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Abstract
This paper further explores the hypothesis, put forward in our earlier work, that the cerebellum performs disturbance rejec-
tion to meet the requirements of the internal model principle of control theory. We review some of the relevant experimental 
results that suggest such an interpretation is possible. We also discuss in an informal non-mathematical way how a model of 
the cerebellum for disturbance rejection may be formulated using ideas from control theory. Based on our study of the slow 
eye movement systems as well as visuomotor adaptation, several themes emerge, including a possible structural model of 
the cerebellum, and insights on how the cerebellum may enable and disable internal models. Implications for robotics are 
discussed at the end of the paper.
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Introduction

This paper explores the hypothesis that the primary func-
tion of the cerebellum is disturbance rejection of exogenous 
reference and disturbance signals. This interpretation of cer-
ebellar function places the internal model principle of con-
trol theory at front and center; that is, any good controller 
must contain an internal model of its environment [1]. The 
reader may notice a stylistic shift from many writings in 
neuroscience that treat internal models as a theoretical pos-
sibility. If the measurement structure of the brain imposes 
that mathematically the internal model principle must hold, 
then we regard this fact as inviolable, like a law of physics. 
The mathematical certainty of the internal model principle 
can be a guide in making deductions that we find are not 
always available if one adopts a purely empirical stance.

The idea to interpret the cerebellum in terms of distur-
bance rejection is, in some sense, not new. The first proposal 
by Stephen Lisberger on the role of internal models in the 
cerebellum in his survey paper [2] is consistent with a role 

of disturbance rejection. Lisberger describes internal models 
as providing “a model of the inertia of real-world objects 
in motion”; see also [3, 4]. Reference signals such as target 
motion impinge on sensory error signals in a mathematically 
indistinguishable way from disturbance signals. Lisberger’s 
description of the role of internal models can be interpreted 
as the removal of a disturbance (the motion of a visual tar-
get) from an error signal recorded in the brain, the displace-
ment from the fovea to the target on the retina. Motivated by 
findings primarily regarding the oculomotor system and by 
our interpretation of cerebellar function in terms of distur-
bance rejection, we have applied regulator theory [5] to form 
mathematical models of motor systems under regulation by 
the cerebellum [6–10].

The paper is informal. We suppress mathematical details 
as much as we can. We draw connections between different 
scientific subjects that are perhaps not often compared side 
by side: regulator designs for disturbance rejection compared 
with a systems-level structural model of the cerebellum; spe-
cific models of motor systems compared with each other; 
and comparisons between continuous-time and discrete-time 
processes both associated with the cerebellum. In making 
this survey, several themes or takeaways emerge, that we 
summarize here for the reader who is interested in the main 
points (meanings of specific terms are found in the main 
text below):
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•	 The structural architecture of the cerebellum resembles 
that of an adaptive observer [11, 12] or an adaptive filter 
[13–15].

•	 The nucleo-cortical pathway [16, 17] is in direct corre-
spondence with the internal model principle in the sense 
that without this pathway, the internal model principle 
would not be satisfied by the mathematical model.

•	 The theory suggests that the granular layer filters of the 
cerebellum must synchronize on the same time constants 
for filtering mossy fiber (MF) inputs to the same cerebel-
lar modules.

•	 Mathematically speaking, there is considerable flexibil-
ity in terms of how MF inputs to the cerebellum may be 
combined or “pre-bundled”.

•	 The mathematical models suggest that some MF inputs 
may have the role to ensure that they are not cancelled 
out by the cerebellum. This seemingly contradictory role 
could potentially lead to misinterpretations of the func-
tion of certain cerebellar modules. On the other hand, the 
collaborative role between the cerebellum and feedfor-
ward signals is well known [18].

•	 The cerebellum may well be the unique brain structure 
that is wired to handle the dangerous operation of shut-
ting on and off internal models for the satisfaction of the 
internal model principle.

•	 Research on the cerebellum has implications for robot-
ics, particularly in developing compliant, energy-efficient 
robots that remain robust to disturbances through their 
use of reflexes and cerebellar-like computations.

This paper is an extended version of the conference paper 
[19]. The present version places greater emphasis on the 
disturbance rejection aspect of cerebellar function, while 
[19] considered regulator theory in general. Specific dif-
ferences between the two papers are as follows. “Experi-
mental Evidence” is new. It reviews a number of distinct 
biological behaviors and experiments that are amenable to 
be interpreted under a common rubric of disturbance rejec-
tion. “Disturbance Rejection” provides an alternative pres-
entation of the subject of disturbance rejection compared 
to the treatment in [19]. Whereas in [19] we adopted the 
standard control theoretic setup for disturbance rejection for 
LTI systems, without specific motivations for neuroscience 
problems, here we take more care to discuss the framework 
of disturbance rejection in a neuroscience context, thereby 
targeting readers who would not already have studied regula-
tor theory and/or are not control theorists. Next, we include a 
discussion in “Disturbance Rejection” on how feedforward, 
reflex control inputs may be operated in tandem with internal 
models to perform disturbance rejection. Finally, we provide 
an expanded discussion on our visuomotor adaptation model 
in “Implications for Robotics”, providing more details and 
clarifications on how these models function.

The paper is targeted at two potential groups of read-
ers. First, we target control theorists who are interested to 
develop new control theory inspired by neuroscience. The 
experimental evidence section provides intriguing scenarios 
where a control theorist can ask: what makes such behaviors 
mathematically possible? Second, the article is addressed to 
neuroscientists who are interested in how a control theorist 
views the question of cerebellar function. The point of view 
expressed here is driven by mathematical possibilities, based 
on the available measurement structure of the cerebellum. If 
we are lucky, the mathematical possibilities will be limited, 
as in the case of the internal model principle, making the 
work of model building easier.

Cerebellum

The locus of internal models in the brain is believed to be 
the cerebellum [4, 20–27]. The cerebellum is a major brain 
region positioned at the back of the head, partly covered 
by the cerebral cortex, and itself covering the brainstem. 
Nobel prize winner John Eccles and his co-authors laid out 
the microcircuit of the cerebellum by 1967 [28]. Their work 
showed that the cerebellum contains relatively few neuron 
types, and that it has a laminated structure with a repeating 
architectural pattern pervading each functional module. Each 
module has only two input pathways and a single output 
pathway [29].

The first of two input pathways to the cerebellum is via 
the mossy fiber (MF) inputs. The MFs carry a rich flow of 
information from sensory inputs as well as the output of the 
cerebellum itself. Mossy fiber outputs are received by tens 
of billions of granule cells, the most common cell type of 
the brain. The axons of the granule cells form parallel fib-
ers, which connect with the dendrites of the principal neu-
ron type of the cerebellum, the Purkinje cells (PCs). Each 
PC receives synaptic connections from as many as 200,000 
parallel fibers, resulting in a massive fan-in of information. 
The second input pathway to the cerebellum is via the climb-
ing fibers, which are the axons of cells from the part of the 
brainstem called the inferior olive. The climbing fiber input 
carries a sensory error signal, and each climbing fiber forms 
a powerful connection with a single PC. Climbing fibers 
are capable to modify the strength of the synapse between 
parallel fiber inputs onto the PCs. The PC axons project to 
the deep cerebellar nuclei and the vestibular nuclei, forming 
the only output pathway from the cerebellum.

Notable features of the anatomical structure from a con-
trol perspective are: 

	 (i)	 The cerebellum has a purely feedforward structure. 
Information flows from the MF inputs to granule 
cells and then via the parallel fibers to the PCs. The 
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PCs send their outputs to the deep cerebellar nuclei 
and vestibular nuclei.

	 (ii)	 Each functional module of the cerebellum is identical 
to the others and performs the same neural compu-
tation. The only distinction between modules is in 
terms of the input and output connections to other 
regions of the brain.

	 (iii)	 Each functional module of the cerebellum processes 
its own sensory error signal received via the climbing 
fiber inputs from a circumscribed region of the infe-
rior olive. Each module sends its output to a circum-
scribed region in the cerebellar nuclei or vestibular 
nuclei.

