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Abstract— This paper studies a theoretical problem of Notation 1: For a vectorz € R", the notationz > 0
whether continuous state feedback and affine feedback are (z = 0) meansz; > 0 (x; > 0) for 1 < < n. The notation

equivalent from the point of view of making an affine system z <0 (z < 0) means—z = 0 (—z > 0). For a matrix

defined on a simplex reach a prespecified facet in finite time. % .
We show that the two classes of feedbacks are equivalent. As 4 € R"™", the notationA 0 (A = 0) meansa;; > 0

a byproduct, new necessary and sufficient conditions for set ~ (ai; > 0) for 1 <4,5 <n.
ability based more directly on the problem data are obtained

Il. PROBLEM STATEMENT AND BACKGROUND

I. INTRODUCTION Consider anmn-dimensional simplexS with vertices

This paper studies a theoretical problem of whether contif®> V1> - - > Un and facetsfy, ..., 7, such that the index of
uous state feedback and affine feedback are equivalent fr er%Ch fapet is determined by_the vertex it does not contain.
the point of view of making an affine system defined on %et hi, =10,...,n be the unit normal vector o each facet
simplex reach a prespecified facet in finite time. In general,’ pointing outside of the simplex. Leky be the target set
such problems have been overlooked in the literature dﬁ

reachability problems via feedback control. This consast We consider the following affine control system &n

with the situation for stabilization, where it has long been i=Ar+a+ Bu=:f(z,u), z€S8, 1)
known that linear state feedback is the largest class of n . o
feedbacks needed to stabilize a linear system. whereA € R"*", a € R", andB € R™*™ with rank B) =

The problem studied is for an affine system to reach &- Let ¢u(t,zo) be the trajectory of (1) under a control
prespecified facet of a simplex in finite time and is take§tarting fromao € S and evaluated at time
from [8], [13]. Facet reachability problems on simpliceslan We are interested in studying reachability of the target
polytopes, with minor variations in assumptions, were firstom S by way of feedback control. A number of results
introduced in [6] and further studied in [7], [10], [11]. In ON finding feedbacks to solve reachability specifications
[8], [13], two sets of conditions calleidvariance conditions ©On Simplices have already appeared in the literature. In
and aflow conditionwere given as necessary and sufficienparticular, the following problem was proposed in [8], [13]
conditions for existence of an affine feedback to solve the Problem 1: Consider system (1) defined aft Find an
problem of reaching a facet of a simplex in finite timeaffine feedback control: = Kz + g such that for every
The invariance conditions can be shown to be necessaty € S there existl’ > 0 ande > 0 satisfying:
for continuous state feedback [7]. The necessity of the flow (i) ¢, (t,2¢) € S for all t € [0, T7;
condition is tied to its direct link to existence of closambp (i) ¢, (T, z) € Fo;
equilibria, assuming the closed-loop vector field is convex(iii) ¢, (t,z0) ¢ S forall t € (T, T + ¢).
Once one relaxes the class of controls to continuous stateCondition (jii) is interpreted to mean that the closed-loop
feedback, convexity is lost, and the necessity of the floynamics onS are extended to a neighborhood®fIn this
condition becomes problematic to establish. paper, we extend Problem 1 to continuous state feedback.
Therefore, it is the flow condition which is the focus ofThis is termed theeach control problem
attention. A key observation is that the flow condition can The following notation will be used. Define the set of

be bypassed if we triangulate the polytopic state space \rtices ofS to be V. Define the index seté:= {1,...,n}

a manner adapted to the system dynamics. Since typicalind J; := I\ {i}. Define the closed, convex cones
triangulations are performed by standalone softwarerigsa

that are not taylored to control problems, our requirement f Ci = { yeR" : hj-y<0,jel; }
a proper triangulation is no loss of generality. condS) := Cop=condv; —vg,..., 0 —Vo}.
Our results have implications for the study of piecewise I ) : .
linear and piecewise affine feedbacks to solve more generaID_eflnltlon 1. A point zo € § can reachFy with con-

