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Abstract: We propose a new model of the oculomotor system, particularly, the slow eye
movement systems. We show that the system can be best understood as an application of
adaptive internal models. The outcome is a simple model that includes the interactions between
the brainstem and the cerebellum and that accounts for behaviors in a number of oculomotor
experiments. Our model suggests that a possible role of the cerebellum is to embody adaptive
internal models of persistent, exogenous disturbance signals acting on the body and observable
through the sensory error signals it receives.
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1. INTRODUCTION

The purpose of this paper is to derive a unified model
of the oculomotor system based on adaptive internal
models [Nikiforov, 1996, 1997, 1998, Serrani and Isidori,
2000, Serrani et.al., 2001, Marino and Tomei, 2011, 2013].
Control-theoretic models of the oculomotor system have a
long history [Robinson, 1981], and recent models include
[Zhang and Wakamatsu, 2001, Pola, 2002, Glasauer, 2003].
Unfortunately, existing models are still limited in the
behaviors they capture. This may be partly due to the fact
that a suitable computational model of the cerebellum,
an important component of the oculomotor system, is not
available. Since the 1990’s, neuroscientists have explored
the idea that the cerebellum may embody internal models
of the systems it controls [Gomi and Kawato, 1992, Kawato
and Gomi, 1992, Wolpert et.al., 1998, Porrill, et.al., 2004,
Dean and Porrill, 2008].

The last 25 years of developments in control theory have
meanwhile positioned the internal model principle [Francis
and Wonham, 1975, 1976] to be relevant in biological prob-
lems: a biological system must be able to reject incoming
disturbance and reference signals using only sensory error
measurements with limited (or no) knowledge of the plant
model. We exploit these developments in control theory to
present a unified control-theoretic model of the oculomotor
system (specifically the slow eye movement systems) that
incorporates a computational model of the cerebellum.

The premise of our model, that a possible role of the
cerebellum is to provide internal models of persistent,
exogenous error signals acting on the body, has been
suggested for the oculomotor system in [Cerminara et.al.,
2009, Churchland et.al., 2003, Lisberger, 2009]. Experi-
mental evidence supporting this idea comes in four forms.
First, there is the so-called predictive capability of the
smooth pursuit system - to track moving targets with zero
steady-state error [Bahill and McDonald, 1983, Deno et.al,
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1995], despite up to 100ms of processing delay of the retinal
error signal. Second, it has been shown experimentally
that exogenous signals that can be modeled by low-order
linear exosystems are easily tracked, while unpredictable
signals are not [Bahill, 1983, Collewijn and Tamminga,
1984, Deno et.al, 1995]. Third, in an experiment called
target blanking, a moving target is temporarily occluded,
yet the eye continues to move [Cerminara et.al., 2009,
Churchland et.al., 2003]; researchers postulate the brain
has an internal model of the motion of the target. Fourth,
in an experiment called the error clamp, the retinal error is
artificially clamped at zero using an experimental appara-
tus that places the target image on the fovea [Barnes et.al.,
1995, Morris and Lisberger, 1987, Stone and Lisberger,
1990]. Despite zero retinal error, the eye continues to track
the target, suggesting that extraretinal signals drive the
pursuit system.

This paper is a companion to [Broucke, 2019]. That
paper presents a proof of correctness, a discussion of the
control architecture and corresponding neural circuit, and
simulations based primarily on neurological and lesion
experiments. This paper presents a complementary set of
simulations focusing primarily on behavioral experiments.

2. ERROR MODEL

We consider only the horizontal motion of one eye. The
eyeball is modeled as a sphere suspended in fluid and sub-
ject to viscous drag, elastic restoring forces, and the pulling
of two muscles [Robinson, 1981, Sylvester and Cullen,
1999]. A reasonable appproximation of the dynamics is
obtained by assuming that the inertia of the eyeball is
insignificant. Letting x be the horizontal eye angle and u
be the net torque imparted by the two muscles, we obtain
the standard first order model for the oculomotor plant

ẋ = −Kxx+ u . (1)

The parameter Kx > 0 is constant (or very slowly varying)
such that the time constant of the eye is τx := 1/Kx ≃ 0.2s
[Robinson, 1981].