	 (iv)	 The adaptive capability of the cerebellum is pro-
vided by the climbing fiber input which changes the 
strength of the synapse between the parallel fibers 
and the PCs.

	 (v)	 Mossy fibers projecting to a similar region of the 
cerebellar cortex encode similar information.

	 (vi)	 Each of the deep cerebellar nuclei and the vestibular 
nuclei has a projection to the MF inputs of the cere-
bellum. This projection is termed the nucleo-cortical 
pathway and is regarded to provide an efference copy 
of the motor command issued by the cerebellum [16, 
17].

Structural Model

The features we have highlighted suggest a structural model 
associated with a single cerebellar module. This model does 
not reveal function but accords with cerebellar structure at a 
systems level: 

(1a)ẋ = Ax + Bu + Ed1

(1b)e = Cx + Dd2

(1c)ẇ1 = F1w1 + G1umf,1

(1d)
⋮

ẇk = Fkwk + Gkumf,k

(1e)ẇk+1 = Fk+1wk+1 + Gk+1uim

(1f)ŵ = (w1,… ,wk+1)

(1g)̇̂𝜓 = 𝛾eŵ

(1h)uim = 𝜓̂⊺
ŵ

Equation  (1a) represents the open-loop system under 
regulation by the cerebellum: horizontal eye position, eye 
velocity, hand position, hand grip force, gait, stance, and so 
forth. This plant model is presented as a linear system for 
simplicity, but the cerebellum also regulates nonlinear plants 
such as the limbs. See “Nonlinear Models” where we discuss 
how nonlinear models can be incorporated. The signal e ∈ ℝ 
is an error that the cerebellum is tasked with asymptotically 
driving to zero. Identifying the error signal associated with 
each cerebellar module is one of the central tasks of experi-
mental neuroscience research on the cerebellum.

Signal d1 ∈ ℝ is a persistent exogenous disturbance 
entering at the plant input. Signal d2 ∈ ℝ is a persistent 
exogenous disturbance or reference signal entering at the 
error measurement. The term “persistent” in control theory 
means a signal sustained forever. The motivation for study-
ing such disturbance signals is that it allows one to carry out 
a stability analysis without concern for the termination of 
the disturbance, thus simplifying the analysis. In practice, 
especially in neuroscience applications, one must allow for 
episodic disturbance rejection of signals that may be sus-
tained over seconds or minutes while a particular motor task 
is being performed. For example, a “persistent” disturbance 
can be the rhythmic swaying of a subway train under one’s 
feet during a 15 minute ride, or it can be a step reference 
signal that must be tracked for 2 s as one holds the gaze 
on an eccentric visual target. In these more realistic cases, 
the theoretical stability guarantees obtained under the “per-
sistency” assumption remain valid. Finally, the term “per-
sistent” must be contrasted with “transient disturbances”, 
which are brief, typically impulsive disturbances that are 
either rejected through reflexes or through the inherent 
robustness of a closed-loop system. Internal models are not 
designed to handle transient disturbances. In summary, the 
term “persistent” refers to a class of disturbances that is ide-
ally rejected using an internal model. The assumption that 
they persist forever is a convenient abstraction for the pur-
poses of mathematical analysis.

Distinct MF input signals are umf,1,… , umf,k and uim , 
which arrive by way of the filters (1c)–(1e) with corre-
sponding filter states w1,… ,wk+1 . We assume each Fi , 
i = 1,… , k + 1 is Hurwitz. These filters are in analogy with 
the lead-lag filters utilized in [13] to model the granular 
layer, but we allow a more general interpretation here. The 
filter (1e) is particularly important as it models the nucleo-
cortical pathway. Namely, uim , the output from the PC’s of 
the cerebellum, is sent back as a mossy fiber input.

The Eq. (1g) is the standard gradient adaptation law to 
model the modifiable synapses between parallel fibers and 
PCs. The structural model is modular in the sense that other 
parameter adaptation laws may be considered to capture 

(1i)u = us + uim .
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synaptic plasticity (for instance to address robustness [30]). 
Several models of synaptic plasticity have been proposed 
[31, 32, 33, Ch. 5]. These models may also be incorporated 
as parameter adaptation laws. For example, a modified gradi-
ent law inspired by the Use it or Lose It Principle of synaptic 
plasticity [34] has been developed in [35, 36].

The signal e in (1g) is supplied by the climbing fiber 
input to the cerebellum. Parameter 𝛾 > 0 is the adaptation 
rate. The output of the cerebellum is uim , and the overall 
motor command is u. It includes us for closed-loop stability, 
if needed. The motor command may also contain other feed-
forward or reflex signals. These can be included on a case by 
case basis, depending on which module of the cerebellum is 
being studied. Some examples are given in the text below. A 
control theorist will recognize the structural model to have 
the general form of an adaptive observer [11, 12].

Nonlinear Models

This paper has focused on linear time-invariant plant models 
for the sole reason that in our past work on the oculomotor 
system and visuomotor adaptation, linear models sufficed 
to capture the phenomena of interest. To further develop 
a framework for cerebellar function based on disturbance 
rejection, it is necessary to consider nonlinear plant mod-
els, nonlinear observers, and nonlinear internal models. 
Two areas where this extension is immediately required are 
visuomotor adaptation and adaptation of central pattern gen-
erators. In visuomotor adaptation nonlinear saturation phe-
nomena are clearly evident in so-called error clamp experi-
ments [37, 38]. Second, it is known that training of nonlinear 
oscillators and central pattern generators are subject to the 
influence of the cerebellum [39, 40]. See also [41] for related 
work on nonlinear oscillators modeled as adaptive observers.

On the control theory side, nonlinear regulator theory has 
been under development for the last 30 years [42–46]. These 
developments split into several separate research threads. 
First, there are many sophisticated nonlinear internal model 
designs available, with a brief list being [46–48]. Second, 
adaptive control has been significantly extended to include 
nonlinearly parametrized models [49–52]. Third, nonlinear 
adaptive observers (or forward models) have been developed 
in [12, 53–57].

Experimental Evidence

The structural model does not endow the cerebellum with 
any particular function except that of filtering MF inputs 
along with parameter adaptation. Our hypothesis is that the 
primary function of the cerebellum is disturbance rejec-
tion of exogenous disturbance and reference signals. We 

consider experimental evidence that we believe supports 
this hypothesis.

Gaze Holding

It is well known that a suitably accurate model of the oculo-
motor plant takes the form of a stable first- or second-order 
differential equation [58, 59]. This means it has no inherent 
capability to hold the gaze at eccentric positions, since this 
behavior involves tracking a step signal. The oculomotor 
system also has no direct measurement of eye position, since 
it has been shown that proprioception plays an insignificant 
role in eye movement [60–62]. To satisfy the internal model 
principle, the gaze holding system would require a pure inte-
grator corresponding to a pole at s = 0 in the control loop to 
achieve step tracking with zero steady-state error. In early 
writings, it was thought that this integrator function was 
provided by the brainstem neural integrator (see the discus-
sion in [63]). But the neural integrator is known to be leaky 
[58]. It is now more fully understood that the cerebellum is 
needed to complete the gaze holding function by supplying 
a top-up signal [63]. Our hypothesis is that the cerebellum 
contains an internal model for gazing hold that is capable 
to generate step signals. By estimating a step signal, the 
cerebellum provides for asymptotic rejection of the step ref-
erence signal arising in the retinal error signal, a positional 
error proportional to the angular distance from the fovea to 
the target on the retina [64].