. : s
reachability problems on polytopes and unions of polytope§iraint inS by continuous state feedback, denoted —
See, for example, [5], [1], [4], [15]. Fo, if there exists a continuous state feedbadl) such

that properties (i)-(iii) of Problem 1 hold. A s& C S can
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Let B denote then-dimensional subspace spanned by the Theorem 4:Supposej = (. If the invariance conditions
column vectors ofB (namely,B = Im(B), the image ofB).  are solvable, thes LN Fo by affine feedback.
Define the set In general it is difficult to extend results such as Theo-
O={zeR" : Az +acB}. rem 4. However, if one propitiously chooses a triangulation
of the state space which respects the underlying structure
It is fairly easy to prove tha® = () when Im(A) C B and of the system, then new necessary and sufficient conditions
a¢ B; O=R"whenImA) C Band a € B;andO is an for solvability of the reach control problem are obtainable
affine space, otherwise. Notice that vector fi¢ld:, ») can and, moreover, the boundary between affine and continuous
vanish onQ for an appropriate choice af, so O is the set state feedback can be clarified. We propose the following
of all possible equilibrium points of the system. Define  triangulation.
G—SNO Assumption 1:SimplexS and system (1) satisfy the fol-
' ’ lowing condition: if G # (), thenG is a k-dimensional face
Associated withg is its vertex index sefg := {i : v; € 0of S, where0 < s <n.

VvV NngGi. Remark 1:We have discussed that there are three possi-
Definition 2: Theinvariance conditionsequire that there bilities for O. If © = (), then one applies Theorem 4.
existug, . .., u, € R™ such that: is the entire state space then we will see in Remark 3 that

) ) there are easily derived necessary and sufficient condition
hj - (Avi+a+ Bui) <0, i€{0,...,n}, jE€L. () o solvability. The only interesting case is whéhis a r-
Eor Problem 1 the foIIqwmg necessary and sufficient condlymensional affine subspace with < n. This case arises,
tions have bgen established. S ) for example, wher(A, B) is controllable.
Theorem 1:[8], [13] We have S — Jo _by affine Based on the proposed triangulation, we can find several
feedback if and only if there exists an affine feeOIbaClﬁew sufficient conditions for existence of affine feedback.

uh(x)_ -~ Kﬁ + g with uy = g(?l)"r‘]"lg_” b: uh(”")l’ SUChl First we require a preliminary lemma which provides a
that: (a) The invariance con itions hold; (b) The closeablo sufficient condition for existence of a flow condition on a
system has no equilibrium if. olytope

A more computational set of necessary and sufﬁcierﬁ Lemma 5: Let P be a polytope. IO NP = 0, then there
conditions aré the following. s _ exists 3 € Ker(BT) such that3” (Ax 4+ a) < 0, Vz € P.
Theorem 2:[8], [13] We have S — F, by affine Theorem 6:Suppose Assumption 1 holds argH # 0.
feedback if and only if there exists an affine feedbac uppose the following conditions hold.
u(@) = Kz + 9 With wy = u(vy),..un = u(vn), and 1) The invariance conditions are solvable.
a vector¢ € R™ such that 2) BN condS) # 0
(8) The invariance conditions hold. '

S .
(b) The flow condition holds: ThenS — F; by affine feedback.
€ (Av; +a+ Bu;) <0, ie{0,...,n}. Proof: Let G = conv;,,...,v;_,,}, ax-dimensional
The invariance conditions (2) are suitable for affine feettba facet ofS where0 < x <n. Thus,Ig = {i1,...,ixs1}. Let
but for continuous state feedback, the following stronget € B N CON&S), b # 0, and select control values; such
conditions must hold. thaty(v;) = Av; + Bu; +a = b for all i € I (notice this is
Definition 3: Theinvariance conditionsor state feedback always achievable for; € O). Clearly, by the assumption
u(z) require that for allj € I andz € F;, that b € condS), y(v;) satisfies the invariance conditions
' for v; € VN O. We can select the remaining contralg
~ hj-(Az+ Bu(z) +a) <0. (3) forie {0,...,n}\ Ig such thaty(v;) # 0 (sincev; & O)
The following result is easily proved (see the analogousites and y(v;) satisfies the invariance conditions. Finally, using
in [7] for conditions (2)) and forms the starting point forrou {,,, . 4,} and the synthesis procedure in [7], construct
investigation of continuous state feedback. the affine feedback(z) = Kz + g.

