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Abstract. This paper studies a theoretical problem of whether continuous state feedback
and affine feedback are equivalent from the point of view of making an affine system
defined on a simplex reach a prespecified facet in finite time. We show that the two classes
of feedbacks are equivalent. As a byproduct, new necessary and sufficient conditions for
solvability based more directly on the problem data are obtained.

1. Introduction

This paper studies a theoretical problem of whether continuous state feedback and affine
feedback are equivalent from the point of view of making an affine system defined on a
simplex reach a prespecified facet in finite time. In general, such problems have been
overlooked in the literature pertaining to reachability problems via feedback control. This
contrasts with the situation for stabilization, where it has long been known that linear state
feedback is the largest class of feedbacks needed to stabilize a linear system. The study of
related questions for nonlinear systems [5] has led to a rich and ongoing inquiry into the
precise class of feedbacks needed for stabilization [6, 15], and it is clear that these sorts of
questions are at the very heart of the theory of control. Fortunately, the situation for affine
systems on simplices with finite-time reachability specifications is rather simple, and the
outcome of our work showing that affine feedbacks are the central object of interest falls in
line with one’s expectations, based on the linear theory. This is because affine systems are
geometrically very similar to linear systems, and because the control specification to reach
a facet in finite time is, in fact, less demanding on the system than stabilization. The latter
observation is evidenced by the fact that controllability is not necessary for solvability of the
studied reachability problem. It is also well-known from the linear theory that such results
are fragile. Once one considers more complex specifications or classes of systems which
have uncertainties or nonlinearities, the picture changes drastically. To cite one example, in
[3] it is shown that certain linear systems with fast time-varying uncertain coefficients can
be stabilized by nonlinear static state feedback, but not by linear dynamic compensators.
Investigations of such theoretical questions have pervaded the literature on mathematical
control theory.

The problem studied in this paper is for an affine system to reach a prespecified facet of a
simplex in finite time and is taken from [10, 17]. Facet reachability problems on simplices
and polytopes, with minor variations in assumptions, were first introduced in [8] and further
studied in [9, 13, 14]. While the problem formulation is the same as in [10, 17], the focus
and results of this paper are different and new. In [10, 17], two sets of conditions called
invariance conditions and a flow condition were given as necessary and sufficient conditions
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for existence of an affine feedback to solve the problem of reaching a facet of a simplex in
finite time. The invariance conditions are Nagumo-like conditions restricting the closed-
loop vector field to lie in appropriately defined tangent cones at the vertices of the simplex.
These conditions can be shown to be necessary for continuous state feedback, as is done
in [9]. The flow condition is present to force closed-loop trajectories to exit the simplex,
and its necessity for existence of an affine feedback is tied to its direct link to existence of
closed-loop equilibria, assuming the closed-loop vector field is convex. Once one relaxes the
class of controls to continuous state feedback, convexity is lost, and the necessity of the flow
condition becomes problematic to establish.

Therefore, it is the flow condition which is the object of interest. Indeed, solving the flow
condition is known to be undesirable [19], although it can be carried out using a series
of linear programs whose number increases exponentially with the system dimension [17].
One would like to bypass this condition altogether, and instead combine the invariance
conditions, which in any case must be solved for synthesis of the control [9], with conditions
that come directly from the problem data. The price to be paid for this simplification is
that one is required to triangulate the polytopic state space properly. A key observation
is that arbitrary triangulations disguise the structural information encoded in the system,
and instead one must use triangulations which are adapted to the system dynamics. Since
typically triangulations are performed by standalone software libraries that are not tailored
to control problems, our requirement for a proper triangulation is, in principle, no loss of
generality.

Finally, our results have implications for the study of piecewise linear and piecewise affine
feedbacks to solve more general reachability problems on polytopes and unions of polytopes.
Piecewise affine and piecewise linear feedback has been extensively studied by a number of
researchers. See for example [7, 1, 4, 20].

2. Contributions

In this section we describe in intuitive terms the contributions of the paper and we dis-
cuss some of the techniques introduced in order to be able to solve the main problem of
equivalence of continuous state and affine feedback.

We are given a problem of finding a state feedback to drive the state of an affine system
ẋ = Ax + Bu + a to a prespecified facet F0 of a simplex S in finite time, without first
exiting the simplex. Our attention is restricted to continuous state feedbacks for which
the closed-loop system has unique solutions. First, it is easy to establish (see also [9])
that the above-described invariance conditions (guaranteeing that trajectories do not exit
prespecified “restricted facets”) are necessary to solve the problem. Attention then turns
to the flow condition. To make sense of it, we isolate the part of the state space, called O,
where the system can have equilibria - precisely that part where the flow condition might
fail. In general for affine systems, O is an affine space. We impose that the state space has
been triangulated so that S ∩ O is either the empty set, S itself, or a lower-dimensional
face of S. Then we concentrate on analyzing when the flow condition either can be made
to hold or made to fail on O.

A first observation and motivation for our choice of triangulation, is that linear and affine
control systems naturally exhibit a flow condition off the set O, without any preconditions
on the control input. This useful fact has the consequence that the question of existence of a
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flow condition is decoupled from the selection of controls to satisfy the invariance conditions.
Therefore, if it is known that S ∩O = ∅, the problem is trivially solvable by affine feedback.
If instead, S ∩O 6= ∅, then we define the convex polytope G = S ∩O, and if G can be made
to satisfy a flow condition by proper choice of control, then again the problem is solvable
by affine feedback. The only remaining question is to determine the precise mathematical
boundary, in terms of the problem data, for when G has a flow condition.

