K, we have no conclusive answer about the original
safety problem.

2. If (P )µ ∩ ReachAµ
= ∅ for µ > 0 then for all δ < µ, (P )δ ∩ ReachAδ

= ∅.
Therefore, we can find a coursest µ-approximation Aµ∗ which verifies that
the original system is safe.

Theorem 1 (Stable Partitions). Given hybrid automaton A and K ⊂ M
homeomorphic to the closed, unit n-cube, suppose there exists C(K,µ), a collec-
tion of stable partitions of K. Then ' is a bisimulation for Aµ.

Proof. Consider first a t-step. Suppose (l, x) ' (l, y). Suppose there exists t1 ≥ 0
such that x′ = φt1 (x). By the stability of Cl, there exists t2 ≥ 0 and y′ such
that y′ = φt2(y) and (l, x′) ' (l, y′). Next consider a σ-step. Let (l, x) be a state
satisfying x ∈ (ge)µ for some e = (l, σ, l′) ∈ E(l) and suppose (l, x) ' (l, y).
After the σ-step x is reset to some x′ ∈ (re(O))µ. (l, x) ' (l, y) implies y ∈ (ge)µ

and Oy = Oy. In particular, letting y′ = x′, we have y
σ
→ y′ and (l′, x′) ' (l′, y′).

Reversing the data in the above two steps provides the converse statements.

3.1 Local existence

Consider a point q = (l, x), l ∈ L, x ∈ M . We say q is a regular point of A if
(1) fl(x) 6= 0, and (2) x 6∈ ∂ge, ∀e ∈ E(l). For such a point we can show that
“locally” a stable partition for A exists. That is, at regular point q, we can find
{l}×U,U ⊂M , a neighborhood of q, and a partition Cl of {l}×U that gives a
bisimulation on L×M . Almost all the interesting behavior of the hybrid system
is excluded here, but the intent is to show that locally vector fields have the right
structure for bisimulation, and to give the reader a flavor of the more substantial
result to come later.



A first integral of ẋ = f(x), x ∈ M is a function g : M → IR satisfying
Lfg = 0, where Lfg is the Lie derivative of g along f . One can see that that if
φ : I → M is an integral curve, then g ◦ φ = c, c ∈ IR; that is, integral curves
stay on level sets of g.

A bisimulation ' of automaton A is said to be a local bisimulation on P ⊂
L×M if p 6∈ P and p′ 6∈ P together imply p ' p′.

Theorem 2 (Local Existence). Let q = (l, x0) be a regular point of hybrid
automaton A. Then there exists {l} × U , a neighborhood of q, with U ⊂ M
closed, such that if A satisfies
1) Q0 ⊆ {l} × U ,
2) any trajectory of A that leaves {l}× U never returns to it, unless it is reset,
then there exists a local bisimulation of A on {l} × U .

Proof. By the Flow Box Theorem [9], there exists a closed neighborhood U of x0

and a diffeomorphism h : U → V ⊂ IRn, where V = [−1, 1]n, such that ẋ = fl(x)
expressed in y = h(x) coordinates is

ẏ1 = 0, ẏ2 = 0, ...ẏn = 1. (2)

There exist n− 1 independent functions y1 = c1, . . . , yn−1 = cn−1 that are first
integrals of (2), and they define (n−1) mutually transverse submanifolds, passing
through each y = (c1, . . . , cn−1, yn). A submanifold transverse to the flow of (2)
is given by yn = cn. Fix N ∈ ZZ+ and define ∆ = 1

N
> 0. Take the subcollection

of submanifolds y1 = w1, . . . , yn = wn, where wi ∈ {0,±∆,±2∆, . . . ,±1}. Call
this collection of submanifolds S = {sα} and let U = U \∪α{sα}. U is the union
of (2N)n disjoint open sets {cβ}. Let s̃α = h−1(sα) and c̃β = h−1(cβ).