It has been shown experimentally that proprioception from
the eye muscles plays a negligible role in eye movement
[Guthrie et.al., 1983] and that eye position information is
available in the brainstem via a brainstem neural integrator
modeled as a leaky integrator [Skavenski and Robinson,
1973]. In control theoretic terms, the neural integrator is
an observer

˙̂x = −K̂xx̂+ u , (2)

where x̂ is an estimate of the eye position and K̂x ≃ Kx

[Skavenski and Robinson, 1973] (henceforth we drop the
hat). Aside from a momentary perturbation (a push on
the eyeball), x̂(t) well approximates x(t).

Consider a reference signal r representing the angle of
a target moving in the horizontal plane. The reference
signal is regarded as a persistent unmeasurable distur-
bance acting on the oculomotor system. Let xh and ẋh be
the horizontal head angular position and angular velocity,
respectively, with respect to an inertial reference frame.
The retinal error is defined to be

e := αe(r − xh − x) . (3)

Notice that r − xh − x is the target angle r relative to
the gaze angle xh + x. For sufficiently distant targets,
this relative angle is proportional (through a scale factor
αe ∈ R) to a linear displacement on the retina from the
fovea to the target. Since the goal of the slow eye movement
systems is to drive e to zero, for the purposes of the present
paper we set αe = 1, since for αe 6= 1 we can always
redefine the error to be e′ = e/αe.

We assume that the control input u takes the form

u = ub + uc ,

where the brainstem component ub is generated through
a brainstem-only pathway, while the cerebellar component
uc is generated by a side pathway through the cerebellum.
The vestibular system provides a measurement of the head
angular velocity ẋh to the brainstem but not directly to
the cerebellum [Gerrits, 1989, Lisberger, 2009], and it does
not provide the head position xh [Robinson, 1981]. Finally,
we assume that the cerebellum receives a measurement of
the retinal error e (or a scaled version of it) [Basso et.al.,
2000, Glasauer, 2003, Krauzlis, 1997].

Remark 1. Each of the eye movement systems has driv-
ing signals, signals required for computation of ongoing
eye movement. Head velocity is a driving signal for the
vestibulo-ocular reflex (VOR). The retinal slip velocity,
the derivative of retinal error, is often assumed to be
the driving signal for the smooth pursuit system. On the
other hand, it is known that in primates, the slow eye
movement systems share the same neural pathways in the
brainstem and cerebellum, so it is plausible these systems
share certain driving signals. In this paper we assume
that the common visual driving signal shared by the slow
eye movement systems is the retinal error; experimental
evidence supporting our assumption is reported in [Jones
and Mandl, 1979, Pola and Wyatt, 1980, Mandl et.al.,
1981, Wyatt and Pola, 1983, Berthoz, 1988, Shelhamer
et.al., 1994, 1995, Zhou et.al., 2001, Eggers et.al., 2003,
Blohm et.al., 2005]. An fruitful investigation would be to
modify our model such that the retinal slip velocity is the
driving signal. ⊳
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Fig. 1. VOR with a sinusoidal head rotation. The top left
figure shows the head (yellow) and eye (blue) angles.
The bottom left is the retinal error (red). The middle
figures are ub and uc, and the right figures are the
parameter estimates Ψ̂1 and Ψ̂2.

Define αx ∈ R and αh ∈ R to be constant (or very
slowly varying) parameters, and define the brainstem-only
pathway of the control input to be

ub = αxx̂− αhẋh . (4)

The role of ub is to suppress a portion of the head velocity
disturbance in the error dynamics and to approximately
cancel the drift term in the oculomotor plant dynamics.

Finally, assuming that x̂(t) ≃ x(t) for t ≥ 0, we obtain the
open-loop error model

ė = −K̃xe− uc + ṙ + K̃xr − (1− αh)ẋh − K̃xxh , (5)

where K̃x := Kx − αx.

3. MODEL OF THE OCULOMOTOR SYSTEM

As mentioned, the premise of our modeling approach is
to treat the cerebellum as an adaptive internal model
[Nikiforov, 1996, 1997, 1998, Serrani and Isidori, 2000,
Serrani et.al., 2001, Marino and Tomei, 2011, 2013]. First,
we assume the reference signal r as well as the head
position xh can be modeled as the outputs of an unknown
linear exosystem. Let η ∈ R

q be the exosystem state and
define the exosystem

η̇ = Sη , r = D1η , xh = D2η , (6)

where S ∈ R
q×q, D1 ∈ R

1×q, and D2 ∈ R
1×q. Then (5)

takes the form

ė = −K̃xe− uc + Eη (7)

where E := D1S + K̃xD1 − (1−αh)D2S − K̃xD2 ∈ R
1×q.