A fundamental observation concerns the nature of points in G. In order for these to be
possible equilibrium points in S, it is necessary that the drift term Ax + a lie in B, the
image of B. This means that the closed-loop vector field on G only involves B. Therefore,
what is most relevant is the geometric relationship between subspace B and the simplex
S. A canonical way to describe this relationship is through the cone cone(S) which is the
tangent cone of S at the vertex v0 that does not contain the exit facet. For example, if
there is a non-zero vector b ∈ B ∩ cone(S), then this single vector can be used to resolve
all the invariance conditions at all the vertices of G. A flow condition based on b can be
trivially established, and we again find that an affine feedback solves the problem. If instead
B ∩ cone(S) only contains the zero vector, then the geometric situation is more delicate.
The combined requirements that the invariance conditions hold at G and B∩ cone(S) = {0}
restricts the orientation of B with respect to the simplex. In particular, B must be aligned
so that it uses all its available degrees of freedom to span directions in the affine space that
contains G. Now, if B does not have enough degrees of freedom, closed-loop trajectories
can become “stuck” in this affine space and an invariant set appears in G. Using a fixed
point theorem, one can show this invariant set contains an equilibrium. On the other hand,
if B has extra degrees of freedom, one can show that any velocity vectors which satisfy the
invariance conditions on G can always be perturbed to obtain a flow condition on G. So to
speak, there are enough degrees of freedom to “push” trajectories out of G. In that case,
the problem is solvable by affine feedback.

We have described the geometric intuition which shapes how the arguments are structured.
Further intuitive descriptions, especially discussing the role of sufficient degrees of freedom
in B, are given in the text. A useful tool to convert the geometric intuition to algebra is
provided by M -matrices [2]. It can be shown that if one assembles all the expressions for
the invariance conditions on all the vertices of G in a matrix and one adds the condition
that B ∩ cone(S) = {0}, the resulting matrix is an M -matrix.

The paper is organized as follows. Section 3 presents the problem statement and Section 4
presents the relevant results from [10, 17]. Section 5 describes a suitable triangulation
method based on the placing triangulation [12]. Section 6 gives two different sufficient
conditions for existence of an affine feedback to solve the problem, and the set of M matrices
associated with the problem is introduced. Section 8 identifies two cases when equilibria
arise using continuous feedback, or equivalently two necessary conditions for existence of
affine feedback. Section 9 collects all the above results to resolve the boundary between
continuous state feedback and affine feedback.

Notation. For a vector x ∈ R
n, the notation x ≻ 0 (x � 0) means xi > 0 (xi ≥ 0) for

1 ≤ i ≤ n. The notation x ≺ 0 (x � 0) means −x ≻ 0 (−x � 0). For a matrix A ∈ R
n×n,

the notation A ≻ 0 (A � 0) means aij > 0 (aij ≥ 0) for 1 ≤ i, j ≤ n. The notation {0} will
denote the subset of Rn containing only the zero vector.
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3. Problem Statement

Consider an n-dimensional simplex S with vertices v0, v1, . . . , vn and facets F0, . . . ,Fn such
that the index of each facet is determined by the vertex it does not contain. Let hi,
i = 0, . . . , n be the unit normal vector to each facet Fi pointing outside of the simplex. Let
F0 be the target set in S.

We consider the following affine control system on S:

ẋ = Ax+ a+Bu =: f(x, u), x ∈ S, (3.1)

where A ∈ R
n×n, a ∈ R

n, and B ∈ R
n×m with rank(B) = m. Let φu(t, x0) be the trajectory

of (3.1) under a control u starting from x0 ∈ S and evaluated at time t.

We are interested in studying reachability of the target F0 from S by way of feedback
control. A number of results on finding feedbacks to solve reachability specifications on
simplices have already appeared in the literature. In particular, the following problem was
proposed in [10, 17].

Problem 3.1. Consider system (3.1) defined on S. Find an affine feedback control u = Kx+g
such that for every x0 ∈ S there exist T ≥ 0 and ǫ > 0 satisfying:

(i) φu(t, x0) ∈ S for all t ∈ [0, T ];
(ii) φu(T, x0) ∈ F0;
(iii) φu(t, x0) /∈ S for all t ∈ (T, T + ǫ).

Remark 3.1. Condition (iii) is interpreted to mean that the closed-loop dynamics on S are
extended to a neighborhood of S. This condition plays an important role in ruling out
undesirable pathological cases in which, for instance, equilibria appear on F0, even though
trajectories starting in S reach F0 in finite time.

In this paper, we extend the problem to consider continuous state feedback. Thus, we
formulate the following reach control problem.

Problem 3.2. Consider system (3.1) defined on S. Find a continuous state feedback u(x)
such that for every x0 ∈ S there exist T ≥ 0 and ǫ > 0 satisfying:

(i) φu(t, x0) ∈ S for all t ∈ [0, T ];
(ii) φu(T, x0) ∈ F0;
(iii) φu(t, x0) /∈ S for all t ∈ (T, T + ǫ).

4. Background

The following notation will be used. Define the set of vertices of S to be V := {v0, . . . , vn}
and define the index sets I := {1, . . . , n} and Ii := I \ {i}. Define the closed, convex cone
Ci at vi ∈ V by

Ci :=
{

y ∈ R
n : hj · y ≤ 0, j ∈ Ii

}

.

Also define

cone(S) := C0 = cone{v1 − v0, . . . , vn − v0} .

If w.l.o.g. we take v0 = 0, then cone(S) is the cone generated by the points in S, motivating
the choice of notation.
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Definition 4.1. A point x0 ∈ S can reach F0 with constraint in S by continuous state

feedback, denoted x0
S

−→ F0, if there exists a continuous state feedback u(x) such that
properties (i)-(iii) of Problem 3.2 hold. A set S ′ ⊆ S can reach F0 with constraint in S by

continuous state feedback, denoted by S ′ S
−→ F0, if there exists a continuous state feedback

such that for every x0 ∈ S ′, x0
S

−→ F0.

Let B denote the m-dimensional subspace spanned by the column vectors of B (namely,
B = Im(B), the image of B). Define the set

O := { x ∈ R
n : Ax+ a ∈ B } .

It is fairly easy to prove that O = ∅ when Im(A) ⊆ B and a /∈ B; O = R
n when Im(A) ⊆ B

and a ∈ B; and O is an affine space, otherwise. Notice that vector field f(x, u) can vanish
on O for an appropriate choice of u, so O is the set of all possible equilibrium points of the
system. Define

G := S ∩O.