We can define the equivalence relation ' on L × M . For p = (l, x) and
q = (l′, x′), we say p ' q iff
1) l = l′,
2) x /∈ U iff x′ /∈ U ,
3) if x, x′ ∈ U , then x ∈ s̃α iff x′ ∈ s̃α and x ∈ c̃β iff x′ ∈ c̃β , ∀α, β.

' is clearly a local bisimulation on U , using the fact that no trajectories of
A enter U without either being initialized there or being reset there. Finally, '
by construction, has a finite number of equivalence classes.

4 Construction of bisimulations

In this section we elaborate on the geometric construction suggested in the pre-
vious section to show how to derive an analytical representation of the bisimu-
lation. The main geometric tool is foliations. The reader is referred to [7], [12]
for background.

Given an n-dimensional manifold M a smooth foliation of dimension p or
codimension q = n − p is a collection of disjoint connected subsets F = {sα}
whose disjoint union forms a partition of M . The foliation satisfies the property
that each point of M has a neighborhood U and a system of coordinates y :



U → IRp × IRq such that for each sα, the (connected) components of (U ∩ sα)
are given by yp+1 = c1, . . . , yp+q = cq, where ci ∈ IR. Each connected subset
is called a leaf of the foliation. We are interested in foliations whose leaves are
regular submanifolds of dimension p in M , and we construct the foliations using
submersions. A foliation globally defined by a submersion is called simple.

Let f ∈ X (M). We will define two types of simple co-dimension one foliations
with respect to f , called tangential and transversal foliations. For this we require
a notion of transversality of foliations.

A map h : M → N is transverse to foliation F of N if either h−1(F ) = ∅,
or if for every x ∈ h−1(F ), h∗TxM + Th(x)F = Th(x)N . A submanifold P on M
is transverse to foliation F of M if the inclusion map i : P → M is transverse
to F . A foliation F ′ is said to be transverse to F if each leaf of F ′ is transverse
to F . A foliation in general does not admit a transversal foliation, but a local
submanifold Σx of M such that Σx intersects every leaf in at most one point (or
nowhere) and TxΣx + TxF = TxM can be found.

A tangential foliation F of M is a co-dimension one foliation that satisfies
f(x) ∈ TxF, ∀x ∈ M ; that is, f is a cross-section of the tangent bundle of F .
A transversal foliation F⊥ of M is a co-dimension one foliation that satisfies
f(x) 6∈ TxF, ∀x ∈M . A tangential foliation is therefore an invariant of the flow,
whereas integral curves hit the leaves of a transversal foliation transversally.

We construct a collection Fi of n − 1 tangential foliations on K ⊂ M and
one transversal foliation Fn := F⊥ on K. Additionally, we require a regularity
condition on this collection of n foliations: each pair of foliations (Fi, Fj), i 6= j
is transverse. If the foliations are constructed via submersions, the following
lemma provides an algebraic test for regularity.

Lemma 1. Let M be an n-dimensional manifold and define hi : M → IR, i =
1, ...n, a collection of submersions on M . If dhi are linearly independent on
K ⊂M , then the foliations defined by h−1(IR) are mutually transverse on K.

We will not use all of the leaves of a foliation, but only some finite subset of
them. We discretize a simple co-dimension one foliation as follows. Let h : M →
IR be the submersion of a simple co-dimension one foliation F . Given an interval
[a, b], a gridsize∆ = b−a

N
> 0 with N ∈ ZZ+ , define the finite collection of points

W = {a, a+∆, . . . , b}. Then, h−1(W ) is the discretization of F on h−1([a, b]).
A bisimulation can be constructed using foliations by elaborating the follow-

ing steps:

1. Find (n − 1) simple co-dimension one tangential foliations on K ⊂ M , for
each fl, l ∈ L.

2. Construct either a local or global (on K) transversal foliation for each fl.
3. Check the regularity condition for mutual transversality on K.
4. Discretize the foliations to obtain a cover Cl with mesh µ, for each l ∈ L.
5. Construct the approximate system Aµ by approximating the enabling and

reset conditions, and the initial and final regions using Cl for each l.