Smooth Pursuit Eye Movements

The human and primate smooth pursuit eye movement sys-
tems are capable to track sinusoidal reference signals within 
a certain frequency band with nearly perfect precision, 
despite more than a 100 ms delay in the retinal error signal 
[59, 65–70]. This capability is particularly evident for predi-
cable targets [66], leading neuroscientists to describe it as a 
“prediction” mechanism [71–74]. However, pure prediction 
is a non-robust mathematical operation in closed-loop, rais-
ing questions about how it could be implemented by a bio-
logical system for a pursuit task. On the other hand, we know 
that, mathematically speaking, the smooth pursuit system 
would have to acquire an internal model capable to gener-
ate sinusoids of a particular frequency to satisfy the internal 
model principle; otherwise, perfect tracking with near-zero 
steady-state error based on sensory errors is mathematically 
impossible. The prediction capability of the smooth pursuit 
system has been posited to lie outside the cerebellum in [74]. 
Our hypothesis is that the main locus for the so-called pre-
diction capability of the smooth pursuit system is the cere-
bellum. We believe this hypothesis may be reasonable given 
the preponderance of experimental evidence supporting that 
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the cerebellum is crucial for proper function of the smooth 
pursuit system [59, 75].

Constant Velocity Visual Target Tracking

The oculomotor system is capable to track constant veloc-
ity targets with high precision [59]. Since the oculomotor 
plant is stable, the internal model principle informs us that, 
mathematically speaking, the closed-loop system should 
have an internal model of an exosystem with two poles at 
s = 0 . Constant velocity target tracking is often treated as a 
separate behavior than sinusoidal tracking (the latter system 
is thought to have a predictive mechanism, as we discussed 
above). From a control theory perspective, the two behav-
iors are almost identical. In one behavior the internal model 
reconstructs a sinusoid while in the other it reconstructs 
a ramp signal. In principle, the cerebellar computations 
would be nearly identical. Indeed, we hypothesize that both 
ramp tracking and sinusoidal tracking are performed by the 
flocculus [7]. The hypothesis is, however, premised on the 
assumption that both ramp tracking and sinusoidal tracking 
are driven by a positional retinal error signal. If sinusoidal 
tracking is instead driven by a velocity-based error, namely 
the retinal slip velocity then a more likely locus of sinusoi-
dal tracking would be the nodulus/uvula. Our point here is 
that differences between sinusoidal and ramp tracking would 
appear to have more to do with the sensory error that drives 
those specific eye movement systems, which in turn informs 
which module of the cerebellum is involved, and less to do 
with differences in cerebellar computations, which are con-
ceptually identical.

Vestibulo‑Ocular Reflex (VOR)

The vestibulo-ocular reflex provides an intriguing example 
of the role of disturbance rejection in the cerebellum when 
the exogenous disturbance is picked up by one of the sensory 
organs and then directly applied as a feedforward signal, a 
reflex, to a part of the body [76–78]. VOR cancellation is 
an experiment in which a subject must visually fixate on a 
head-fixed target while the body is rotated involuntarily in 
a sinusoidally rotating chair [59]. The VOR sends a reflex 
signal directly to the oculomotor neurons of the eye to make 
the eyes move nearly instantaneously in the opposite direc-
tion to the head. The purpose of the reflex is to provide fast 
rejection of head movement disturbances so that visual per-
ception of a stationary visual field remains unblurred [59, 
79]. During VOR cancellation, it is observed experimentally 
that the cerebellum issues a top-up signal to cancel the reflex 
signal [75, 78, 80, 81]. Since the reflex signal is sinusoi-
dal when the chair movement is sinusoidal, the cerebellum 
must build an internal model capable to generate sinusoids 
of matching frequency to the chair frequency.

The VOR example invites a debate on whether rejection 
of reflex signals should be regarded as disturbance rejection 
of an endogeous or exogenous signal since the reflex signal 
is a signal within the body. From the point of view of the 
work of the cerebellum, we would argue that the origin of 
the disturbance is less relevant than the fact that the reflex 
signal is inappropriate during VOR cancellation. It must be 
cancelled by the cerebellum to drive the retinal error to zero.

Manual Interception of Falling Objects

It has been shown experimentally that astronauts initiate 
movement too early in zero gravity, and it has been posited 
that the brain acquires an internal model of the motion of a 
target under the effect of gravity [82–84]. We take a moment 
to clarify a distinction between an internal model of the 
dynamics of an object and internal models associated with 
the internal model principle of control theory. The equa-
tion of motion of a mass falling under the effect of gravity 
(without air resistance) is

where g is the gravitational acceleration. While it may be 
postulated that the brain acquires a model of this law, the 
internal model principle states something different: that the 
brain must acquire an internal model of a signal. In particu-
lar, for a mass starting from rest at a height of x0 , the height 
evolves as

The model for this signal takes the form 

 a linear time-invariant third-order model with three poles at 
zero. Certainly humans are capable of visually tracking an 
object in freefall from a distance. The internal model prin-
ciple informs us that, mathematically speaking, an internal 
model of the form (3) must exist somewhere in the brain.

Returning to the example of manual interception in zero 
gravity, if the motion of the falling object occurs over a very 
short time period, then there is insufficient time for the cer-
ebellum to build an internal model of the continuous target 
motion. Rather, the learning process may correspond more 
closely to visuomotor adaptation in which an impulsive 

(2)ẍ = g ,

x(t) = x0 −
1

2
gt2.

(3a)𝜁̇1 = 𝜁2

(3b)𝜁̇2 = 𝜁3

(3c)𝜁̇3 = 0

(3d)x = �3 ,
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movement of the arm is trained over repetitive trials; a 
behavior more amenable to modeling by a discrete-time or 
difference equation model. The current understanding is that 
the cerebellum is involved in adapting the timing of such 
movements [85].

Finally, we note that cerebellar training of reflex 
responses takes place over a much longer time scale (hours 
and days) relative to the primary function of the cerebellum, 
which can be initiated within 10–100 ms with the arrival 
of sensory error signals. For instance, learning appropriate 
responses in zero gravity is observed to require several days 
of experience [82]. Studies of adaptation of reflex responses 
provide valuable insight on processes downstream from the 
cerebellum—processes that are disrupted when the cerebel-
lum is damaged [75, 86].

Voluntary v.s. Involuntary Motion

It has been shown experimentally that the cerebellum is 
involved in self-motion perception [76, 85, 87, 88]. In par-
ticular, the nodulus and uvula (together called the NU) of the 
vestibulo-cerebellum are required to process sensory infor-
mation from the vestibular organs: the otoliths and semicir-
cular canals of the ears, which provide linear and angular 
acceleration measurements, respectively, of the head. If the 
nodulus and uvula are lesioned, then self-motion percep-
tion in humans is impaired. The subject’s awareness of self-
motion is likely to be a higher cognitive function relative 
to cerebellar function, which appears to be automatic or 
implicit. Thus, we may hypothesize that awareness of self-
motion is another auxiliary downstream process arising out 
of a well-functioning disturbance rejection capability in the 
cerebellum [89].

An underpinning of self-motion perception is the abil-
ity to distinguish motion generated endogenously and 
exogenously (modulo the complications we discussed in 
“VOR, Smooth Pursuit, and Gaze Holding”). For instance, 
self-generated v.s. passive head rotation was studied in [77, 
87]. These studies found neurons in the vestibular nuclei of 
rhesus monkeys that are responsive to head rotation but do 
not reliably encode head velocity arising from self-gener-
ated head movement. This finding is not inconsistent with 
a disturbance rejection role of the cerebellum (of course, it 
depends on the specific class of neurons from which record-
ings are taken).

Feedforward (non-error based) components of a motor 
command are available to the cerebellum to assist in iso-
lating exogenous disturbance and reference signals that 
impinge on sensory errors. If motion is entirely generated 
by feedforward motor commands without additional exog-
enous disturbances (as in the case of self-generated head 
rotation), then a cerebellum that performs disturbance 
rejection will not need to be active. Consequently, cells 

that are affected by cerebellar output (such as the PVP 
cells in the Roy/Cullen study) may adjust their modulation 
in concert with a reduced role of the cerebellum. With-
out the efference copy of feedforward motor commands, 
exogenous and endogenous signals would be scrambled 
together, resulting in the cancellation of useful signals. 
We will try to clarify these mathematical points in “Dis-
turbance Rejection”.