Using the technique in [Nikiforov, 1998], the exosystem
can be transformed to

ẇ = (F +GΨ)w , (8)

where (F,G) is a controllable pair, F is Hurwitz, and
Eη = Ψw. Thus, (7) becomes

ė = −K̃xe− uc +Ψw . (9)

The parameters (K̃x,Ψ
T) ∈ R

q+1 capture all unknown
model and disturbance parameters.

The adaptive internal model consists of an internal model
of the disturbances acting on the oculomotor system
combined with a parameter estimation process to recover
the unknown parameters. Let ŵ and Ψ̂ be estimates of w
and Ψ, respectively. The controller is
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Fig. 2. VOR with a step input in head velocity for the
values αh = 0.3, 0.5, 0.8 (blue, red, yellow). The
size of the overshoot in the eye velocity is inversely
proportional to the value of αh.

˙̂w= Fŵ +Guc (10)

uc = uimp + us . (11)

The controller uimp is selected to satisfy the internal

model principle: uimp = Ψ̂ŵ. The adaptation law for the

parameter estimates is
˙̂
Ψ = eŵT. The controller us is

selected to make the closed-loop system asymptotically
stable. We choose us = Kee, with Ke > 0 sufficiently
large (see Serrani and Isidori [2000], Serrani et.al. [2001]).

The overall model of the oculomotor system is:

ẋ=−Kxx+ u (12a)

˙̂x=−Kxx̂+ u (12b)

˙̂w= Fŵ +Guc (12c)

˙̂
Ψ = eŵT (12d)

ub = αxx̂− αhẋh (12e)

uc = Ψ̂ŵ +Kee (12f)

u= ub + uc . (12g)

In the following sections this model will be validated
under a number of experimental scenarios. The nominal
parameter values for the simulations are: q = 2, Kx = 5,
αx = 0.95Kx, αh = 0.65, Ke = 5, λ1 = 1, and λ2 = 1.

4. VESTIBULO-OCULAR REFLEX

The purpose of the vestibulo-ocular reflex (VOR) is to keep
the gaze (sum of eye and head angles) stationary when the
head is moving. A standard VOR experiment is to apply an
involuntary sinusoidal head rotation: xh(t) = ah sin(βht),
where ah, βh > 0. In order that vision not be smeared
out, the eye must move opposite to the head rotation.
The brainstem already provides part of this disturbance
suppression through the term −αhẋh. In our model the
cerebellum supplies the remaining disturbance suppression
required.

Figure 1 shows simulation results for the values ah = 15,
βh = 0.1Hz for t ∈ [0, 10], and βh = 0.2Hz for t ∈ [10, 20].
The initial condition on all states is zero except the eye
angle, which starts at x(0) = −10◦. We also plot the retinal
error, the cerebellar and brainstem components of the
control input, and the parameter estimates Ψ̂1 and Ψ̂2. As
expected, the eye moves opposite to the head rotation, and
it adapts to the frequency of the sinusoidal disturbance.
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Fig. 3. VOR cancellation. The signals are the same as in
Figure 1. Despite the fact that the eye is stationary,
ub and uc are not zero.

Transients of the VOR in monkeys were investigated in
[Lisberger and Pavelko, 1986]. It was discovered that the
overshoot in the eye velocity to a sudden rotation of the
head was larger when the VOR gain (our parameter αh)
is smaller. In the experiment, a light spot at r = 0
on which the monkey fixates (in another otherwise dark
room) is strobed. Here we assume the subject attempts
to continuously fixate the eyes on a target at r = 0, even
when the light spot is extinguished. The head position is
a ramp function: xh(t) = 0 for t ∈ [0, 1] and xh(t) = −30t
for t ∈ [1, 5], resulting in a head angular velocity of -30◦/s.
Figure 2 illustrates that our model recovers the behavior
in [Lisberger and Pavelko, 1986]. The blue curve is the eye
angular velocity for αh = 0.3, red is with αh = 0.5, and
yellow is with αh = 0.8. We see clearly that smaller VOR
gains result in larger overshoots.