Theorem 3 (Foliations). Given hybrid automaton A, µ > 0, and an open
U ⊂ M on which, ∀l ∈ L, fl ∈ X (M) is non-vanishing, suppose there exists a



set of n− 1 simple, mutually transversal co-dimension one tangential foliations
on U . Then there exists K ⊂M homeomorphic to the closed, unit n-cube and a
collection of stable partitions on K such that Aµ has a finite bisimulation.

Proof. Suppose that the collection of tangential foliations for each l is denoted
{Fi}

l
i=1,...,n−1 and the associated submersions are hl

i, i = 1, . . . , n − 1. We can
find a closed set K ⊂ U such that (1) hi(K) = [−1, 1] (by rescaling hi, if
needed), and (2) there exists hl

n independent of hl
i, i = 1, . . . , n − 1, for each

l ∈ L. Define the coordinates y1 = h1, . . . , yn = hn. Fix N ∈ ZZ+ and define
∆ = 1

N
> 0. Take the subcollection of submanifolds y1 = w1, . . . , yn = wn, where

wi ∈ {0,±∆,±2∆, . . . ,±1}. Call this collection of submanifolds S = {sα} and
let K = K \ ∪α{sα}. K is the union of (2N)n disjoint open sets {cβ}. Let
s̃α = h−1(sα) and c̃β = h−1(cβ).

As in the Local Existence theorem, we can define the equivalence relation '
on L×M . For p = (l, x) and q = (l′, x′), we say p ' q iff
1) l = l′,
2) x /∈ K iff x′ /∈ K,
3) if x, x′ ∈ K, then x ∈ s̃α iff x′ ∈ s̃α and x ∈ c̃β iff x′ ∈ c̃β, ∀α, β.

' defines a stable partition on K with a finite number of equivalence classes,
so we can invoke the Stable Partitions Theorem to obtain the bisimulation of
Aµ.

Example [Timed automata] A timed automaton has dynamics, in Pfaffian form
(see section 5), given by {dx1 − dt, . . . , dxn − dt}. There are n− 1 independent
tangential foliations defined by the submersions: x1 − x2 = c1, . . . , xn−1 − xn =
cn−1, where ci ∈ IR. A transversal foliation is xn = dn though the partition of [1]
uses more transversal foliations because of the nature of the enabling and reset
conditions: x1 = d1, . . . , xn = dn. Each of the leaves of the transversal foliations
are transverse to every integral curve. The partition for timed automata is exact,
in the sense that it is not necessary to over-approximate regions.
Example [Brunovsky normal form] Consider the Brunovsky normal form for
linear systems in IR4 given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = u.

The three tangential foliations are

x1 −
x2x4

u
+
x3x

2
4

2u2
−

x4
4

8u3
= c1

x2 −
x3x4

u
+

x3
4

3u2
= c2

x3 −
1

2u
x2

4 = c3.



A transversal foliation is x4 = c4. We confirm the regularity condition on the
foliations by checking the rank of the matrix:

Dh =











1 −x4

u

x2
4

2u2 −x2

u
+ x3x4

u2 − x3
4

2u3

0 1 −x4

u
−x3

u
+

x2
4

u2

0 0 1 −x4

u

0 0 0 1











.

This matrix is full rank for all u 6= 0; therefore, the partition is defined on all
IR4.

4.1 Topological conjugacy

Two vector fields f and g are topologically conjugate if there exists a homeo-
morphism h : M → N , and h takes integral curves φt of f to integral curves
ψt of g while preserving the parameter t. In particular, h ◦ φt(x) = ψt(h(x))
and g = h∗f . Suppose we have constructed a set of tangential and transversal
foliations {F1, . . . , Fn−1, Fn = F⊥) of K ⊂M for f .

Theorem 4. Suppose f and g are topologically conjugate vector fields with home-
omorphism h : M → N and the set of foliations {Fi} defines a stable partition on
l×K,K ⊂M for f . Then there exists a stable partition on l×h(K), h(K) ⊂ N
for g.