Lemma 3:Solvability of the invariance conditions (3) is  Now let us show that a flow condition holds & First,
necessary to solve the reach control probl§m> F, by a flow condition trivially holds for the closed loop vector
continuous state feedback. field y(x) := (A+ BK)xr + Bg+a ong. Let 3, := —b.
We havesfy(v;) = —||b]|> < 0 for all i € Ig. By the
convexity ofy(x), this implies a flow condition holds od.

As we have seen in Theorem 2, the invariance conditiongow we claim that a flow condition holds on all &. Let
by themselves are generally not enough to establish that:— conv{v; | i € {0,...,n}\Ig}. Note thatPNO = §, so
the reach control problem is solvable by affine feedbaclaccording to Lemma 5, there exists € Ker(B”') such that
However, there is one extreme case when the invariangsr all = € P, 51 (Az+a) < 0. Define = a1+ (1 —a)B,
conditions are also sufficient to solve the problem. Thes®r somea € (0,1). Now considery; € V N O. Using the
depend on combining Theorem 1 with the fact tbats the  fact that3lb = 0, we haves” y(v;) = 87b = —alb||? <
only place in the state space where equilibria can appear. Sg Next considery; € V \ O. We haveg” (Av; + Bu; +
also [13]. a) = aff (Av; + Bu; + a) + (1 — a)BY (Av; + a). The

IIl. EXISTENCE OFLINEAR AFFINE FEEDBACK



term 37 (Av; + Bu; + a) is a constant of unknown sign, Proof: First we note that since rafK, ,) =¢—p+1
whereas we knovBl (Av; +a) < 0. Therefore it is possible and by assumption rafK, ,) = ¢ — p + 1, we have that
to selectx sufficiently small so thag” (Av; + Bu;+a) <0 M, , is non-singular. Next, we claim that,, , has a positive
for all v; € V'\ O. We have shown that for ali; € V, diagonal; that is(M,, ,),, >0fori=1,...,¢q—p+1. For
BT (Av; + Bu; + a) < 0, so by convexity of the vector if not, we would haveh; - b,4;—1 <0 forall j =1,...,n,
field y(z), a flow condition holds on all of. Therefore, by which implies0 # b,,,-1 € BN condS), a contradiction.
Theorem 2 with¢é = 3, the controlu(z) = Kx + g solves Now suppose there existsc R4~P+! with ¢ # 0 andc = 0
s -5, Fo by affine feedback. m such that)/, ,c¢ < 0. Define the vectog =Y, ,c € B. Note
One can also obtain sufficient conditions for existence dhaty # 0 because{b,,....b,} are linearly independent.
affine feedback even whefin condS) = 0. Of course, this Then M, ,¢ = H!' Y, ¢ = H] 5 < 0 implies h; - j <
will only be possible ifvy ¢ G (see Remark 3). This relies 0 for j = p,...,q. Also, h; - g = >3 ci(hj - b)) <0
on the idea that there are enough degrees of freedosh infor j & {p,...,q}. This implies0 # y € BN conds), a
with respect tog. We make the following assumptions. ~ contradiction. Thereforel/, , has the property that the only

Assumption 2: solution of the inequalities > 0 and M, ,¢ = 0 is ¢ = 0.
(A1) W.1.0.g.G = con{vy, ..., 0.1}, With 0 < K < m. By Theorem 7 this implies that{, , is a non-singular# -
(A2) BncongS) = 0. matrix. m

(A3) There exists a linearly independent $bt € BNC; | i € We will constructa sefys, . .., y+1 | y; € BNC;} which
Ig). permits a flow condition og by an inductive procedure. The

llowing lemma establishes the initial step of the indonti
Lemma 9:Suppose Assumption 2 holds. Then w.l.o.g.
y reordering the indiced,...,x + 1 and the indices
n+2,...,n), hito - b1 < 0.