In an experiment called VOR cancellation, the head is
rotated involuntarily while the eyes must track a head-
fixed target. Suppose the head angle is xh(t) = ah sin(βht)
with ah, βh > 0, and the target angle is r(t) = xh(t).
Then the error is given by e = −x. The role of uimp in
this case is to cancel the disturbance αhẋh introduced
by the brainstem component ub. Figure 3 illustrates the
results for VOR cancellation using our model. Particularly,
we note that the response amplitude of the brainstem
component is not reduced during VOR cancellation, as
experimentally confirmed in [Buettner and Buttner, 1979,
Keller, 1975].

Next, we consider what happens when the head is rotated
in darkness. In this case the cerebellum is relatively
inactive due to a lack of visual input [Lisberger, 2015].
As such, we assume in darkness uc = 0, so the eye
dynamics evolve according to a brainstem-only control
input. Assuming that x(t) ≃ x̂(t), we have

ẋ = −K̃xx− αhẋh . (13)

Assuming K̃x > 0, the steady-state response xss(t) has
the form

xss(t) = −αhah
β2
h

K̃2
x + β2

h

(
sin(βht+ ϕ)

)
,

where ϕ is a phase shift. Generally K̃2
x/β

2
h ≃ 0, so

xss(t) ≃ −αhah sin(βht) = −αhxh(t) .

That is, the eye moves relative to the head with a scale
factor of -αh. The parameter αh is called the VOR gain
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Fig. 4. VOR in the light with the neural integrator dis-

abled. The signals are the same as in Figure 1.

since it well approximates the ratio of head velocity to eye
velocity measured in darkness.

A study of the effects of disabling the neural integrator on
the VOR, OKR, and smooth pursuit in monkeys appeared
in [Kaneko, 1999]. They found these systems are minimally
affected after a recovery period. In our model, disabling
the neural integrator corresponds to removing the observer
(12b). This means the brainstem component of the control
input no longer includes the estimate −αxx̂. Our model
predicts that in the light, the cerebellum will compensate
for the additional disturbance, such that the VOR is only
mildly affected, as reported in Kaneko [1999]. Figure 4
shows the behavior of the VOR in the light with the neural
integrator disabled, xh(t) = ah sin(βht), ah = 15, and
βh = 0.1Hz for t ∈ [0, 20]. We observe the eye moves
opposite to the head rotation, as expected.

5. OPTOKINETIC REFLEX

The purpose of the optokinetic reflex (OKR) is to reduce
image motion across the retina when a large object or the
entire visual surround is moving. This system operates in
tandem with the VOR. Consider the case of the visual
surround rotating sinusoidally, rvs(t) = −av sin(βvt), for
example by using an optical drum [Baarsma and Collewijn,
1974]. The head may be stationary, moving with the visual
surround, or moving independently but involutarily. The
eyes may be fixating on a stationary target, a head-fixed
target, a drum-fixed target, or a target moving within the
moving visual field.

One way to interpret the OKR is that the motion of the
visual surround induces in the subject a perception of a
stationary background, with the head and target moving
with respect to (w.r.t.) this stationary background. If r(t)
and xh(t) are the target and head angles w.r.t. a fixed
inertial frame, then the perceived head and target motion
w.r.t. the visual surround are given by rp(t) = r(t)−rvs(t)
and xhp(t) = xh(t)−rvs(t). The perceived error is given by
ep = rp−xhp−x = r−xh−x. Mathematically speaking, the
OKR is the same as the VOR with a fixed visual surround.

For example, in many experiments with the OKR, the eyes
must track a drum-fixed light slit with the head stationary
and the optical drum rotating sinusoidally. In this case the
error is e = r− x, where r(t) = ah sin(βht). This situation
is the same as smooth pursuit, to be discussed below. In an
experiment called OKR cancellation, a light spot at r = 0
is placed in front of a moving striped optical drum. In this
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Fig. 5. Visuo-vestibular conflict in the OKR and its effect
on the depth of modulation of the cerebellar compo-
nent uc. From left to right, the head (yellow) and eye
(blue) angles, the retinal error e, and the cerebellar
component uc. Despite the fact that the eye is nearly
stationary during t ∈ [0, 15], the amplitude of uc is
larger than when the optokinetic drum is rotating
during t ∈ [15, 30].

case, the pursuit system appears to override the OKR, as
the eyes fixate on the fixed light spot, and the error is
e = −x. If there is no head rotation, then this situation is
the same as gaze fixation, discussed in the next section.