Associated with G is its vertex index set

IG := {i : vi ∈ V ∩ G} .

Definition 4.2. The invariance conditions require that there exist u0, . . . , un ∈ R
m such

that:

hj · (Avi + a+Bui) ≤ 0 , i ∈ {0, . . . , n}, j ∈ Ii . (4.1)

Example 4.1. Figure 1 illustrates the definitions so far for the case n = 3 and m = 2. We
have a simplex S with normal vectors hi to each facet Fi. Depicted by a shaded section
is cone(S), the tangent cone at v0. The space B is copied to v0, and in this view we see
that B ∩ cone(S) = {0}. That is, B does not “dip” into the tangent cone at v0. The set O
intersects S along the face v1v2, and this forms G. It is interpreted as the set of possible
equilibria of the system. We know that in G, the only velocity vectors available to the
closed loop system are vectors in B. This is depicted by placing copies of B at each of
the vertices of G. Two velocity vectors b1 and b2 are shown, and these clearly satisfy the
invariance conditions at v1 and v2, respectively. At vertices not in G, the drift term Ax+ a
becomes relevant, and the figure depicts closed-loop velocity vectors at v0, v3 6∈ G which
satisfy their respective invariance conditions. The invariance conditions can be interpreted
in terms of the cones Ci. Consider vertex v3 where C3 is depicted by a shaded region. This
cone is shaped like an open book whose spine is parallel to the face v0v3 and whose cover
and back cover lie in F2 and F1, respectively. The invariance condition at v3 is satisfied if
the closed-loop velocity vector Av3 +Bu3 + a lies in C3.

For Problem 3.1 the following necessary and sufficient conditions have been established.

Theorem 4.1. [10, 17] Given the system (3.1) and an affine feedback u(x) = Kx + g,
with K ∈ R

m×n, g ∈ R
m, and u0 = u(v0), . . . , un = u(vn), the closed-loop system satisfies

S
S

−→ F0 if and only if

(a) The invariance conditions (4.1) hold.

(b) The closed-loop system has no equilibrium in S.

Theorem 4.2. [10, 17] We have S
S

−→ F0 by affine feedback if and only if there exist

u0, . . . , un ∈ R
m and ξ ∈ R

n such that
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Av3 +Bu3 + a

Av0 +Bu0 + a

v0

v1

v2

v3

b1

b2

h1
h3

B

G

C3

O

cone(S)

Figure 1. Geometric constructs for the reach control problem.

(a) The invariance conditions (4.1) hold.

(b) The flow condition holds: ξ · (Avi +Bui + a) < 0 , i ∈ {0, . . . , n} .

Theorem 4.1 is of theoretical interest but does not provide a practical procedure. Theo-
rem 4.2 can be viewed as a computational solution to the problem and a linear programming
based solution is presented in [17]. If the invariance and flow conditions can be solved simul-
taneously for the unknowns ξ ∈ R

n and ui ∈ R
m, then an affine feedback can be constructed

by the procedure of [9].

The invariance conditions (4.1) are suitable for affine feedback, but for continuous state
feedback, the following stronger conditions must hold.

Definition 4.3. The invariance conditions for state feedback u(x) require that for all j ∈ I
and x ∈ Fj ,

hj · (Ax+Bu(x) + a) ≤ 0 . (4.2)

The following result is easily proved (see the analogous result in [9] for conditions (4.1))
and forms the starting point for our investigation of continuous state feedback.

Lemma 4.3. If S
S

−→ F0 by a continuous state feedback u(x), then u(x) satisfies the

invariance conditions (4.2).

Finally, we collect some useful properties about simplices. Properties (1)-(5) follow directly
from our conventions on indices. Properties (6)-(7) follow from the fact that any simplex
is affinely isomorphic to the simplex conv({0, e1, . . . , en}), where ei, i = 1, . . . , n are the
Euclidean coordinate vectors.

Lemma 4.4. Let S be a simplex. Then the following hold:
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(1) If x ∈ conv{v1, . . . , vk}, then x ∈ Fj , for k + 1 ≤ j ≤ n.
(2) hj · (vi − v0) = 0 for all 1 ≤ i, j ≤ n and j 6= i.
(3) hi · (vi − v0) < 0, for all 1 ≤ i ≤ n.
(4) hj · (vi − x) > 0 for all x ∈ S \ Fj and 1 ≤ i, j ≤ n and i 6= j.
(5) h0 · (vi − v0) > 0 for all 1 ≤ i ≤ n.
(6) The vectors {v1 − v0, . . . , vn − v0} are a basis for R

n.

(7) The vectors {h1, . . . , hn} are a basis for R
n.

5. Triangulation with Respect to O

In this section we describe in more detail our proposal for triangulating the state space
of the system (3.1). Suppose that the state space of (3.1) is presented as a polytope P,
set O is an affine space of dimension less than n, and P ∩ O is a polytope with vertices
VO := {o1, . . . , or}. First, we define an ordered point set V := {v1, . . . , vp} such that
P = conv(V ) and the first r points of V are VO. Note that not every element of VO need
be a vertex of P. Now we propose a triangulation of P which will have the feature that O
can only lie in lower dimensional faces of simplices of the triangulation. We use a standard
procedure called the placing triangulation (see [12, 11]). To describe this triangulation
method we need a few definitions.

Suppose V is a finite set of points such that P = conv(V ) is an n-dimensional polytope.
A subdivision of V is a finite collection S = {P1, . . . ,Pq} of n-dimensional polytopes such
that: (1) The vertices of each Pi are drawn from V (though not every point in V need be
used); (2) P = ∪iPi; (3) If i 6= j, then Pi ∩ Pj is a common (possibly empty) face of the
boundaries of Pi and Pj .

Definition 5.1. Let x ∈ R
n, P an n-dimensional polytope, and F a facet of P. The

hyperplane H = aff(F) defines an open half-space containing int(P). If x is contained in
the opposite open half-space, then F is said to be visible from x. (If P is a k-dimensional
polytope in R

n with k < n and x ∈ aff(P), then the ambient space is viewed to be aff(P).)