Proof: Suppose not. That is,

The important new assumption is (A3) which says thal®
B and G are arranged with respect to each other so th%
there are enough degrees of freedomAnboth to span
a x + 1-dimensional subspace @ and at the same time
satisfy all the invariance conditions for the vertices Gf
For this to work, it is of course necessary thak m. We hj-bi=0, i=1,...,k+1, j=r+2,....,n. (4)
now show that under Assumption 2, the linearly independent

vectors{bi,. .., b1} can always be modified to obtain aBY Assumption 2 and Lemma 8/, .11 is a non-singular
new set{yi, ..., y.1 | ¥ € BNC;} which permits a flow A -matrix, so by Theorem 7(iii), there exists< 0, ¢ # 0,
condition ong. To do so, we introduce the following family SUch thatMy .i1c =: d < 0. Lety := Vi ,ic. Note
of matrices. Letl < p < ¢ < x + 1 and define Y # 0 since {b1,...,bs+1} are linearly independent. Now
y satisfiesH], .\ 7 = H{, Y1 x1¢c = Myepic < 0.
(hp bp)  (hp-bpy1) -+ (hp-bg) Combining with (4) we havéy; -y <O0forj=1,...,k+1
Mpq = : : : ) andh; -y < 0for j =rx+2,...,n. Therefore0 # 7 €
(hg by) (hg-bps1) - (hg-by) BncondS), a contradi_c;ion. u
] ) The following proposition shows how one can modify the
Define the matrices linearly independent sefb; € BNC; | i € Ig} to obtain
Hyyi=hyhgl, Yyq:=I[by byl a new set of velocity vectors satisfying both the invariance

conditions and also a flow condition @h
ThenM, , = H! Y, ,. We say a matrix\/ is a 2’-matrix Proposition 10: Suppose Assumption 2 holds. Then there
if the off-diagonal elements are non-positive; irg;; < 0  exists an assignmerfty; € BNC; | i € Ig} and a vector
for all i # j [2]. Sinceb; € BNC;, i € Ig, eachM, ,isa 3, € B such that3, - y; < 0 for all i € Ig.
Z-matrix. Also under the condition thd8 N condS) = 0, Proof: In the first step of the proof, we will construct
M, , adopts further algebraic properties. In particular, wan assignmenfy, € BN C; | i € Ig} such that for each
require the notion of an/-matrix. The following theorem ; ¢ Ig,
characterizes non-singula# -matrices (see [2], Ch. 6).

Theorem 7:Let M € R*** pe a 2-matrix. Then the Gpie{n+2,....n})  hyp, -4 <0. ()
following are equivalent: In the second step of the proof, we will show that the sets
(i) M is a non-singulatZ -matrix. con{ys,...,yx+1} and{0} are strongly separated, and this

(i) R(A) > 0 for all eigenvalues\ of M. will lead to the desired result.

(iiiy There exists a vecto¢ = 0 in R* such thatM/ ¢ = 0. For the first step, the proof is by induction on an index

(iv) The inequalitiesy = 0 and My =< 0 have only the [=0,...,«. Following Assumption 2, letb,,...,b.+1} be
trivial solutiony = 0, and M is non-singular. a linearly independent set satisfyihge BNC;, i € Ig. Set

(v) M is monotone; that isMy = 0 impliesy = 0 forall [ := 0 andy; := b;. Assuming indices have been ordered
y € R, according to Lemma 9, we have th@gf; } satisfies the prop-

(vi) M is nonsingular and/ ~! is a non-negative matrix. erty (5). Now suppose there exis{g;, ..., y;.1} satisfying