As mentioned, the term exogenous does not strictly refer 
to a signal generated by activity outside the body. A sen-
sory signal may arrive from the environment, yet be incurred 
through one’s own actions. For example, while running 
through the park, I activate my optokinetic system to track a 
moving visual field of trees. This self-induced disturbance 
in my vision may be regarded as “exogenous” with respect 
to the optokinetic system. No meaningful information in 
the motor command to my legs can be interpreted in terms 
of errors experienced by the visual system. The distinction 
between endogenous and exogenous or involuntary and 
voluntary movement depends on an interpretation of the 
boundaries of a given motor system.

Posture Regulation and Unexpected Motion

It has been shown in [90] that the cerebellum is capable 
to detect unexpected self-motion during posture regula-
tion tasks. The authors performed a study to investigate the 
response of cells in the rostral fastigial nucleus, the most 
medial of the deep cerebellar nuclei, in rhesus monkeys. 
Neurons in this area receive an output from the PCs of the 
cerebellum, and they project their signals to the vestibular 
nucleus and the spinal cord to regulate posture. It was found 
that these cells are responsive when the head is passively 
rotated sinusoidally relative to the body, but the same neu-
rons are not active when the monkey performed active head 
rotations. The findings are analogous to those for voluntary 
v.s. involuntary motion.

The interpretation of the experimental results in [90] from 
the point of view of the internal model principle is that the 
cerebellum estimates the sinusoidal head movement under 
the passive condition because there is some residual sinu-
soidal component in the proprioceptive error signals (to be 
regulated by the cerebellum) that is not fully canceled by 
the reflexes. Instead, under active rotation of the head, the 
motor command to the head and the reflexes are sufficient to 
provide complete cancellation of disturbances appearing in 
the error signals associated with maintaining a stable head 
position with respect to the torso. In our view, the research in 
[90] works toward a full understanding, both experimentally 
and mathematically, of the relationship between specific dis-
turbance signals being estimated by the cerebellum and the 
associated error signals being regulated.
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Disturbance Rejection of Gravity

Many studies have been performed to show that the cere-
bellum builds an internal model of gravity [91–93] in order 
that its contribution to certain reflexes may be removed.

The otolith-ocular reflex in humans is a reflex that sta-
bilizes eye position relative to the visual surround. The 
reflex is elicited either during translational motion of the 
head or during angular motion that involves dynamic reori-
entation of the head relative to gravity. In order for the 
reflex to operate properly, it is necessary for the gravi-
tation disturbance to be removed or cancelled from the 
reflex signal. The motivation for this computation by the 
brain is that gravity has no effect on the quality of visual 
perception, whereas linear displacement of the head does. 
For example, if the head movement is lateral, then the 
eye movement must remain horizontal for clear vision. 
Similarly, forward head movement requires that the eyes 
remain horizontal.

The difficulty with estimating gravity is that the otolith 
organs, which provide the drive for the otolith-ocular reflex, 
are unable to differentiate linear acceleration of the head 
from acceleration due to gravity. If the eye were to move 
according to the effect of the reflex only, and the reflex cor-
responds to the vector sum of gravity and linear acceleration 
in an inertial frame, then the eye would sustain torsional 
or vertical movements in the scenarios described above. 
A mechanism is needed to de-corrupt the reflex signal by 
removing the effect of gravity. It is known that the nodulus 
and uvula perform this function by performing an estimation 
of gravity, then subtracting it from the reflex signal in the 
overall motor command to the eyes [94].

In [91] subjects are rotated at a constant velocity about an 
earth-vertical axis. In steady-state, the semi-circular canals 
are unable to detect this motion since they only detect angu-
lar acceleration. Subjects are then rapidly decelerated to a 
stop, resulting in signals from the semi-circular canals that 
cue angular velocity in the opposite direction to the preced-
ing rotation. Immediately after stopping, the subject is tilted 
by 90◦ to one of several orientations such as nose down. 
In this nose-down position, the otoliths pick up a constant 
linear acceleration due to gravity, while the semi-circular 
canals pick up a constant velocity rotation of the head about 
the body. It is observed that the eyes make compensatory 
movements in the dark that cannot be explained as a pure 
reflex response to the semi-circular canal and otolith signals. 
It is proposed that an estimation of gravity is made by the 
cerebellum (nodulus and uvula), and this estimate modifies 
the eye movements.

These exciting experiments can be a prime testing 
ground for the hypothesis that the cerebellum subserves 
the internal model principle: does the cerebellum estimate 
gravity so that gravity signals can be cancelled from reflex 

signals when the effect of gravity is inappropriate, with 
the ultimate aim to perform disturbance rejection in visual 
error signals?

Gait Regulation

In split-belt treadmill experiments, subjects must walk 
with belts moving at different speeds under each foot. Due 
to the repetitive and persistent nature of this disturbance, 
subjects are able to adapt the walking speed of each leg 
to maintain forward locomotion, while cerebellar patients 
are unable to perform this adaptation [39]. One may regard 
the differential in speed of the two belts as inducing a peri-
odic disturbance which is detected through proprioceptive 
error signals in the feet. Alternatively (and equivalently), 
the speed of the two belts represents reference signals 
that must be tracked through leg movement. Reasoning 
through the lens of the internal model principle, given the 
essentially periodic nature of the disturbance that would 
arise, the internal model of the disturbance would likely be 
that of an oscillator of suitable frequency. The cerebellum 
would be invoked in this gait regulation task because pre-
trained pattern generators in the spinal cord (which may 
be thought of as supplying reflex signals for walking) are 
unable on their own to maintain sensory (proprioceptive) 
error signals close to zero.

Adaptation in the Saccadic System

The saccadic eye movement system generates fast resets of 
eye position called saccades. This system is subject to a 
process of adaptation of the saccade size based on a meas-
urement of the visual error between the fovea and the desired 
target immediately following the execution of a saccade [59, 
95]. In intersaccadic step experiments, the target is shifted 
by a constant angle while the saccade is underway (there is 
no visual perception during a saccade because the movement 
is too fast), resulting in a predictable error between the final 
eye position and the (now displaced) target. From the point 
of view of the internal model principle, the cerebellum must 
reject a constant angular disturbance arising in the retinal 
error recorded at the end of the saccade. Our hypothesis 
is that the cerebellum contributes to the rejection of this 
disturbance by gradually adapting the saccade size using 
an internal model of a constant disturbance. The saccadic 
system does not appear to be capable of rejecting more com-
plex time-varying disturbances [96]. This is an example of a 
motor system regulated by the cerebellum in which the class 
of disturbance signals which can be reconstructed appears 
to be extremely limited, in contrast with the slow-eye move-
ment systems that can track steps, ramps, and sinusoids.
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Rejection of Tail Movement During Fish Pursuit

Disturbance rejection by the cerebellum appears early in its 
evolutionary development. Cerebellum-like structures in fish 
have been shown experimentally to perform disturbance rejec-
tion [97–100]. Weakly electric fish use active electrolocation 
to nagivate and to find prey in the dark. The fish possess elec-
tric organs in the tail that emit weak electric fields, and elec-
troreceptors along the body detect changes in this electric field. 
However, the electrosensory measurements are corrupted by 
the fish’s own tail movement. Recordings from the output of 
the fish’s cerebellum-like structure show that the fish is capable 
to reject the disturbance induced by tail movement to obtain 
a more accurate signal representing a prey object’s position.

Disturbance Rejection

Our working hypothesis that the primary function of the cer-
ebellum is disturbance rejection brings into view the subject of 
regulator theory [5]. In this section, we look at a representative 
regulator design to solve the disturbance rejection problem. 
This design is simple, and we suppress many details and exten-
sions available in the control theory literature. Our mandate 
is a basic mathematical understanding of what the cerebellum 
may be doing, followed by a comparison with the structural 
model. The design utilizes adaptive internal models, for which 
many designs are now available in the literature [46].