In an experiment called visual-vestibular conflict the head
and the optokinetic drum are mechanically coupled so that
they rotate together, and the eyes must track a light strip
on the drum [Baarsma and Collewijn, 1974]. Therefore, we
have r(t) = xh(t) = ah sin(βht), so e = −x. Mathemati-
cally, this situation is no different than VOR cancellation.
It has been reported that under such stimulation, the
modulation of the firing rate of the cerebellum is larger
than when the drum is not rotated [Waespe and Henn,
1978]; that is, when r(t) = 0, xh(t) = ah sin(βht), and
e = −xh − x. In the context of our model, this finding
makes sense. In the first case, the role of uimp is to cancel
the term αhẋh. In the second case, the role of uimp is

to cancel the term −(1 − αh)ẋh − K̃xxh. Assuming that

αh is not close to 0.5 and that K̃x is close to zero, the
amplitude of the disturbance αhẋh is larger than the
amplitude of the disturbance −(1−αh)ẋh−K̃xxh. Figure 5
illustrates this comparison for values αh = 0.9; ah = 15;
βh = 0.2Hz; r = xh = ah sin(βht) for t ∈ [0, 15]; and r = 0,
xh = ah sin(βht) for t ∈ [15, 30]. We observe in the right
figure that the amplitude of uc is larger when the drum
is rotated during the interval t ∈ [0, 15] than when it is
stationary during t ∈ [15, 30].

6. GAZE FIXATION

The purpose of the gaze fixation system is to stabilize the
gaze on a stationary object. Consider a target with an
angle r 6= 0 and the head angle xh = 0. The error is
given by e = r − x. Assuming that x̂(t) ≃ x(t), the error
dynamics (9) take the form

ė = −K̃xe− uc + K̃xr . (14)

We can see that the role of uimp is to estimate the

disturbance K̃xr. Figure 6 shows the behavior when αh =
0.65 and the target angle is: r(t) = 5◦ for t ∈ [0, 15];
r(t) = 10◦ for t ∈ [15, 30], and r(t) = 15◦ for t ∈ [15, 45].
We observe that the cerebellar component of the control
input is proportional to the eye angle, a behavior observed
experimentally in many studies [Noda and Suzuki, 1979]. It
arises in our model because uimp must cancel a disturbance

K̃xr which is proportional to the target position.

Further evidence that K̃x 6= 0 comes from studies in
which the cerebellum is disabled, either through ablation
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Fig. 6. Gaze fixation. The signals are the same as in
Figure 1.
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Fig. 7. Smooth pursuit of a sum of two sinusoids. From left
to right, the target angle (yellow) and eye angle (light
blue), the error e (red), and the cerebellar output uimp

(blue).

or disease. It is often observed in this case that the eye has
a slow drift back to the central position x = 0 [Carpenter,
1972, Noda and Suzuki, 1979, Skavenski and Robinson,
1973]. Mathematically, suppose that xh = 0 and uc = 0.
Then u = ub = αxx̂, and assuming x̂(t) ≃ x(t), the eye

position evolves according to the dynamics ẋ = −K̃xx.
That is, the eye drifts back to center at an exponential
rate determined by K̃x.

7. SMOOTH PURSUIT

The purpose of the smooth pursuit system is to keep a
moving object centered on the fovea. As before, let r(t)
be the target angle and xh(t) the head angle. Assuming
that x̂(t) ≃ x(t), the error dynamics take the general form
in (5), and the role of uimp is to estimate the disturbance

ṙ + K̃xr − (1− αh)ẋh − K̃xxh.

The perfect tracking capability of the smooth pursuit
system has been well documented over the years; a small
sampling includes [Bahill and McDonald, 1983, Collewijn
and Tamminga, 1984, Deno et.al, 1995]. This tracking
capability improves as the targe motion becomes more
predictable [Bahill, 1983].