Lemma 8:Suppose3 NncondS) = 0. Let1 < p < ¢ < (5) and there remaifib; 2, ..., b.+1} which have not been
k + 1 and suppos€b,,...,b, | b € BNC;} are linearly modified. If w.l.o.g. (by reordering indicds+ 2, ...,k + 1)
independent. Thed/, , is a non-singularZ-matrix. there existd;, - satisfying property (5), then sgt, s = b4



and the induction step is done. Suppose instead that no suctiRemark 2: An interesting aspect of Theorems 6 and 11
b; exists. That is, is that one is able to show existence of a flow condition on
S without explicitly computing controls for the vertices. In
this manner the problem of finding controls to satisfy the
Now we claim that w.l.o.g. (by reordering indicds+ invariance conditions and that of satisfying a flow conditio
2,...,k + 1) there existh;,» andq € {1,...,1 + 1} such are decoupled. This property is achieved due to the method
that b, - b2 < 0. of triangulation of the state space relative@®

For suppose not. Then sinégc 5N C;,

h;jb; =0, 1=1+42,....,k+1, j=k+2,...,n. (6)

IV. EXISTENCE OFEQUILIBRIA

hj-b; =0, 1=142,...,k+1, j=1,...,04+1. (7) In this section we explore cases when equilibria appear
on G when an assignment of a continuous state feedback
y(x) is made onS, so that the reach control problem is not
solvable by continuous state feedback. Particular attenti

is given to the case wheBi N condS) = 0. Let u(x) be

a continuous state feedback defined ®nWe restrict our
attention to such controls which yield unique solutionsn
and which satisfy the invariance conditions (3) &nDefine

the closed-loop system

Now considerM; s .41 formed using the linearly inde-
pendent vectors{b;;2,...,b.+1}. By Assumption 2 and
Lemma 8, it is a non-singulavZ-matrix. By Theorem 7(iii),
there existsc < 0, ¢ # 0 such thatM; s ,.11c < 0.
Let ¥ := Yii2.11c. Notey # 0 since {bji2,...,bt1}
are linearly independent. Now satisfiesHlﬂMHy =
Hﬁrlwliflﬁﬁﬂc = My2,.11¢c < 0. Combining with
(6)-(7) we haveh; -y < 0forj =1+2,...,x+1 and
hj-g=0forj=1,....,1+1,k+2,...,n. Therefore, & = Az + Bu(x) + a =: y(x). (8)
0 #7 € BncondS), a contradiction.

Consequently we know that w.l.0.g. (by reordering indice
{1,...,1+1}) for b, there existsy € {1,...,l+ 1} such
thath, - b;12 < 0. Now definey; 2 := oy, +bi12 € B. Even
thoughh, - y, > 0, we haveh, - b2 < 0, SO > 0 can
be selected sufficiently small so thaf - (ay, + bi+2) < 0.
Also, we know that; - (ay, + biy2) < 0forj € I\{i+2,q}
sinceh; -y, <0 andh; - b2 <0forall j € I\ {l+2,q}.
Therefore,y; 12 # 0 satisfies the invariance conditions at
2. Also, by assumption of the induction step, there existé’
pq € {k+2,...,n} such thath, -y, < 0. Sinceh,, b2 <
0, we obtainh,,, - (ay, + bi2) < 0. Thereforey;, » satisfies
property (5) withp;yo» = p,. This completes the induction

Eirst we consider an obvious necessary condition for the
problem to be solvable, which is that one must be able to
assigny(v;) # 0 at each vertex; € G.

Proposition 12: Suppose Assumption 1 holds andd€t:)
be a continuous state feedback such that the closed-loop
system has unique solutions and the invariance conditions
hold. If at somei € Ig, BN C; = 0, then the closed-loop
systemz = Az + Bu(z) + a has an equilibrium point at
€g.
Remark 3:When vy € G, then Proposition 12 immedi-
ately implies that a necessary condition for existence of a
continuous state feedback is tHat con&S) # 0.