Consider the open-loop system 

 The first equation models the plant or open-loop system. 
Here it is represented as a linear system, but it can also 
be a nonlinear system; see “Nonlinear Models”. The vec-
tor x(t) ∈ ℝ

n is the state; u(t) ∈ ℝ is the control input (or 
motor command); e(t) ∈ ℝ is the error to be regulated; and 
d(t) ∈ ℝ is a persistent, exogenous disturbance signal enter-
ing the plant at the control input. We can also include a 
second disturbance by writing

where d2(t) is a disturbance signal entering directly into the 
error signal. We omit this second disturbance primarily to 
keep the discussion simple.

The disturbance rejection problem is to find a (possibly 
nonlinear) regulator

(4a)ẋ(t) = Ax(t) + B(u(t) + d(t))

(4b)e(t) = Cx(t) .

e(t) = Cx(t) + Dd2(t) ,

(5a)ẋr(t) = f (xr(t), x(t), e(t))

(5b)u(t) = h(xr(t), x(t), e(t)) ,

 to make the error go to zero asymptotically, e(t) ⟶ 0 , 
in the closed-loop system. The regulator has its own state 
xr(t) ∈ ℝ

p , and it may receive a measurement of the plant 
state x(t) and/or a measurement of the error e(t). The design 
may be extended to include feedforward signals such as 
reflex signals, such as in (1i). Also, it is implicitly under-
stood that the regulator can make use of the motor command 
u(t) itself in its computations.

Next, we consider a representative adaptive internal 
model design, taken from [46]: 

 It consists of three stable filters (6a)–(6c), with states 
w0(t),w1(t),w2(t) ∈ ℝ

q , respectively, where it has been 
assumed that the matrix F is Hurwitz. These filters process 
three distinct input signals: x(t), Ax(t), and Bu(t) (to be inter-
preted as the mossy fiber inputs to the cerebellum). The filter 
states are combined in (6d) to form the signal ŵ , which is the 
regressor for the parameter adaptation law (6e). The learn-
ing rate in the adaptation law is 𝛾 > 0 . The component uim is 
the output of the adaptive internal model (to be interpreted 
as the Purkinje cell output of the cerebellum). The compo-
nent us is for closed-loop stability, with the gain K such that 
A + BK is Hurwitz.

The term (B⊺

Px) in (6e) arises because we are present-
ing a design based on the measurement of the state x. This 
signal may be interpreted as a proxy for an error signal 
(modeling the climbing fiber input to the cerebellum). It 
renders the transfer function of the linear system to be 
strictly positive real, a property we exploited in our mod-
eling work with the optokinetic system [10]. Precisely, 
P ∈ ℝ

n×n is the symmetric, positive definite solution of the 
Lyapunov equation (A + BK)

⊺

P + P(A + BK) = −Q , with 
Q ∈ ℝ

n×n symmetric and positive definite.
There are several constraints on the parameters of the 

adaptive internal model. We have already mentioned that 

(6a)ẇ0(t) = Fw0(t) + FNx(t)

(6b)ẇ1(t) = Fw1(t) − NAx(t)

(6c)ẇ2(t) = Fw2(t) − NBu(t)

(6d)ŵ(t) = w0(t) + Nx(t) + w1(t) + w2(t)

(6e)̇̂𝜓(t) = 𝛾(B
⊺

Px(t))ŵ(t)

(6f)uim(t) = −𝜓̂⊺(t)ŵ(t)

(6g)us(t) = Kx(t)

(6h)u(t) = us(t) + uim(t) .
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F is Hurwitz. Also, (F, G) must be a controllable pair. The 
latter is a commonsense requirement to ensure that the 
adaptive internal model does not lose information about 
the disturbance d(t) that it is intended to estimate. The 
parameter N satisfies a constraint NB = G . This algebraic 
constraint may be interpreted in terms of structural infor-
mation about how the plant is actuated; namely how the 
control input affects the plant. Such constraints on F, G, 
and N would have to be achieved at the neuronal level by 
biological processes that can match filter time constants 
and hold parameter values over many hundreds of millions 
of neurons in aggregate.

In this particular design, the plant parameters (A, B) 
are required to be available in the signals Ax and Bu. This 
assumption would be acceptable in a biological context if 
estimated signals Â(t)x̂(t) and B̂(t)u(t) were provided to the 
adaptive internal model by another adaptive brain process, 
such as a forward model or observer of the plant.

We now come to the important question of how the 
adaptive internal model is capable to estimate the distur-
bance d(t). First, we look at the dynamics of ŵ . Using 
(6a)–(6d), we compute

Equation (7) says that ŵ will evolve according to a stable 
filter driven by the unknown disturbance d(t), even though 
d(t) is not directly available as a measurement. To further 
understand why this is useful, we consider that the role of 
the adaptive internal model will be to estimate disturbances 
that belong to a certain class of signals, organized according 
to their frequency content. For example, step, ramp, and sin-
gle-frequency sinusoids have the property that they include 
at most one frequency component. Such signals can be mod-
eled by a linear exosystem. The exosystem is a fictitious, 
mathematical construct that allows one to model disturbance 
signals in the form of differential equations. In other words, 
the exosystem does not physically exist, but it provides a 
template for what the adaptive internal model needs to do to 
estimate a signal. A useful parametrization of the exosystem 
takes the following form:

This exosystem uses the same parameters (F, G) as were 
implemented in the adaptive internal model (6). The only 
unknown parameter is � ∈ ℝ

q , and its value determines the 
frequency content of d(t) [46]. We can see this by substitut-
ing the expression for d(t) in (9) into (8):

(7)

̇̂w(t) = Fw0(t) + FNx(t) + N(Ax(t) + Bu(t) + Bd(t))

+ Fw1(t) − NAx(t) + Fw2(t) − NBu(t)

= Fŵ(t) + Gd(t) .

(8)ẇ(t) = Fw(t) + Gd(t)

(9)d(t) = �⊺w .

The eigenvalues of S, fixed by the free parameter � , deter-
mine the class of signals that can be modeled by the exosys-
tem in terms of their frequency content. In summary, param-
eters (F, G) are fixed by the design of the adaptive internal 
model, while w(0) and � are the unknown quantities that 
precisely determine the signal d(t). When we compare (8) 
with (7), we can understand that ŵ is an estimate of w, 𝜓̂ is 
an estimate of � , and uim is an estimate of d(t).

The fact that this regulator design meets the requirements 
of the internal model principle can be verified as follows. 
Consider the filter equation (6c) and suppose 𝜓̂ = 𝜓 , the 
steady-state condition for the parameters to converge to their 
correct values. Substituting u into (6c), we have

where �2 = �(w0 + Nx + w1) − us . We notice that if the dis-
turbance rejection problem is solved, then in steady-state, 
the signal �2(t) is zero. Therefore, in steady-state the filter 
dynamics are:

Again, the eigenvalues of S (equivalently the poles of the 
exosystem) determine the signals that can be generated by 
the exosystem, and the regulator now embeds a subsystem 
with the same signal generation capability. Mathematically, 
the regulator contains an internal model of the disturbance.

A final issue to address is how feedforward or reflex con-
trol inputs can be handled in the adaptive internal model. 
The relevance of this issue is that the cerebellum is involved 
in maintaining correct reflex responses [59, 86, 101]. To 
handle reflexes, the input (6h) is modified as 

 where ur(t) ∈ ℝ is the feedforward (reflex) input, yr ∈ ℝ
p 

represents sensory measurements, and 𝛼̂r ∈ ℝ
p are called 

reflex gains [86]. The parameters 𝛼̂r (here depicted as con-
stant) are adjusted in a process called long-term adaptation 
, a process not explicitly modeled in this paper but the sub-
ject of our forthcoming work. The purpose of the reflexes 
is to instantaneously cancel measurable components of the 
disturbance. As such, we can consider the disturbance being 
split into two components

where d2(t) represents the part of the disturbance that is not 
measured by sensory measurements. If the reflex gains are 

ẇ(t) = (F + G𝜓⊺)w(t) =∶ Sw(t) .