Now we can describe what it means to place a vertex. Let S = {P1, . . . ,Pq} be a subdivision
of V and v ∈ R

n such that v 6∈ V .

Definition 5.2. The subdivision T of V ∪ {v} that results from placing v is obtained as
follows:

(1) If v 6∈ aff(V ), then for each Pi ∈ S, include conv(Pi ∪ {v}) in T.
(2) If v ∈ aff(V ), then for each Pi ∈ S, Pi ∈ T and if F is a facet of Pi that is contained

in a facet of conv(V ) visible from v, then conv(F ∪ {v}) ∈ T.

Theorem 5.1. [12] Suppose V is a finite set of points such that VO ⊂ V and P = conv(V )
is an n-dimensional polytope. If the points of V are ordered such that {o1, . . . , or}, the

vertices of P ∩O, are listed first and if T is the subdivision obtained by placing the points of

V in order, then T is a triangulation of V such that for every n-dimensional simplex S ∈ T,

int(S) ∩ O = ∅ and if S ∩ O 6= ∅, then S ∩ O is a face of S.

6. Existence of Linear Affine Feedback

As we have seen in Theorem 4.2, the invariance conditions by themselves are generally not
enough to establish that the reach control problem is solvable by affine feedback. However,
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there is one extreme case when the invariance conditions are also sufficient to solve the
problem. These depend on combining Theorem 4.1 with the fact that O is the only place
in the state space where equilibria can appear. See also [17].

Theorem 6.1. Suppose G = ∅. If the invariance conditions are solvable, then S
S

−→ F0 by

affine feedback.

Proof. Select the control ui ∈ R
m for each vertex vi ∈ V to satisfy the invariance conditions.

Using the method of [9], since the vertices are affinely independent one can find unique K
and g corresponding to the affine feedback u(x) = Kx+ g such that u(vi) = ui, 0 ≤ i ≤ n.
We obtain the affine closed-loop system ẋ = (A+ BK)x+ (a+ Bg). Since O ∩ S = ∅, we
know the closed-loop system has no equilibria in S. Therefore, applying Theorem 4.1, the
result is obtained. �

In general it is difficult to extend results such as Theorem 6.1. However, if one propitiously
chooses a triangulation of the state space which respects the underlying structure of the
system, then new necessary and sufficient conditions for solvability of the reach control
problem are obtainable and, moreover, the boundary between affine and continuous state
feedback can be clarified. We propose the following triangulation.

Assumption 6.1. Simplex S and system (3.1) satisfy the following condition: if G 6= ∅,
then G is a κ-dimensional face of S, where 0 ≤ κ ≤ n.

Remark 6.1. We have discussed that there are three possibilities for O. If O = ∅, then one
applies Theorem 6.1. If O is the entire state space then we will see in Remark 8.1 that there
are easily derived necessary and sufficient conditions for solvability. The only interesting
case is when O is a κ-dimensional affine subspace with κ < n. This case arises, for example,
when (A,B) is controllable, and then the placing triangulation can be applied.

Based on the proposed triangulation, we can find several new sufficient conditions for exis-
tence of affine feedback.

Theorem 6.2. Suppose Assumption 6.1 holds and G 6= ∅. Suppose the following conditions

hold.

(1) The invariance conditions (4.1) are solvable.

(2) B ∩ cone(S) 6= {0}.

Then S
S

−→ F0 by affine feedback.

Proof. Let G = conv{vi1 , . . . , viκ+1
}, a κ-dimensional facet of S where 0 ≤ κ ≤ n. Thus,

IG = {i1, . . . , iκ+1}. Let b ∈ B ∩ cone(S), b 6= 0, and select control values ui such that
y(vi) = Avi + Bui + a = b for all i ∈ IG (notice this is always achievable for vi ∈ O).
Clearly, by the assumption that b ∈ cone(S), y(vi) satisfies the invariance conditions for
vi ∈ V ∩O. We can select the remaining controls ui for i ∈ {0, . . . , n}\IG such that y(vi) 6= 0
(since vi 6∈ O) and y(vi) satisfies the invariance conditions. Finally, using {u0, . . . , un} and
the synthesis procedure in [9], construct the affine feedback u(x) = Kx+ g.

Define the closed-loop vector field y(x) := (A + BK)x + Bg + a. We show it satisfies a
flow condition on G. Let β := −b. We have βT y(vi) = −‖b‖2 < 0 for all i ∈ IG . By the
convexity of y(x), this implies a flow condition holds on G. Clearly y(x) 6= 0 for x ∈ G.
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Also, y(x) 6= 0 for all x ∈ S \ G since equilibria only lie in O. Applying Theorem 4.1, the
result is obtained. �

One can also obtain sufficient conditions for existence of affine feedback even when B ∩
cone(S) = {0}. Of course, this will only be possible if v0 6∈ G (see Remark 8.1). This relies
on the idea that there are enough degrees of freedom in B with respect to G. We make the
following assumptions.

Assumption 6.2.

(A1) W.l.o.g. G = conv{v1, . . . , vκ+1}, with 0 ≤ κ < m.
(A2) B ∩ cone(S) = {0}.
(A3) There exists a linearly independent set {b1, . . . , bκ+1 | bi ∈ B ∩ Ci}.

The important new assumption is (A3) which says that B and G are arranged with respect to
each other so that there are enough degrees of freedom in B both to span a κ+1-dimensional
subspace of B and at the same time satisfy all the invariance conditions for the vertices of
G. For this to work, it is of course necessary that κ < m. It is helpful to obtain some
intuition as to why linear independence is a central property which determines whether or
not an affine feedback exists in the case when B ∩ cone(S) = {0}. Also this intuition will
help motivate the developments of Section 8.

v0

v1

v2

v3

b1

b2

B

G

O

cone(S)

Figure 2. Continuous Assignment Along G of Vectors in B.