From Proposition 12 a necessary condition for a solution

step. . ; )
l\rl)ow we consider the second step of the proof. Lef thgt there exists Sébi. € BNG; | b #0,i € Ig}. In the_
{41, .. yrs1} be the (not necessarily linearly independent pecial case ofy € G this completely settles the question

f necessary conditions since in that case we require that

N condS) # 0. More generally, ifB N condS) # 0, the
guestion is settled because of Theorem 6. Therefore, other
necessary conditions for a solution are studied in thiseect
under the following assumptions.

assignment of feasible velocity vectors fof, i € Ig,
constructed in the first step and satisfying property (5
Consider the sef := con{ys, ..., yx+1} C B. We observe
that0 ¢ C because no convex combination gfs can sum
to zero by property (5). (For considgr= ", ¢;y;, ¢; > 0, . )
and) ", ¢; = 1. Suppose w.l.o.g. that > 0. By assumption Assumption 3:

E1l) W.l.0.9.G =confuy,...,v.41}, With 0 < k < n.
dp € 2,...,n}suchthat,, -y; < 0.Also,h,, -y; <0 ( Loees Brtl
pLE (Rt ... n}su e Vi S (E2) B condS) =0,

forall ¢ = 2,...,k+ 1, sOh,, -7 < 0 which implies ) . .
7 + 0.) Now applying the Sepgrating Hyperplane TheoreFr"lz'S) The maximum number of linearly independent vectors
inany set{b; € BNC; | i € Ig}ism* with1 < m* < k.

12],p.98), th istsah I i d _ . .
([12],p.98), there exists a hyperplaheseparating’ and{0} Asssumption (E3) says there does not exist a full linearly

stronegTin B. That is, there existg; € B such that for all independent sefb; € BN C; | i € Ig} as in Assumption 2
yel, fiy<O. . ot ! - . ) '
The proof of the following theorem is analogous to thagEhés) ?g&?&ngxal:/yb?:g;g\?g dW\r/]vaeﬁr;mﬂ;,rl!r;hg?li(;hV\f;ie
Of';'rr?eec?rreer:] 16i:Suppose Assumption 1 holds ar@g — defined (fordim(sp{b; € BNC; | i € Ig}) € {0, ..., n+1}
coMV{vr, ..., a1}, With 0 < k< m. Suppose the fol- g)e(i]l?se)safln|te set of integers for which the maximum always

lowing conditions hold. . .
. . . Given1 < m* < k as above, w.l.o.g. let
1) The invariance conditions are solvable.

2) There exists a linearly independent dét € B N {b1,... b= | b € BNC;}

Ci |SZ€ Ig} . be one such maximal linearly independent set. By con-
ThenS — Fq by affine feedback. struction, everyb; € BNC;j for j = m* +1,...,6 + 1



satisfiesb; € sp{b1,...,bm+}. Indeed for eacly € {m*+ 3 € sp{Bx++1,...,0m} such that

1,...,k + 1} there existsl < x; < m* such that w.l.o.g. . *
(reordering indices., ..., m*), BNC; C sp{bi,... by}, hj-B =<0, J=r+2...,n. (12)
and sfbi,...,bs;} is the smallest such subspace #1  Then fora > 0 we can formd/. ., == V.., + ap.
Therefore we can say; = dim(B N C;). Now consider Using (11) and (12)q can be selected sufficiently small so
B N Cpn+y1. Following the arguments above, let” := thath; - b/, < 0forall j = 1,....k" k" +2,...,n.
dim(BNCp+41) and w.l.o.g. (reordering indicels ..., m*)  That is, b.,;, € BN Cyy1. Moreover, with 3 # 0,
assumeB N Crrq1 C SP{bu, ..., bes}. If k* < m*, swap  {by,...,b,., b/, } is a linearly independent set. This con-
the indicesm* +1 <= «* + 1. (The index swap is to tradicts thatB N C.-;1 C sp{bi,...,b.~}. The conclusion
make incrementing of indices easier below). Finally selegt that there does not exigt e SP(Brss1s---sBmts B#0,
any vectorsg; € B, i = k* + 1,...,m such that satisfying (12).