ẇ2 = Fw2 − NB(us + uim)

= Sw2 + G𝜂2 ,

ẇ2 = Sw2 .

(10a)ur(t) = −𝛼̂⊺

r
yr(t)

(10b)u(t) = ur(t) + us(t) + uim(t) ,

d(t) = d1(t) + d2(t) ,
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properly adapted, then the reflex completely or approxi-
mately cancels the other disturbance component:

There are two ways to handle this situation in terms of 
the adaptive internal model design. The first approach is 
to continue using the design (6) but with a modified input 
(10). Then ŵ continues to evolve according to (7), therefore 
providing a filtered estimate of d(t). But we only require a 
model of d2(t) . This issue is resolved using properties of 
exosystems [46]. Namely, there exists a parameter �2 ∈ ℝ

q 
such that

where w(t) ∈ ℝ
q is the state of the exosystem (8). To avoid 

notational confusion, we can rewrite the parameter adapta-
tion law (6e) and the output of the adaptive internal model 
(6f) as

We understand that ŵ(t) remains an estimate of w(t), whereas 
𝜓̂2(t) is an estimate of �2 and not � . The role of uim is to 
cancel the residual disturbance d2(t) , which is not instan-
taneously cancelled by the reflexes. We call this design a 
centralized design because all reflex inputs must be provided 
to the adaptive internal model.

An alternative approach is to first cancel d1 and ur in the 
open-loop plant model (4a) to obtain obtained

This model suggests a modified adaptive internal model 
design:

We call this a decentralized design in the sense that the 
adaptive internal model does not receive a measurement of 
the reflex input ur.

We summarize the main points of this section of the paper 
by comparing (6) with (1). There are three important points: 

ur(t) = −d1(t) .

(11)d2(t) = �
⊺

2
w(t) ,

̇̂𝜓2(t) = 𝛾(B
⊺

Px(t))ŵ(t)

uim(t) = −𝜓̂
⊺

2
(t)ŵ(t) .

ẋ(t) = Ax(t) + B(us(t) + uim(t)) + Bd2(t)

e(t) = Cx(t) .

ẇ0(t) = Fw0(t) + FNx(t)

ẇ1(t) = Fw1(t) − NAx(t)

ẇ2(t) = Fw2(t) − NB(us(t) + uim(t))

ŵ(t) = w0(t) + Nx(t) + w1(t) + w2(t)

̇̂𝜓(t) = 𝛾(B
⊺

Px(t))ŵ(t)

uim(t) = −𝜓̂⊺(t)ŵ(t)

us(t) = Kx(t)

ur(t) = −𝛼̂⊺

r
yr(t)

u(t) = ur(t) + us(t) + uim(t) .

	 (i)	 The filter (6c), which fulfills the requirements of the 
internal model principle, corresponds to the nucleo-
cortical pathway in (1e).

	 (ii)	 The model (6) bundles together filter inputs Nx, Ax, 
and Bu in (6a)–(6c) based on prior knowledge of the 
plant parameters. However, these filter inputs need 
not be aggregated in this way. Mathematically speak-
ing, states or other sensory inputs may arrive as filter 
inputs according to a number of patterns or combina-
tions, potentially depending on the structure of the 
open-loop system. This mathematical flexibility, in 
turn, may imply that an “unpacking” of MF inputs to 
the cerebellum is necessary to determine their con-
stituent components, making the modeling problem 
more challenging.

	 (iii)	 The model (6) requires that all the filters (6a)–(6c) 
have synchronized to utilize the same filter time con-
stants, i.e. Fi = Fj . Since the filters (1c)–(1e) or (6a)–
(6c) are nominally intended to model the granular 
layer of the cerebellum, this raises the question of 
whether the granular layer is capable of some form 
of dynamic synchronization.

We have identified intriquing analogies between cerebellar 
structure and internal model designs for disturbance rejec-
tion from a regulator theory. But the comparison remains 
abstract. The oculomotor system, discussed in the next sec-
tion, provides more concrete evidence that such analogies 
can be fruitful toward model building.

Oculomotor System

The oculomotor system comprises several eye movement 
systems: the vestibulo-ocular reflex (VOR), the optokinetic 
system (OKS), the gaze fixation system, the smooth pursuit 
system, the vergence system, and the saccadic system. The 
oculomotor system provides a good starting point for study-
ing the cerebellum because it has a very simple plant (the 
eyeball), and it is believed to provide the blueprint for all 
other motor systems [59].

VOR, Smooth Pursuit, and Gaze Holding

In [6, 7] (see also [102]) we presented a model of the VOR, 
smooth pursuit, and gaze holding for the horizontal motion 
of one eye, by applying an adaptive internal model design 
from [47]. Let x(t) ∈ ℝ be the horizontal eye angle with 
respect to the head. Let xh(t) be the horizontal head angle 
and r(t) is the horizontal angular position of a target, both 
with respect to an inertial frame. The model is: 
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 Equation (12a) is the first-order model of the oculomotor 
plant [103]. Equation (12g) is the retinal error, the difference 
between the target angle r(t) and the gaze angle x(t) + xh(t) . 
It is this error that the cerebellum is tasked with driving 
asymptotically to zero. Equation (12b) models the brainstem 
neural integrator [104] which acts as an observer to provide 
an estimate x̂ of eye position [105]. Equations (12c)–(12f) 
comprise the adaptive internal model in the cerebellum. The 
motor command u(t) has a component ub corresponding to 
a brainstem-only pathway for pure feedforward (reflex) sig-
nals, a component us to improve closed-loop stability, and 
uim , the cerebellar output from the PCs.

The model can be compared to the known neural circuit 
associated with these eye movement systems [106]. The 
error signal (12g) is transmitted from the visual cortex 
to the inferior olive (IO), where it is relayed to appropri-
ate climbing fiber inputs (CFs) of the cerebellum, spe-
cifically, the module called the floccular complex. This 
is the signal e appearing in (12f). The cerebellum also 
receives mossy fiber (MF) inputs from the medial vestibu-
lar nuclei (MVN) in the brainstem (B). These are the MF 
inputs in (12c)–(12d). The sole output of the cerebellum 
is uim , transmitted via its Purkinje cells (PCs) to floccu-
lar target neurons (FTNs) in the MVN [107]. The MVN 
also receives a head velocity signal from the semicircular 
canals of the ear, signal ẋh(t) in (12h), corresponding to 
the VOR. The parameter �

VOR
 is the VOR gain. The eye 

position signal 𝛼
X
x̂(t) corresponds to the projection from 

(12a)ẋ(t) = −Kxx(t) + u(t)

(12b)̇̂x(t) = −Kxx̂(t) + u(t)

(12c)ẇ1(t) = Fw1(t) + Gus(t)

(12d)ẇ2(t) = Fw2(t) + Guim(t)

(12e)ŵ(t) = w1(t) + w2(t)

(12f)̇̂𝜓(t) = 𝛾e(t)ŵ(t)

(12g)e(t) = r(t) − x(t) − xh(t)

(12h)ub(t) = 𝛼
X
x̂(t) − 𝛼

VOR
ẋh(t)

(12i)us(t) = Ke(t)

(12j)uim(t) = 𝜓̂⊺(t)ŵ(t)

(12k)u(t) = ub(t) + us(t) + uim(t) .

the brainstem nucleus prepositus hypoglossi (NPH) to the 
oculomotor neurons (MNs) which drive the eye. The out-
put of the MVN is sent both to the neural integrator (NI) in 
the NPH and directly to the MNs of the oculomotor plant.