Figure 7 depicts the behavior of our model for smooth
pursuit of a target r(t) = a1 sin(2πβ1t) + a2 sin(2πβ2t),
with a1 = 4.85, β1 = 0.22Hz, a2 = 0.853 and β2 = 1.25Hz.
The time interval t ∈ [9, 18] was chosen to match the data
in Figure 1 of Barnes et.al. [1987]. This simulated behavior
reproduces what is observed in experiments; namely, that
while humans are not capable of perfect tracking of a
sum of two or more sinusoids, nevertheless the smooth
pursuit system performs reasonably well. The non-zero
error displayed in the center of Figure 7 is corroborated
by experimental findings in Barnes et.al. [1987]. Figure 8
depicts the behavior of our model for smooth pursuit of a
target r(t) = a1 sin(2πβ1t)+ · · ·+a4 sin(2πβ4t), with a1 =
6.94, β1 = 0.214Hz, a2 = 2.86, β2 = 0.519Hz, a3 = 2.11,
β3 = 0.702Hz, a4 = 1.57, and β4 = 0.946Hz. The results
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Fig. 8. Smooth pursuit of a sum of four sinusoids. From left
to right, the target angle (yellow) and eye angle (light
blue), the error e (red), and the cerebellar output uimp
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Fig. 9. Smooth pursuit of a sinusoidal target with a time
delay of 107ms in the retinal error signal. The signals
are the same as in Figure 1.
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Fig. 10. Maximum time delay as a function of Ke.

are comparable to those obtained experimentally as shown
in Figure 2 of Collewijn and Tamminga [1984].

It is known that the processing delay for the retinal error
to arrive at the cerebellum is on the order of 100ms.
Nevertheless, the smooth pursuit system achieves nearly
perfect tracking capability; its ability to do so in the
face of this delay has been interpreted as a predictive
capabability Deno et.al [1995]. Our model does not impart
any prediction to the smooth pursuit system, but the
presence of the adaptive internal model aids in overcoming
delays. Figure 9 depicts the behavior when tracking a
sinusoidal target r(t) = a sin(2πβt) with a = 10 and
β = 0.1Hz. The error e has been replaced by e(t − τ)
in (12d) and (12f), with a time delay of τ = 107ms. The
other parameter values are the same as before but we set
Ke = 8 for closed-loop stability. We observe there is little
degradation in the system’s tracking capability.

The choice of Ke to achieve closed-loop stability is tied
to the time delay and the magnitude of the reference
r(t). Figure 10 depicts the largest delay attained with
the smallest Ke for varying frequencies and amplitudes
of reference signals of the form r(t) = a sin(2πβt). With
a = 10 and β = {0.1, 0.2}Hz, delays of 107ms and 67ms
were achieved with Ke equal to 8 and 13, respectively.
Holding β = 0.1Hz but with a = {5, 10, 20}, the model
overcomes delays of 197ms, 107ms, and 56ms with Ke

equal to 5, 8 and 15, respectively.
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Fig. 11. Smooth pursuit of a ramp target with a sinu-
soidal perturbation. The left figures shows the target
velocity (yellow) and eye velocity (light blue). The
middle figure shows the eye velocity as a function of
the parameters (v,Ke) = (5, 8), (10, 8), (15, 8).

A number of experimental studies have shown that the
smooth pursuit system is capable of a mechanism of gain
control Nuding et.al. [2008, 2009], Lisberger [2010], Lee
et.al. [2013], Ono [2015], Brostek et.al. [2017]. This mech-
anism, first proposed in Robinson [1965], is thought to
regulate an internal gain parameter in which higher target
velocities yield higher gains. The mechanism appears to be
dedicated to the smooth pursuit system, as several studies
have shown that gain control is less prominent in the gaze
fixation system Lee et.al. [2013].

Gain control in the smooth pursuit system is related to
the gain Ke in our model. A Lyapunov-based argument
implies that this parameter must be increased as a function
of the magnitude and frequency of disturbances in order
to maintain closed-loop stability Serrani and Isidori [2000].
Gain control experiments suggest that this parameter may
not be constant, but rather may be a function of either the
retinal error e or the retinal slip velocity ė, thereby yielding
a nonlinear stabilization mechanism. Here we investigate
the extent to which varying Ke as a function of the size of
perturbations can explain the experimental data.