Proof. Suppose each foliation Fi is constructed by submersion ξi : M → IR.
Define the set of foliations {Gi} constructed by submersions ηi = ξi ◦h−1 : N →
IR. Then note that Lgηi = d(ξi ◦ h−1)(h∗f) = dξi · f = Lf ξi. Therefore, ηi

form (n− 1) tangential foliations and one transverse foliation for g, and if ξi are
independent, then so are ηi. Finally, the homeomorphism h maps fixed points of
f to fixed points of g, so a stable partition defined on K for f non-vanishing on
K, is well-defined for h(K) and g is non-vanishing on h(K).

5 Exterior differential systems

Tangential foliations of a vector field can be found using first integrals. A natural
setting for finding first integrals is provided by exterior differential systems. The
reader is referred to [10, 12] for background.

A set of independent one-forms ω1, . . . , ωq generates a Pfaffian system I =
{ω1, . . . , ωq} = {

∑

fkω
k|fk ∈ C∞(M)}. The Frobenius theorem says that if

I satisfies the Frobenius condition dωk ∧ ω1 ∧ · · · ∧ ωq = 0, for k = 1, . . . , q,
then it admits coordinates h1, . . . , hq such that I = {dh1, . . . , dhq}. In this case
the Pfaffian system is said to be completely integrable and the hi are the first
integrals of I . We adapt the proof of the Frobenius theorem to obtain our main
result on existence of bisimulations.



Theorem 5 (First Integrals). Given hybrid automaton A, µ > 0, and an open
U ⊂ M on which, ∀l ∈ L, fl ∈ X (M) is non-vanishing, there exists K ⊂ M
homeomorphic to the closed, unit n-cube and a collection of stable partitions such
that Aµ has a finite bisimulation.

Proof. The approach is to find a codistribution of one-forms {w2, . . . , wn} such
that wi = dhi = 0. Then we will show that the n − 1 independent functions
hi : K → IR are submersions and by construction first integrals. They will
provide n − 1 simple, co-dimension one tangential foliations, so we can invoke
the Foliations theorem to show existence of a bisimulation.

Fix l, and let f1 = fl. On some open V ⊂ U we can find n − 1 smooth
complementary vector fields f2, . . . , fn such that span{f1, . . . , fn} = IRn at each
x ∈ V and {f1, . . . , fn} is clearly involutive on V . Let φi

t(x) be the flow of fi.
Fix x0 ∈ V . There exists W , a neighborhood of 0 in IRn such that the map
G : W → V given by

(a1, . . . , an) 7→ φ1
a1

◦ · · · ◦ φn
an

(x0).

is well defined. Since the φ’s commute, we can change the order of integration

(

∂G

∂ai

)

0

=
∂

∂ai

φi
ai

◦ φ1
a1

◦ · · · ◦ φi−1
ai−1

◦ φi+1
ai+1

◦ · · · ◦ φn
an

(x0)

= fi(x
0).

Since the fi’s are independent, ∂G
∂ai

is nonsingular, so G−1 exists locally on V ′ ⊂

V by the Inverse Function Theorem. Let [h1(y), . . . , hn(y)]T = G−1(y), y ∈ V ′.
By definition

[

∂G−1

∂y

]

·

[

∂G

∂a

]

= I.

In particular,
∂hi

∂y
· f1 = 0

for i = 2, . . . , n. So h2, . . . , hn are the desired functions. Since G−1(y) has rank
n, the hi are independent submersions.

Remark: The map G is nonsingular everywhere that {fi} are a comple-
mentary, involutive collection of vector fields, and V ′ is as large as the range of
G.

5.1 Parallel composition

Bisimulation for hybrid systems is, in general, not closed under parallel compo-
sition of automata. Here we give a sufficient condition on the Pfaffian form of
the continuous dynamics of each control location so that if two hybrid automata
have a finite bisimulation, then so does their parallel composition. We refer the
reader to [6] for the definition of composition of hybrid automata.