As we discussed in “Disturbance Rejection”, the MF 
inputs in (12c)–(12d) may be bundled in a number of ways 
with a minor effect on overall behavior. For example, the 
two filters (12c)–(12d) could be combined into one, as was 
done in [108], for a more parsimonious model

This modification affects the choice of parameters being 
adapted, but it does not affect overall model behavior. Alter-
natively one could write

The feedforward signals in ub are now arriving as MF inputs 
to be subtracted from the overall motor command. This sub-
traction of feedforward signals is required so that their effect 
is not cancelled by the cerebellum (the cerebellum provides 
a top-up to the action of feedforward signals). Depending on 
the origin of the constituent components of the motor com-
mand u in the brain, such an explicit subtraction of certain 
MF inputs may arise, if not for the floccular complex, pos-
sibly in another cerebellar module. Such a situation would 
certainly cloud an understanding of the role of certain MF 
inputs to the cerebellum.

The model (12) recovers the standard lesion, behavioral, 
and neurological experiments associated with the VOR, 
gaze holding, and smooth pursuit; see [6, 7]. Here we dis-
cuss two important experiments that highlight the special 
capabilities of the cerebellum.

A first experiment called the error clamp explores the 
role of the error signal using a technique called retinal 
stabilization [109–111]. A monkey is trained to track a 
visual target moving horizontally at constant speed. After 
reaching steady-state, the error is optically clamped at zero 
using an experimental apparatus that centers the target 
image directly on the fovea. In experiments, it is observed 
that, despite zero error, the eye continues to track the tar-
get for some time after. Neuroscientists postulate so-called 
extraretinal signals drive the smooth pursuit system. Fig-
ure 1 depicts the error clamp with our model, showing on 
the left that the eye continues to track the target despite 
the measurement being clamped at e ≡ 0 during the time 
interval t ∈ [5, 6] . The right figure shows the (physical) 
error r(t) − x(t) . We see that some oscillations occur during 
tracking with the visual error clamped, showing that this 
open-loop operation is not robust. Nevertheless, the eye 
continues to track the target.

̇̂w = Fŵ + G(us + uim).

ẇ1 = Fw1 + FGe

ẇ2 = Fw2 + G(u − ub)

ŵ = (w1,w2)
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In the second experiment called target blanking, a horizon-
tally moving target is temporarily occluded, yet the eye contin-
ues to track the target [4, 112]; researchers have postulated the 
brain has an internal model of the motion of the target. Indeed, 
direct measurement of the appropriate PCs of the cerebellum 
shows that they remain active during the time that the target 
is occluded.

Let’s consider the meaning of these experiments in terms 
of (12). In the first experiment, the error is clamped at zero, so 
we can set e ≡ 0 to obtain

Since F is Hurwitz, the first filter state w1(t) decays to zero. 
Then the second filter evolves (in steady-state) according to 
ẇ2 = (F + G𝜓⊺)w2 , where F + G� has two zero eigenvalues 
to model a ramp signal. In addition, we assume that 𝜓̂ has 
converged to � . Clearly, w2 provides the drive for continued 
pursuit during the error clamp. But this behavior is only 
ensured because of the nucleo-cortical pathway which pro-
vides the efference copy of uim.

In the second experiment, there is no error signal while 
the target is occluded. It would certainly be paradoxical for 
the cerebellum to continue to supply (on its own) a drive for 
pursuit when there is no sensory error. Therefore, we must 
postulate that a higher brain center gates the activity of the 
nucleo-cortical pathway. When that gate is closed, the drive 
for pursuit is maintained. When the gate is open, the drive is 
disrupted.

In summary, when there is no error signal and/or the sub-
ject is not interested in an external stimulus, then the nucleo-
cortical pathway may be disabled, resulting in the stable model

ẇ1(t) = Fw1(t)

ẇ2(t) = Fw2(t) + Guim(t)

ŵ(t) = w1(t) + w2(t) .

ẇ1(t) = Fw1(t)

ẇ2(t) = Fw2(t)

ŵ(t) = w1(t) + w2(t) ,

in which all filter states gradually decay to a quiescent level 
of activity. However, when an error signal is temporarily 
dropped but the subject remains interested in the stimulus, 
then it is conceivable that the nucleo-cortical pathway is not 
disabled, at least for some period of time.

Optokinetic System

In the previous section we considered a model of a part of 
the cerebellum, the floccular complex (FC), involved in the 
regulation of the vestibulo-ocular reflex, smooth pursuit, and 
gazing hold eye movement systems. This section discusses 
a second functional module of the cerebellum, the nodulus 
and uvula (NU) which is responsible for regulating the opto-
kinetic system.

The optokinetic system is an eye movement system to 
stabilize vision on a full-field moving visual surround. This 
eye movement system contrasts with the eye movement sys-
tems of the previous section whose goal is to stabilize an 
object on the fovea. How the optokinetic system interacts 
with the other eye movement systems is of great interest 
scientifically, but also theoretically from the perspective of 
control theory: can parallel adaptive internal models work 
collaboratively to regulate the same error? Or does the brain 
utilize a switching mechanism to switch from one adaptive 
internal model to the other, reminiscent of switched sys-
tem architectures for adaptive control [113]? See [114] for 
a related interpretation.

Pioneering experimental work in the 1970s on the optoki-
netic system [115–118] lead to the discovery of the velocity 
storage mechanism (VSM), a behavior in which eye veloc-
ity is stored while following a constant velocity visual sur-
round, even with intervening saccades (a fast reset of eye 
position) in a behavior called nystagmus. A striking feature 
of the VSM is that it partially meets the requirements of the 
internal model principle, in the sense that the longer the 
time constant of the VSM, the better the optokinetic system 
is able to track a step signal in velocity—as though evolu-
tion made a first attempt at architecting a neural internal 
model. Indeed, the velocity storage mechanism of the VOR 

Fig. 1   Smooth pursuit with an 
error clamp during t ∈ [5, 6] s. 
The eye angle x on the left and 
the error e on the right
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is known to prolong the time-constant of the head angular 
velocity signal from the semi-circular canals by a factor of 
2–5 [115].

In [10] we proposed a model of the horizontal optokinetic 
system given by 

We utilized a second-order model of the oculomotor 
plant in (13a)–(13b), with x1(t) the horizontal eye angle 
and x2(t) the eye angular velocity, because the optokinetic 
system stabilizes eye velocity, not eye position. The error 
signal e(t) in (13c) to be regulated by the cerebellum is the 
retinal slip velocity, the difference between the horizontal 
angular velocity of the visual field ẋw(t) and the gaze veloc-
ity x2(t) + ẋh(t) . A non-zero ẋw(t) is induced in experiments 
when a subject is seated inside a rotating optical drum. The 
brainstem neural integrator again appears in (13d). Equation 
(13e) is the velocity storage integrator of the optokinetic 

(13a)ẋ1(t) = x2(t)

(13b)ẋ2(t) = 𝛼2(−x2(t) − Kxx1(t) + u(t))

(13c)e(t) = ẋw(t) − ẋh(t) − x2(t)

(13d)̇̂x(t) = −Kxx̂(t) + u(t)

(13e)v̇(t) = −Kvv(t) + Kve(t)

(13f)ẇ0(t) = Fw0(t) + FGe(t)

(13g)ẇ1(t) = Fw1(t) − Ge(t)

(13h)ẇ2(t) = Fw2(t) − Guim(t)

(13i)ẇ3(t) = Fw3(t) − Gx̂(t)

(13j)ẇ4(t) = Fw4(t) − Gẋh(t)

(13k)ẇ5(t) = Fw5(t) − Gv(t)

(13l)ŵ(t) = (w0(t) + Ge(t),w1(t),w2(t),w3(t),w4(t),w5(t))

(13m)̇̂𝜓(t) = 𝛾e(t)ŵ(t)

(13n)uim(t) = 𝜓̂⊺(t)ŵ(t)

(13o)ub(t) = 𝛼
X
x̂(t) − 𝛼

VOR
ẋh(t) + 𝛼

OK
e(t) + 𝛼

V
v(t)

(13p)u(t) = ub(t) + uim(t) .

system, modeled as a leaky integrator with state v(t) [115]. 
The motor command u(t) is now regarded as an accelera-
tion input to this second-order plant model; �

OK
e(t) captures 

the drive provided by the optokinetic reflex, where �
OK

 is 
the called the optokinetic gain; the vestibulo-ocular reflex is 
modeled by 𝛼

VOR
ẋh(t) , as before. The term �

V
v(t) captures the 

drive provided by the velocity storage integrator. Finally, we 
mention that there is no stabilizing feedback us in this model 
because the velocity dynamics of the oculomotor plant are 
already highly stable. The filters (13f)–(13k) correspond to 
the granular layer that filters the mossy fiber inputs.