Consider Figure 2 in which B ∩ cone(S) = {0} and G = v1v2. Suppose we find a linearly
independent set {b1, b2 | bi ∈ B ∩Ci} as shown in the figure (a copy of B is attached at each
vertex). Then along [v1, v2] we can always choose a feedback u(x) such that the closed-loop
vector field

y(x) := Ax+Bu(x) + a = c1(x)b1 + c2(x)b2, ci(x) ≥ 0 (6.1)

continuously interpolates between y(v1) = b1 and y(v2) = b2. This is also evident from
examining the figure. Indeed with this controller, the invariance conditions are guaranteed
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to hold not only at v1 and v2 (by the definition of Ci) but also on the open interval (v1, v2).
Namely, because ci(x) ≥ 0,

hj · y(x) ≤ 0 , j = 3, . . . , n .

Now consider the opposite situation as depicted in Figure 3. Again we have B ∩ cone(S) =
{0} and G = v1v2, but in this case m = 1. Thus, for every choice of bi ∈ B ∩ Ci, i = 1, 2,
we obtain that {b1, b2} are linearly dependent. Pick any b1 ∈ B ∩ C1 with b1 6= 0, as shown.
Then we know that for any b2 ∈ B ∩ C2,

b2 = c1b1 , c1 ∈ R.

Now check the invariance conditions at v2. In particular, we have the invariance condition

h1 · b2 = c1(h1 · b1) ≤ 0 . (6.2)

If we have assumed that B∩cone(S) = {0}, then it must be that h1 ·b1 > 0, for otherwise we
would have 0 6= b1 ∈ B∩cone(S). Then from (6.2) we obtain that c1 ≤ 0. This is illustrated
in Figure 3, where b2 points in the opposite direction of b1. Consider a continuous vector
field y(x) on S and suppose we assign y(v1) = b1. Then we know that y(x) is irrevocably
constrained to be y(v2) = c1b1 with c1 ≤ 0. Now suppose that y(x) continuously interpolates
between y(v1) and y(v2) along [v1, v2] using only {b1, b2}. Then along [v1, v2], y(x) has the
form:

y(x) = c(x)b1 ,

where c(x) is a continuous function of x ∈ [v1, v2] with c(v1) > 0 and c(v2) ≤ 0. By the
Intermediate Value Theorem, there exists x ∈ [v1, v2] such that c(x) = 0. Thus, there is an
equilibrium along [v1, v2] for the closed loop system.

Therefore, it is clear that y(x) cannot simply interpolate between {b1, b2} along [v1, v2] and
other directions in B must be invoked. This argument can now be carried on inductively to
higher dimensions and in each dimension one finds that more degrees of freedom are needed
in B to carry out the continuous assignment of the vector field. Finally, the procedure
either terminates with exhausting all the vertices of G, without first exhausting the degrees
of freedom in B or instead one first exhausts all the usable degrees of freedom in B. This
question of which is exhausted first determines a sharp boundary between existence of affine
feedbacks and existence of equilibria.

Theorem 6.3. Suppose Assumption 6.1 holds and G = conv{v1, . . . , vκ+1}, with 0 ≤ κ < m.

Suppose the following conditions hold.

(1) The invariance conditions (4.1) are solvable.

(2) There exists a linearly independent set {b1, . . . , bκ+1 | bi ∈ B ∩ Ci}.

Then S
S

−→ F0 by affine feedback.

Proof. If B ∩ cone(S) 6= {0} then the result follows from Theorem 6.2. Therefore, we
assume that B ∩ cone(S) = {0}. For all i ∈ IG , we assign control values ui such that
y(vi) = Avi +Bui + a = bi. We can select the remaining controls ui for i ∈ {0, . . . , n} \ IG
such that y(vi) 6= 0 (since vi 6∈ O) and y(vi) satisfies the invariance conditions. Finally, using
{u0, . . . , un} and the synthesis procedure in [9], construct the affine feedback u(x) = Kx+g.

Now we observe that a flow condition holds for the closed loop vector field y(x) := (A +
BK)x + Bg + a on G. In particular, since {b1, . . . , bκ+1} are linearly independent, 0 6∈
conv{b1, . . . , bκ+1}. Let C1 := {0} and C2 := conv{b1, . . . , bκ+1}. Note that both C1 and C2
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Figure 3. Not enough degrees of freedom in B.

are compact and convex and by assumption C1 ∩ C2 = ∅. By the Separating Hyperplane
Theorem [16], there exists a hyperplane H with normal vector β pointing to the side con-
taining C1. By the convexity of y(x), we get β · y(x) < 0 for all x ∈ G. Clearly y(x) 6= 0 for
x ∈ G. Also, y(x) 6= 0 for all x ∈ S \G since equilibria only lie in O. Applying Theorem 4.1,
the result is obtained. �

7. M -Matrices

We introduce a family of matrices used to concisely characterize the invariance conditions
on G. Let 1 ≤ p ≤ q ≤ κ+ 1 and define

Mp,q :=







(hp · bp) (hp · bp+1) · · · (hp · bq)
...

...
...

(hq · bp) (hq · bp+1) · · · (hq · bq)






∈ R

(q−p+1)×(q−p+1) . (7.1)

Define the matrices

Hp,q := [hp · · · hq] ∈ R
n×(q−p+1) , Yp,q := [bp · · · bq] ∈ R

n×(q−p+1) .

Then
Mp,q = HT

p,qYp,q .

We say a matrix M is a Z -matrix if the off-diagonal elements are non-positive; i.e. mij ≤ 0
for all i 6= j [2]. Since bi ∈ B∩Ci, i ∈ IG , each Mp,q is a Z -matrix. Also under the condition
that B ∩ cone(S) = {0}, Mp,q adopts further algebraic properties. In particular, we require
the notion of an M -matrix. The following theorem characterizes non-singular M -matrices
(see [2], Ch. 6).

Theorem 7.1. Let M ∈ R
k×k be a Z -matrix. Then the following are equivalent:

(i) M is a non-singular M -matrix.
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(ii) ℜ(λ) > 0 for all eigenvalues λ of M .

(iii) There exists a vector ξ � 0 in R
k such that Mξ ≻ 0.