Theorem 6 (Parallel Composition). Given hybrid automata A1 = (L1 ×

Mn
1 , Σ1, D1, Q

0
1, I1, E1, J1, Q

f
1) and A2 = (L2 ×Mm

2 , Σ2, D2, Q
0
2, I2, E2, J2, Q

f
2),

suppose there exist K1 ⊂M1,K2 ⊂M2 such that, via the First Integrals theorem,
bisimulations for A1µ and A2µ exist. If for each pair (l, l′), l ∈ L1, l

′ ∈ L2 there
exists a one-form of the Pfaffian system at l

h(dx1, . . . , dxn) − dt = 0,

and a one-form of the Pfaffian system at l′

h′(dxn+1, . . . , dxn+m) − dt = 0,

such that the one-form

h(dx1, . . . , dxn) − h′(dxn+1, . . . , dxn+m) = dα

is exact, and α is independent of the first integrals on K1 and K2 of the vector
fields at l and l′, respectively, then a bisimulation of (A1 ×A2)µ exists.

Proof. From the First Integrals theorem, we have n − 1 first integrals for each
fl, l ∈ L1 and m − 1 first integrals for each fl′ , l

′ ∈ L2, giving n + m − 2 first
integrals for the vector field f = [fl fl′ ]

T . But we require n + m − 1 first
integrals to construct the bisimulation. The missing first integral is provided by
the exact form α. Using the fact that h(dx1, . . . , dxn) has the form dxi

fi(x) for some

i = 1, . . . , n, and similarly for h′, it can be verified that α satisfies Lfα = 0.

6 Applications

A domain of models that we wish to apply this theory to is kinematic models of
rigid bodies. The symmetry in kinematics allows first integrals to be constructed.
We demonstrate the ideas with several examples.
Example [Planar Aircraft] Consider the coordination problem of two aircraft A
and B flying at a fixed altitude near an airport [11]. Each aircraft is modeled by
a hybrid system in which an automaton location corresponds to an atomic ma-
neuver performed with constant control inputs. The control inputs are changed
instantaneously upon switching control locations. The state is g ∈ SE(2) and X
is an element of the Lie algebra se(2). Assuming the aircraft does not exercise
it’s pitch control, the kinematic dynamics of aircraft A are given by ġ = gX
where

g =





cosφ − sinφ x
sinφ cosφ y

0 0 1





and

X =





0 −u1 u2

u1 0 0
0 0 0



 .



φ is the yaw angle, and the inputs u1, u2 control the yaw and velocity, respec-
tively, of the aircraft. There are two tangential foliations given by equations

u1x− u2 sinφ = cx

u1y + u2 cosφ = cy

and a transversal foliation given by φ = cφ. Letting the state variables and
inputs of aircraft B be φB , xB , yB , u1B , and u2B , analogous expressions for the
tangential and transversal foliations are obtained for aircraft B. An additional
tangential foliation is found for the parallel composition of the two systems given
by

u1BφA − u1AφB = cAB .

We check the regularity condition on the five tangential foliations and either of
the two transversal foliations. Namely,

Dh =

















u1A 0 −u2A cosφA 0 0 0
0 u1A −u2A sinφA 0 0 0
0 0 u1B 0 0 −u1A

0 0 0 u1B 0 −u2B cosφB

0 0 0 0 u1B −u2B sinφB

0 0 0 0 0 1

















.

This matrix has full rank so long as u1A, u1B 6= 0, so the partition is defined
globally on IR4 × T2. If, in addition, u1A

u1B
is rational, a finite bisimulation on

K × T2, for compact K ⊂ IR4, exists.
Example [Mobile robot] Consider the coordination problem of two mobile
robots A and B, operating in a closed workspace. The robots are modeled using
hybrid automata, with each control location corresponding to an atomic ma-
neuver, such as “move forward”, or “change direction”. Each location of the
automaton has a kinematic model of the associated maneuver using constant
control inputs. The control input changes instantaneously upon switching loca-
tions. The kinematic model for each robot, converted to chained form [8] is the
following:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

ẋ4 = x3u1.