We consider an experiment in Ono [2015] in which a
brief sinusoidal perturbation is introduced during ongoing
pursuit of a ramp target. The target velocity is ṙ(t) =
v◦/s for t ∈ [0, 0.5]s; ṙ(t) = v + v sin(2πβ)◦/s for t ∈
[0.5, 0.9]; and r(t) = v◦/s for t ∈ [0.9, 1.2]. First we
set v = 10, Ke = 12, and α1 = α2 = 10. The
left Figure 11 depicts the target (yellow) and eye (blue)
velocities. The result closely matches the eye velocity
obtained experimentally in Figure 2A of Ono [2015]. The
parameters α1 and α2 have been set to increase the
adaptation rate of the adaptive internal model so that
by the time the perturbation occurs, the internal model
is already tuned to a ramp reference signal. Based on
recordings in the visual cortex, Ono observed that visual
related neurons showed a significant modulation in firing
rate associated with the perturbation. In contrast, pursuit
related neurons carrying an extraretinal signal did not
show a corresponding modulation in firing rate despite
a prominent change in eye motion. In our model, the
visual related neurons would carry the visual signal Kee,
so the experimental observations would suggest that the
eye velocity during perturbation is mainly driven by the
signal Kee. To test this hypothesis, we set α1 = α2 = 1,
Ψ̂1(0) = 1, Ψ̂2(0) = 1, w1(0) = 0 and w2(0) = 10, and we
disabled the parameter adaptation in (12d). Effectively,
the adaptive internal model is already adapted to a ramp
input prior to the experiment (as may happen for a subject
performing repeated experiments with ramp inputs). The
result is depicted in the green curve on the left of Figure 11,
showing the eye velocity for the pre-adapted internal
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Fig. 12. Smooth pursuit with an error clamp during t ∈
[5, 6]s. From left to right, the eye angle (blue), the
retinal error e, and the cerebellar component uc. The
eye continues to move and the cerebellum remains
active during the error clamp.

model. Since it closely matches the blue curve during the
perturbation, we can conclude that error feedback does
indeed dominate the change in eye velocity during the
perturbation.

Next, to expose the gain control mechanism we consider
the same target motion with three baseline velocities v =
5, 10, 15◦/s and three corresponding gains Ke = 8, 10, 15.
The eye velocity is shown in the middle of Figure 11. These
results correspond almost exactly with the experimental
results obtained in Figure 3B of Ono [2015]. If instead
we fix the gain Ke = 12 for all three baseline velocities,
we obtain the eye velocities on the right of Figure 11.
This response no longer matches the experimental results
in two aspects: the distinctive variation in rise time and
the distinctive variation in the size of the response to the
perturbation are both absent. Based on this first look, the
gain control mechanism of the smooth pursuit system may
be modeled by allowing Ke to be a function of retinal
signals.

Lastly, we consider the error clamp experiment which
explores the role of the error signal using a technique
called retinal stabilization [Barnes et.al., 1995, Morris and
Lisberger, 1987, Stone and Lisberger, 1990]. A monkey is
trained to track a visual target moving at constant speed.
After reaching steady-state, the retinal error is optically
clamped at zero using an experimental apparatus that
places the target image on the fovea. In experiments it
is observed that the eye continues to track the target for
some time after. Figure 12 depicts the error clamp behavior
with our model, showing that the eye continues to track
the target despite the error being clamped at e ≡ 0 during
the time interval t ∈ [5, 6].

8. CONCLUSION

We have proposed a control-theoretic model of the ocu-
lomotor system, particularly the slow eye movement sys-
tems: the VOR, OKR, gaze fixation, and smooth pursuit.
Our key insight is to exploit developments in control the-
ory on adaptive internal models [Nikiforov, 1996, 1997,
1998, Serrani and Isidori, 2000, Serrani et.al., 2001, Marino
and Tomei, 2011, 2013]. Our model recovers results from a
number of experiments. Additionally, we make a proposal
about a role of the cerebellum: to embody adaptive internal
models of all persistent, exogenous reference and distur-
bance signals acting on the body. Our forthcoming work
will apply our cerebellar model to the saccadic system for
fast eye movements, as well as to other human motor con-
trol systems. Acknowledgements: The author thanks
Erin Battle, Heyang Yan, and Yuyao Wei for performing
some of the simulations.
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