(iv) The inequalities y � 0 and My � 0 have only the trivial solution y = 0, and M is

non-singular.

(v) M is monotone; that is, My � 0 implies y � 0 for all y ∈ R
k.

(vi) M is nonsingular and M−1 is a non-negative matrix.

Lemma 7.2. Suppose B∩cone(S) = {0}. Let 1 ≤ p ≤ q ≤ κ+1 and suppose {bp, . . . , bq | bi ∈
B ∩ Ci} are linearly independent. Then Mp,q is a non-singular M -matrix.

Proof. First, since rank(Hp,q) = q − p + 1, rank(Yp,q) = q − p + 1, and B ∩ cone(S) = {0},
we have that Mp,q is non-singular. Next, we claim that Mp,q has a positive diagonal; that
is, (Mp,q)ii > 0 for i = 1, . . . , q − p + 1. For if not, we would have hj · bp+i−1 ≤ 0 for
all j = 1, . . . , n, which implies 0 6= bp+i−1 ∈ B ∩ cone(S), a contradiction. Now suppose
there exists c ∈ R

q−p+1 with c 6= 0 and c � 0 such that Mp,qc � 0. Define the vector
ȳ = Yp,qc ∈ B. Note that ȳ 6= 0 because {bp, . . . , bq} are linearly independent. Then

Mp,qc = HT
p,qYp,qc = HT

p,qȳ � 0 implies hj · ȳ ≤ 0 for j = p, . . . , q. Also,

hj · ȳ =

q
∑

i=p

ci(hj · bi) ≤ 0 , j 6∈ {p, . . . , q} .

This implies 0 6= ȳ ∈ B ∩ cone(S), a contradiction. Therefore, Mp,q has the property that
the only solution of the inequalities c � 0 and Mp,qc � 0 is c = 0. By Theorem 7.1(iv) this
implies that Mp,q is a non-singular M -matrix. �

8. Existence of Equilibria

In this section we explore cases when equilibria appear on G when an assignment of a
continuous state feedback u(x) is made on S, so that the reach control problem is not
solvable by continuous state feedback. Particular attention is given to the case when B ∩
cone(S) = {0}. Let u(x) be a continuous state feedback defined on S. We restrict our
attention to such controls which yield unique solutions on S and which satisfy the invariance
conditions (4.2) on S. Define the closed-loop system

ẋ = Ax+Bu(x) + a =: y(x) . (8.1)

First we consider an obvious necessary condition for the problem to be solvable, which is
that one must be able to assign y(vi) 6= 0 at each vertex vi ∈ G.

Proposition 8.1. Suppose Assumption 6.1 holds and let u(x) be a continuous state feedback

such that the closed-loop system has unique solutions and the invariance conditions (4.2)
hold. If at some i ∈ IG, B ∩ Ci = {0}, then the closed-loop system ẋ = Ax+Bu(x) + a has

an equilibrium point at vi ∈ G.

Proof. The only way to satisfy the invariance conditions at vi, i ∈ IG , when B ∩ Ci = {0} is
for that vertex to be an equilibrium of the closed-loop system. �

Remark 8.1. When v0 ∈ G, then Proposition 8.1 immediately implies that a necessary
condition for existence of a continuous state feedback is that B ∩ cone(S) 6= {0}.
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From Proposition 8.1 a necessary condition for a solution is that there exists a set {bi ∈
B ∩ Ci | bi 6= 0, i ∈ IG}. In the special case of v0 ∈ G this completely settles the question
of necessary conditions since in that case we require that B ∩ cone(S) 6= {0}. More gen-
erally, if B ∩ cone(S) 6= {0}, the question is settled because of Theorem 6.2. Therefore,
other necessary conditions for a solution are studied in this section under the following
assumptions.

Assumption 8.1.

(E1) W.l.o.g. G = conv{v1, . . . , vκ+1}, with 0 ≤ κ < n.
(E2) B ∩ cone(S) = {0}.
(E3) The maximum number of linearly independent vectors in any set {b1, . . . , bκ+1 | bi ∈

B ∩ Ci} is m⋆ with 1 ≤ m⋆ ≤ κ.

Asssumption (E3) says there does not exist a full linearly independent set {bi ∈ B ∩Ci | i ∈
IG} as in Assumption 6.2. This automatically holds true when κ = m, in which case (E3)
could simply be removed. We remark that m⋆ is well-defined (for dim(sp{bi ∈ B ∩ Ci | i ∈
IG}) ∈ {0, . . . , κ+ 1} defines a finite set of integers for which the maximum exists).

Given 1 ≤ m⋆ ≤ κ as above, w.l.o.g. fix

{b1, . . . , bm⋆ | bi ∈ B ∩ Ci}

to be one such maximal linearly independent set. By construction, every bj ∈ B ∩ Cj for
j = m⋆ + 1, . . . , κ+ 1 satisfies

bj ∈ sp{b1, . . . , bm⋆} .

Indeed for each j ∈ {m⋆ + 1, . . . , κ + 1} there exists 1 ≤ κj ≤ m⋆ such that w.l.o.g.
(reordering indices 1, . . . ,m⋆),

B ∩ Cj ⊂ sp{b1, . . . , bκj
} ,

and sp{b1, . . . , bκj
} is the smallest such subspace in B generated by {b1, . . . , bm⋆}. Now con-

sider B∩Cm⋆+1. Following the arguments above and w.l.o.g. (reordering indices 1, . . . ,m⋆),
let κ⋆ be such that

B ∩ Cm⋆+1 ⊂ sp{b1, . . . , bκ⋆} .

If κ⋆ < m⋆, swap the indices m⋆+1 ⇐⇒ κ⋆+1. (The index swap is to make incrementing
of indices easier below). Finally select any vectors βi ∈ B, i = κ⋆ + 1, . . . ,m such that

B = sp{b1, . . . , bκ⋆ , βκ⋆+1, . . . , βm} . (8.2)

With our reordering of indices we have that for all bκ⋆+1 ∈ B ∩ Cκ⋆+1

bκ⋆+1 = c1b1 + · · ·+ cκ⋆bκ⋆ .