There are three tangential foliations given by the equations

x2 −
u2

u1
x1 = c2

x3 −
u1

2u2
x2

2 = c3

x4 +
1

3

(

u1

u2

)2

x3
2 −

u1

u2
x2x3 = c4.



and a transversal foliation given by: x1 = c1.
To show these foliations define a bisimulation for each robot, we must check

the regularity condition:

Dh =











1 0 0 0
−u2

u1
1 0 0

0 −u1

u2
x2 1 0

0 −u1

u2
x3 +

(

u1

u2

)2

x2
2 −u1

u2
x2 1











.

This matrix has full rank so long as u1 6= 0 and u2 6= 0. Thus, the partition for
each robot is defined globally on IR4.

When we take their parallel composition, an extra tangential foliation is
introduced:

u1Bx1A − u1Ax1B = cAB .

A calculation similar to the previous example shows that a bisimulation for the
parallel composition exists.
Example [Linear systems] Finally, we consider a hybrid automaton in which
each location of the automaton contains an affine linear system. The dynamics
of each location are given by:

ẋi = λixi + bi, i = 1, . . . , n

where λi, bi ∈ IR. We assume for each i that λi, bi are not both zero. The tan-
gential folations are

1

λ1
ln |λ1x1 + b1| −

1

λ2
ln |λ2x2 + b2| = c1

...
1

λn−1
ln |λn−1xn−1 + bn−1| −

1

λn

ln |λnxn + bn| = cn−1.

A transversal foliation is given by

1

2λ1
|λ1x1 + b1|

2 +
1

2λ2
|λ2x2 + b2|

2 + · · · +
1

2λn

|λnxn + bn|
2 = cn.

We check the regularity condition as follows:

Dh =





















1
|λ1x1+b1|

− 1
|λ2x2+b2|

0 . . . 0

0 1
|λ2x2+b2|

− 1
|λ3x3+b3|

. . . 0

0 0 0
...

...
...

0 0 1
|λn−1xn−1+bn−1|

− 1
|λnxn+bn|

|λ1x1 + b1| |λ2x2 + b2| . . . |λn−1xn−1 + bn−1| |λnxn + bn|





















.

After some algebraic manipulation, we can show this matrix has full rank so long
as x1 6= − b1

λ1
, . . . , xn 6= − bn

λn
; that is, we avoid a set of hyperplanes. This divides

IRn into quadrants where the bisimulation can be constructed.



7 Symbolic execution theory

In this section we consider the implementation of the theory of approximate
verification in a symbolic model checking algorithm.

A theory T of A is a set of predicates that are assigned truth values by
the states of A. We write [p] ∈ Q for the set of states that satisfy predicate p.
〈R〉 denotes the set of formulas of T that define a region R ⊂ Q. A theory is
decidable if it can be decided for each predicate p of T whether [p] is empty. The
theory T permits the symbolic analysis of A if (1) T is decidable, (2) T is closed
under boolean operations and Pre and Post operations, and (3) 〈Qf 〉 ∈ T ,
〈Q0(l)〉 ∈ T , l ∈ L.

Suppose the tangential and transversal foliations on K for each l ∈ L are
defined by submersions hl

i(x) = ci. Let S be the class of formulas

hl
i(x) % ci

with ci ∈ IR, % = {≤, <,=, >,≥}, l ∈ L, i = 1, . . . , n, and all finite conjunc-
tions and disjunctions of these expressions. A finite automaton with its symbolic
execution theory is said to be effectively presented [5].

Theorem 7. Aµ with the theory S is effectively presented.