B=8pbr, .. bues Breirseres ) @) Now let y(xz) be any continuous closed-loop vector field

on S satisfying the invariance conditions (3). Using (9), for
With our reordering of indices we have that for all. ., € =z € G, let

BNCuri1, berp1 = c1b1 + - + curbes. Also define
+1 +1 C101 & y(x) = ¢ (:E)b1 e (x)bm + ﬁ(x) , (13)

where 5(z) € sp{Bx++1,---,0m}. From (3) we know that
The following results will show that there exists an equilib for eachz € G*, h; -y(z) <0, for j = k*+2,...,n. Using

rium in G* for any closed-loop vector fielg(x) satisfying (10) and (13) these conditions become

the invariance conditions of. We begin by isolating the
defect in available degrees of freedomBnwith respect to

g*. but we have just shown that no such non-zgrexists, so

Proposition 13: Suppose Assumptions 1 and 3 hold. Sup'—t must be thati(x) = 0. Therefore for each: € g*, h; -

pose that the closed-loop systein = y(x) satisfies the y(w) =0 for _j - " 4.—.2""’71’ as desired. =
invariance conditions. Then for all € G*, Remark 4:Proposition 13 has the following intuitive

meaning. For simplicity suppose) = 0. We know from
hj-y(x) =0, j=Kk"+2,...,n. the geometry of the simplex that the state space can be

) ) decomposed as follows:
Proof: W.l.og. let a basis oB be as in (9) and select

G* :=conuy, ...,V 41}-

hj-B(x) <0, j=Kk"+2,...,n,

bli"+1 e BN Cn*+1 such that R" = aﬁ{v07 cee ,U,{*+1} D Sp{hﬁ*+27 ceey hn} . (14)
byt = C1by + -+ + Crr s e #0. Therefore, Proposition 13 says that
(Such a vector exists by the definitionof and convexity of sp{by, ..., be} C aff{vo, ..., veeqa}.

BNCxy1.) Definec := (c1,...,cex). Sincef{by, ..., b}
are linearly independent art8incondS) = 0, by Lemma 8,
M, .+ is a non-singular# matrix. Consider the following y(x) € sp{by,...,bur}.
invariance conditions

Moreover, for allx € G*,

Geometrically, G* lies in aff{vg,...,ve41}, @ k% + 1
Hf,{*bmﬂ = HEK*YM*C =M xc=0. dimensional affine space iR", and B provides toG* only
k* usable directions (which also lie in &ffy,..., v +1})

By Theorem 7(v) and the fact that # 0, we obtainc < 0.

. . . 7 to resolve all its invariance conditions.
Now consider the invariance conditions

Proposition 13 captures the fundamental geometric struc-
ture of the problem which forces the existence of an equi-

hj - brr1=h;- <Z Cibi) <0, j=K"42,...,n. librium. The proof that an equilibrium exists can now be
i=1 executed in a number of different ways, including index

Every term in the sum is non-negative, sirtge=s BNC; and theory and the Brouwer Fixed Point Theorem. A particularly
¢; < 0, and so we obtain efficient proof can be obtained based on Sperner's Lemma

K*

. N - [14].
hybi=0, =1 w7+l j=r"+2...n. (10) Let T be a triangulation ofn-dimensional simplexsS.
Now by Theorem 7(iii) there exists = (c},...,c..) such A proper labelingof the vertices ofT is as follows: (P1)
that¢’ < 0 and My .«¢’ < 0. Defineb,.. | := Y1 .«¢/. The vertices of the original simplexS have n + 1 distinct
vector H' b/.. ., € R™ has the following sign pattern: labels. (P2) Vertices off on a face ofS are labeled using

only the labels of the vertices forming the face. Given a
(= =%,0,...,0) (11) properly labeled triangulation &, we say a simplex iff is
where thex appears in theﬁ*—f—l)th component. In particu|ar distinguishedf its vertices have alh + 1 labels. Sperner’s
b..., € BNC,-41 and the firsts* invariance conditions are 1emma says that every properly labeled triangulationSof
strictly negative. Now suppose we find a non-zero vectdias an odd number of distinguished simplices.