Also define

G⋆ := conv{v1, . . . , vκ⋆+1} .

The following results will show that there exists an equilibrium in G⋆ for any closed-loop
vector field y(x) satisfying the invariance conditions on S. We begin by isolating the defect
in available degrees of freedom in B with respect to G⋆.

Proposition 8.2. Suppose Assumptions 6.1 and 8.1 hold. Suppose that the closed-loop

system ẋ = y(x) satisfies the invariance conditions (4.2). Then for all x ∈ G⋆,

hj · y(x) = 0 , j = κ⋆ + 2, . . . , n .
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Proof. W.l.og. let a basis of B be as in (8.2) and select bκ⋆+1 ∈ B ∩ Cκ⋆+1 such that

bκ⋆+1 = c1b1 + · · · + cκ⋆bκ⋆ , ci 6= 0 .

(Such a vector exists by the definition of κ⋆ and the convexity of B ∩ Cκ⋆+1). Define
c := (c1, . . . , cκ⋆). Since {b1, . . . , bκ⋆} are linearly independent and B ∩ cone(S) = {0}, by
Lemma 7.2, M1,κ⋆ is a non-singular M -matrix. Consider the following invariance conditions

HT
1,κ⋆bκ⋆+1 = HT

1,κ⋆Y1,κ⋆c = M1,κ⋆c � 0 .

By Theorem 7.1(v) and the fact that ci 6= 0, we obtain c ≺ 0. Now consider the invariance
conditions

hj · bκ⋆+1 = hj · (c1b1 + · · ·+ cκ⋆bκ⋆) ≤ 0 , j = κ⋆ + 2, . . . , n .

Every term in the sum is non-negative, since bi ∈ B ∩ Ci and ci < 0, and so we obtain

hj · bi = 0 , i = 1, . . . , κ⋆ + 1, j = κ⋆ + 2, . . . , n . (8.3)

Now by Theorem 7.1(iii) there exists c′ = (c′1, . . . , c
′
κ⋆) such that c′ � 0 and M1,κ⋆c′ ≺ 0.

Define b′κ⋆+1 := Y1,κ⋆c′. The vector HT
1,nb

′
κ⋆+1 ∈ R

n has the following sign pattern:

(−, . . . ,−, ∗, 0, . . . , 0) (8.4)

where the ∗ appears in the (κ⋆ + 1)th component. In particular b′κ⋆+1 ∈ B ∩ Cκ⋆+1 and the
first κ⋆ invariance conditions are strictly negative. Now suppose we find a non-zero vector
β ∈ sp{βκ⋆+1, . . . , βm} such that

hj · β ≤ 0 , j = κ⋆ + 2, . . . , n . (8.5)

Then for α > 0 we can form

b′′κ⋆+1 := b′κ⋆+1 + αβ .

Using (8.4) and (8.5), α can be selected sufficiently small so that hj · b
′′
κ⋆+1 ≤ 0 for all

j = 1, . . . , κ⋆, κ⋆ + 2, . . . , n. That is, b′′κ⋆+1 ∈ B ∩ Cκ⋆+1. Moreover, with β 6= 0,

{b1, . . . , bκ⋆ , b′′κ⋆+1}

is a linearly independent set. This contradicts that B ∩ Cκ⋆+1 ⊂ sp{b1, . . . , bκ⋆}. The
conclusion is that there does not exist β ∈ sp{βκ⋆+1, . . . , βm}, β 6= 0, satisfying (8.5).

Now let y(x) be any continuous closed-loop vector field on S satisfying the invariance
conditions (4.2). Using (8.2), for x ∈ G⋆, let

y(x) = c1(x)b1 + · · · + cκ⋆(x)bκ⋆ + β(x) , (8.6)

where β(x) ∈ sp{βκ⋆+1, . . . , βm}. From (4.2) we know that for each x ∈ G⋆

hj · y(x) ≤ 0 , j = κ⋆ + 2, . . . , n .

Using (8.3) and (8.6) these conditions become

hj · β(x) ≤ 0 , j = κ⋆ + 2, . . . , n ,

but we have just shown that no such non-zero β exists, so it must be that β(x) = 0.
Therefore for each x ∈ G⋆,

hj · y(x) = 0 , j = κ⋆ + 2, . . . , n ,

as desired. �
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Remark 8.2. Proposition 8.2 has the following intuitive meaning. For simplicity suppose
v0 = 0. We know from the geometry of the simplex (see Lemma 4.4) that the state space
can be decomposed as follows:

R
n = aff{v0, . . . , vκ⋆+1} ⊕ sp{hκ⋆+2, . . . , hn} ≃ R

κ⋆+1 ⊕ R
n−κ⋆−1 . (8.7)

Therefore, Proposition 8.2 says that

sp{b1, . . . , bκ⋆} ⊂ aff{v0, . . . , vκ⋆+1} .

Moreover, for all x ∈ G⋆,

y(x) ∈ sp{b1, . . . , bκ⋆} .

Geometrically, G⋆ lies in aff{v0, . . . , vκ⋆+1}, a κ⋆ + 1 dimensional affine space in R
n, and it

is itself a κ⋆-dimensional simplex in this space. Meanwhile, B provides to G⋆ only κ⋆ usable
directions (which also lie in aff{v0, . . . , vκ⋆+1}) to resolve all its invariance conditions. We
will see that this is not enough to establish a flow condition on G⋆.

Consider again Figure 3 in which B ∩ cone(S) = {0}. We have that n = 3, m = 1, and
κ = κ⋆ = 1. Thus, G = v1v2. Also, B = sp{b1 | b1 ∈ B ∩ C1}. We can see that in order
not to have any B ∩ Ci = {0}, for i = 1, 2, it must be that B ⊂ aff{v0, v1, v2}, which is the
affine (linear) space that contains the convex hull of G and v0. Notice that this space is
equivalently definable by {y | h3 · y = 0}. Proposition 8.2 then says that all velocity vectors
available to G lie in aff{v0, v1, v2}.