Proof. S is a symbolic execution theory of Aµ. For (1) the regions Q0
µ, Iµ, Jµ,

and Qf
µ in L ×K can be represented by formulas in S, (2) 〈Pre(R)〉 ∈ S and

〈Post(R)〉 ∈ S for 〈R〉 ∈ S by construction, and (3) S is decidable. Consider
an atomic formula ψ(x) for a closed region: ∃x.(c1 ≤ h1(x) ≤ d1) ∧ · · · ∧ (cn ≤
hn(x) ≤ dn). ψ(x) is equivalent to the quantifier free expression (c1 ≤ d1)∧ · · ·∧
(cn ≤ dn).

8 Critique and future work

This paper opens up avenues for applying model checking algorithms to the
verification of safety problems for hybrid systems consisting of coordinating au-
tonomous agents, and especially hybrid systems where the continuous level is
a kinematic model. Model checking may provide a vast improvement in effi-
ciency over simulation-based approaches for validating hybrid system perfor-
mance, though potential gains may not be as great as those reported for model
checking of circuit designs and protocols.

There are some limitations and obstacles to be overcome. First, it is likely
that model checking will still be a computationally expensive tool. Initially, the
number of autonomous agents will be small and the continuous dynamics will
be low- dimensional, at least until further breakthroughs appear on this frontier.
The approach becomes more interesting when more of the ”burden of control”
can be placed at the logic level. Some work that remains to be done is obtaining
the approximate automaton automatically, given the analytical representation
of its bisimulation.



The paper suggests some areas for future investigation. First, the paper de-
velops a local geometric theory of bisimulation. A global theory is needed. The
most promising approach is to use symmetry to obtain global first integrals.
Also, a theory of robustness of hybrid systems is needed in light of the approxi-
mations that are introduced to complete the verification. We plan to report on
these directions in future papers.
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Henzinger, and Charles Pugh, for their insights and many valuable discussions,
and to Peter Caines, whose talks at Berkeley initiated this investigation.

References

1. R. Alur and D. L. Dill. Automata for modeling real-time systems. In ”Proc. 17th

ICALP: Automata, Languages and Programming, LNCS 443, Springer-Verlag, 1990.

2. P. Caines and Y. Wei. The hierarchical lattices of a finite machine. Systems and

Control Letters, vol. 25, no. 4, pp. 257-263, July, 1995.

3. P. Caines and Y. Wei. On dynamically consistent hybrid systems. In P. Antsaklis,

W. Kohn, A. Nerode, eds., Hybrid Systems II, pp. 86-105, Springer-Verlag, 1995.

4. L.O. Chua, M. Komuro, and T. Matsumoto. The double scroll family - part I:

rigorous proof of chaos. IEEE Transactions on Circuits and systems vol. 33, no. 11,

pp. 1072-1097, November, 1986.

5. T. Henzinger. Hybrid automata with finite bisimulations. In ”Proc. 22nd ICALP:

Automata, Languages and Programming, LNCS 944, pp. 324-335, Springer-Verlag,

1995.

6. T. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Symposium on

Logic in Computer Science, pp. 278-292, New Brunswick, NJ, 1996.

7. H. B. Lawson. The Quantitative theory of foliations. Regional Conference Series in

Mathematics, no. 27. American Mathematical Society, Providence, 1977.

8. R. Murray and S. Sastry. Nonholonomic motion planning: steering using sinusoids.

IEEE Transactions on Automatic Control, vol.38, no.5, pp. 700-16, May, 1993.

9. J. Palis and W. de Melo. Geometric Theory of Dynamical Systems: an Introduction.

Springer-Verlag, New York, 1982.

10. W. Sluis. Absolute Equivalence and its Applications to Control Theory. Ph.D. the-

sis, University of Waterloo, 1992.

11. C. Tomlin, G. Pappas, J. Lygeros, D. Godbole, and S. Sastry. Hybrid Control

Models of Next Generation Air Traffic Management. In P. Antsaklis, W. Kohn, A.

Nerode, and S. Sastry, eds., Hybrid Systems IV, LNCS 1273, pp. 378-404, Springer-

Verlag, 1997.

12. F. Warner. Foundations of Differential Manifolds and Lie Groups. Springer-Verlag,

New York, 1983.