Theorem 14:Suppose Assumptions 1 and 3 hold. LetS S, Fo by affine feedback. Suppose# 0. Also, suppose
u(z) be a continuous state feedback such that the closed-logpm condS) # 0. Then by Theorem &S S, Fo by affine
systemz = Ax + Bu(m) +a = y(x) has unique solutions feedback. Instead suppose # ) and B N condS) = 0.
and the invariance conditions (3) hold. Then the close@-loosupposev, € G. Then by Proposition 12, the closed-loop

system has an equilibrium point .

Proof: By assumptionG = con{vy,...,v.41}. If
k > m, redefineG as G = confuvy,...,v,t1}. Define
the simplexG* using the construction above and let :=

system has an equilibrium point € S, a contradiction. In-
stead supposey ¢ G and w.l.0.9.G = convy, ..., V41 }s
with 0 < x < n. Suppose there does not exist a linearly
independent sefth; € BNC; | i € Ig}. Then by Theorem 14

{1,...,x* + 1}. Now we show how to obtain a properthe closed-loop system has an equilibrium paigt € S,

labeling of G*. We begin by defining the sets:
Qr:={ze g | h;-ylz) >0}, iel”.

a contradiction. Instead suppose there does exist a linearl
independent sefth; € BNC; | i € Ig}. Then by Theorem 11,

s -2 Fo by affine feedback. [ |

Observe that; € Q7 andv; ¢ Qj, i,j € I*, i # j
(for otherwise, we would have(v;) € BN condS) which
either contradicts tha8 N condS) = 0 or implies y(v;) is
an equilibrium). Therefore, we either immediately conelud
there is an equilibrium on a vertex ¢f* or we conclude
that inclusion in a seQ} provides a distinct label for the
verticesv; € G*. This satisfies (P1) of a proper labeling of [
G*. Next, let T be any triangulation off* and consider a
vertexv of T which is not a vertex off* and lies in0G*.
W.l.o.g. letv € confuy,...,v41} for somel <1 < k*.
Then it must be that € QO for somel <k <I+1 (by the 5
same reasoning that otherwig&) € BN condS)). Clearly
this labeling ofv satisfies the second condition (P2) for a
proper labeling. Finally, for vertices of T in the interior of
G*, any labelQ} such thath; - y(v) > 0 can be used (at least [6]
one such exists because if all-y(v) < 0, ¢ € I*, it implies
h;-y(v) <0foralli=1,...,nory(v) € BNcondSs)).
Now for eachk > 0, k € Z, define a triangulation
T* of G* such that each simplex Sf* has diameter;.
Apply Sperner’s lemma for eacl¥ to obtain a distinguished
simplex confof,..., vk} and its baricenter”. {z*}
defines a bounded sequencedh which has a convergent
subsequence, again denotgd'}. We havelimy .., 2F =
T € G*, sinceG* is closed. Also, by constructionf’ — 7,
i € I*. By Sperner’s lemma we know that - y(vF) > 0,
1 € I*, so by continuity ofy(z) this impliesh; - y(z) > 0,
¢ € I*. Combined with Proposition 13, we obtain that
—y(T) € BncondS) = 0, which impliesz € G* is an
equilibrium of the closed-loop systein= y(z). [ ]

(4

(7]
(8]
El
[20]
[11]

[12]

V. EXISTENCE OFCONTINUOUS STATE FEEDBACK 13

In this section we collect the previous results to resolve
the boundary between continuous state feedback and aﬁiﬁg]
feedback.

Theorem 15:Suppose Assumption 1 holds. Then the fol{15]
lowing statements are equivalent:

1) S -2 F, by affine feedback.
2) § s, Fo by continuous state feedback.
Proof: (1) = (2) is obvious.

(2) = (1) Suppose there exists a continuous state feedback
u(x) such that the closed loop system (8) has a unique
solution for each initial condition inS and Problem 1 is
solved usingu(z). By Lemma 3 the invariance conditions
(2) must be solvable. Suppose= (. Then by Theorem 4,

[16]
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