Proposition 8.2 describes the fundamental geometric property that forces the existence of
an equilibrium. The proof that an equilibrium exists can now be executed in a number of
ways, including index theory and the Brouwer Fixed Point Theorem. An efficient proof is
based on Sperner’s Lemma [18].

Let T be a triangulation of n-dimensional simplex S. A proper labeling of the vertices of T
is as follows:

(P1) Vertices of the original simplex S have n+ 1 distinct labels.
(P2) Vertices of T on a face of S are labeled using only the labels of the vertices forming

the face.

Given a properly labeled triangulation of S, we say a simplex in T is distinguished if its
vertices have all n+1 labels. Sperner’s lemma says that every properly labeled triangulation
of S has an odd number of distinguished simplices.

Example 8.1. By way of example, consider the simplex S in Figure 4 and suppose the
possible labels are a (blue), b (red), or c (green). The vertices each have a distinct label, so
condition (P1) is met. Also, for the shown triangulation of S, (P2) is satisfied. For example,
along the left edge, vertices are labelled only by a or b. Consequently there exists at least
one distinguished subsimplex, shaded in the figure, with vertices with all three labels.

Theorem 8.3. Suppose Assumptions 6.1 and 8.1 hold. Let u(x) be a continuous state

feedback such that the closed-loop system ẋ = Ax+Bu(x) + a = y(x) has unique solutions

and the invariance conditions (4.2) hold. Then the closed-loop system has an equilibrium

point in G.

Proof. By Assumption 8.1, G = conv{v1, . . . , vκ+1}. If κ > m, redefine G as G = conv{v1, . . . , vm+1}.
Define the simplex G⋆ using the construction above and let I⋆ := {1, . . . , κ⋆ + 1}. Now we
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Figure 4. Example of Sperner’s Lemma

show how to obtain a proper labeling of G⋆. We begin by defining the sets:

Q⋆
i := {x ∈ G⋆ | hi · y(x) > 0} , i ∈ I⋆ .

Observe that vi ∈ Q⋆
i and vi 6∈ Q⋆

j , i, j ∈ I⋆, i 6= j, for otherwise, we would have y(vi) ∈
B∩cone(S) which either contradicts that B∩cone(S) = {0} or implies y(vi) is an equilibrium.
Therefore, either the proof concludes with an equilibrium on a vertex of G⋆, or we can infer
that inclusion in a set Q⋆

i provides a distinct label for the vertices vi ∈ G⋆. This satisfies
(P1) of a proper labeling of G⋆. Next, let T be any triangulation of G⋆ and consider a vertex
v of T which is not a vertex of G⋆ and lies in ∂G⋆. W.l.o.g. let v ∈ conv{v1, . . . , vl+1} for
some 1 ≤ l < κ⋆. Then it must be that v ∈ Q⋆

k for some 1 ≤ k ≤ l+1, by the same reasoning
that otherwise y(v) ∈ B ∩ cone(S). Clearly this labeling of v satisfies the second condition
(P2) for a proper labeling. Finally, for vertices v of T in the interior of G⋆, any label Q⋆

i

such that hi · y(v) > 0 can be used (at least one such exists because if all hi · y(v) ≤ 0,
i ∈ I⋆, it implies hi · y(v) ≤ 0 for all i = 1, . . . , n or y(v) ∈ B ∩ cone(S)).

Now for each k > 0, k ∈ Z, define a triangulation T
k of G⋆ such that each simplex of

T
k has diameter 1

k
. Apply Sperner’s lemma for each T

k to obtain a distinguished simplex

conv{vk1 , . . . , v
k
κ⋆+1} and its baricenter xk. {xk} defines a bounded sequence in G⋆ which

has a convergent subsequence, again denoted {xk}. We have limk→∞ xk = x ∈ G⋆, since
G⋆ is closed. Also, by construction vki → x, i ∈ I⋆. By Sperner’s lemma we know that
hi · y(v

k
i ) > 0, i ∈ I⋆, so by continuity of y(x) this implies hi · y(x) ≥ 0, i ∈ I⋆. Combined

with Proposition 8.2, we obtain that −y(x) ∈ B ∩ cone(S) = {0}, which implies x ∈ G⋆ is
an equilibrium of the closed-loop system ẋ = y(x). �

9. Existence of Continuous State Feedback

In this section we collect the previous results to resolve the boundary between continuous
state feedback and affine feedback.

Theorem 9.1. Suppose Assumption 6.1 holds. Then the following statements are equiva-

lent:



REACH CONTROL ON SIMPLICES BY CONTINUOUS STATE FEEDBACK 17

(1) S
S

−→ F0 by affine feedback.

(2) S
S

−→ F0 by continuous state feedback.

Proof. (1) =⇒ (2) is obvious.
(2) =⇒ (1) Suppose there exists a continuous state feedback u(x) such that the closed
loop system (8.1) has a unique solution for each initial condition in S and Problem 3.2 is
solved using u(x). By Lemma 4.3 the invariance conditions (4.2) are satisfied, implying

(4.1) are solvable. Suppose G = ∅. Then by Theorem 6.1, S
S

−→ F0 by affine feedback.

Suppose G 6= ∅. Also, suppose B ∩ cone(S) 6= {0}. Then by Theorem 6.2, S
S

−→ F0 by
affine feedback. Instead suppose G 6= ∅ and B ∩ cone(S) = {0}. Suppose v0 ∈ G. Then by
Proposition 8.1, the closed-loop system has an equilibrium point v0 ∈ S, a contradiction.
Instead suppose v0 6∈ G and w.l.o.g. G = conv{v1, . . . , vκ+1}, with 0 ≤ κ < n. Suppose
there does not exist a linearly independent set {bi ∈ B ∩ Ci | i ∈ IG}. Then by Theorem 8.3
the closed-loop system has an equilibrium point x0 ∈ S, a contradiction. Instead suppose
there does exist a linearly independent set {bi ∈ B ∩ Ci | i ∈ IG}. Then by Theorem 6.3,

S
S

−→ F0 by affine feedback. �
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