In comparing this model to the structural model (1), we 
observe the additional filters (13i)–(13k) driven by feedfor-
ward signals x̂(t) , ẋh(t) , and v(t). Mathematically speaking, 
it can be shown that if these signals are not included as MF 
inputs, then they would be cancelled or rejected by the activ-
ity of the NU, as predicted by the model. Thus, a pattern we 
have already highlighted on the variable roles of certain MF 
inputs is reinforced again with this model: mathematically 
speaking, MF inputs may either appear because they are 
directly involved in disturbance estimation (such as e and 
uim ), or they may appear to avoid being cancelled by the 
cerebellum.

The model (13) is consistent with the neural circuit, and 
it recovers five standard behaviors of the optokinetic system: 
optokinetic nystagmus (OKN); optokinetic after-nystagmus 
(OKAN I); OKAN suppression; OKN suppression; and 
OKAN II. OKN is an eye movement in which the eye tracks 
the velocity of a (full-field) moving visual surround during 
the so-called slow phase, followed by a saccade to rapidly 
reset the eye position to zero in the fast phase [115, 116]. 
OKAN I is a behavior following OKN when the lights are 
turned off. During OKAN I nystagmus continues in the same 
direction as OKN, even though there is no visual stimulation 
[115, 119].

Figure 2 shows simulation results for OKN and OKAN 
I using our model, with the optokinetic drum rotating at 
a constant velocity of 60◦ /s for 60 s. The initial jump in 
slow phase eye velocity is attributable to the large retinal 
slip velocity at the onset of the experiment and the charging 
of the VSM. The non-zero steady-state error during OKN 
is observed because the NU internal model is “untrained". 
Once the lights are extinguished at t = 60 s, visual signals are 
no longer present and the NU is effectively inactive, the sig-
nal e is unavailable, and uim = 0 (based on gating the nucleo-
cortical pathway). This causes the slow-phase eye velocity to 
rely on the dynamics from the VSM, which slowly dissipates 
its stored velocity, creating OKAN I.

If the subject is involved in repeated trials of the same 
experiment eliciting OKN and OKAN I, the NU inter-
nal model is “trained” over time. Consequently, the OKN 
steady-state slow-phase eye velocity increases [120, Fig 1]; 
the OKAN I time constant decreases [115, Fig 7]; and the 
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OKAN I duration decreases [118, Fig 2, 3]. These results are 
shown on the right of Fig. 2.

This section has demonstrated that a disturbance rejec-
tion interpretation of cerebellar function can be propitious 
to arrive at plausible models for one motor system: the ocu-
lomotor system. However, one may also utilize regulator 
theory to understand other adaptive behaviors that are best 
modeled as discrete, repetitive processes. Perhaps the most 
widely studied adaptive, discrete process is visuomotor 
adaptation, considered in the next section.

Visuomotor Adaptation

Visuomotor adaptation is a subconscious, “machine-like” 
brain process taking place over repetitive trials and elicited 
by a visual error closely following the execution of a move-
ment. Visuomotor adaptation is intended to calibrate over a 
lifetime the mapping between what is seen and how to move. 
As a means to expose the underlying computations of this 
brain process, neuroscientists create experiments that artifi-
cially perturb what is seen by the subject during movement. 
Examples include saccades with an intersaccadic step of the 
target [121]; the visuomotor rotation experiment with fast 
arm reaches [122, 123]; and throwing darts while looking 
through prism glasses [124].

Visuomotor adaptation experiments consist of repetitive 
trials of a certain movement such as a saccade or arm reach. 
The trials are classified by type, and sequences of blocks of 
trials of specific types are utilized to elicit so-called dynamic 
behaviors of adaptation. A baseline (B) block familiarizes 
the subject with the experimental aparatus under unper-
turbed, normal conditions. A learning (L) block occurs after 
a baseline block when a perturbation or disturbance is intro-
duced. A washout (W) block follows a learning block when 
the perturbation is removed. An unlearning (U) block fol-
lows a learning block when the perturbation changes in sign 
but not magnitute relative to the learning block. A relearning 
(R) block is a second learning block with the same pertur-
bation. A downscaling block (D) is a second learning block 
in which the perturbation is set to a fraction of its value 

in the first learning block. A no-visual-feedback (N) block 
is a block of trials in which no visual feedback about the 
movement is presented to the subject. An error clamp (C) 
block is a block of trials when the visual error presented to 
the subject is clamped artificially to a value unrelated to the 
subject’s movements. When blocks of trials are sequenced 
in a particular order and with a particular number of trials in 
each block, then several phenomena emerge in experiments:

•	 Savings is a behavior in which learning is sped up in the 
second learning block relative to the first one.

•	 Reduced savings is a behavior in which savings is 
reduced by inserting a washout block of trials after the 
unlearning block. After the washout block, relearning 
does not proceed as rapidly as in the savings experiment.

•	 Anterograde interference is a behavior in which a previ-
ously learned task reduces the rate of subsequent learning 
of a different (and usually opposite) task.

•	 Rapid unlearning is a behavior in which the rate of 
unlearning is faster than the rate of initial learning if the 
number of trials in the learning block is small.

•	 Rapid downscaling is a behavior in which the rate of 
learning in a secondary learning block is faster when 
the rotation is set to a fraction of its value in the initial 
learning block.

•	 Spontaneous recovery is a behavior observed during 
the washout block of a BLUW experiment in which the 
response partially “rebounds” to its value at the end of 
the learning block rather than converging monotonically 
to zero.

We used regulator theory to develop a model of visuomo-
tor adaptation in [8, 9] with the goal to recover the six 
standard behaviors of visuomotor adaptation. The model 
was based on three assumptions. First, we focused on 
motor adaptation tasks involving one degree of freedom 
of movement; for instance, horizontal movement of the 
eye, hand angle relative to a reference angle in a horizon-
tal plane, forward (coronal) inclination of the body rela-
tive to a vertical reference, the horizontal angle of a dart 
thrown by a subject, and so forth. Second, we assumed 

Fig. 2   Untrained (left) and 
trained (right) OKN and OKAN 
I
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the open-loop model is linear time-invariant. Third, we 
focused on constant disturbances, as currently there is a 
dearth of experiments with non-constant disturbances [96].

Let integer k be the trial number; x(k) is the state of 
a single degree of freedom of the body at the end of the 
k-th trial; d(k) is an additive disturbance in the measure-
ment during the k-th trial; and e(k) is the error between a 
visually reported position y(k) = x(k) + d(k) observed by 
the subject at the end of the k-th trial (for example, a cur-
sor on a computer screen representing the hand position) 
and a reference position r(k). Our discrete-time model of 
visuomotor adaptation is: 

 The open-loop system model (14a) provides a high-level, 
abstract description of the quantitative change over succes-
sive trials of a single degree of freedom of the body. The 
term Ax(k) models a retention or memory mechanism of the 
state in the previous trial. As before, we assume the filters 
(14c)–(14e) are stable; that is, F is Schur stable. We have not 
written a parameter adaptation law for any unknown param-
eters (although one may do so) since experiments show that 
the parameters vary extremely slowly; see [8]. The control-
ler u has the same components as before: us(k) = Ke(k) is 
to improve closed-loop stability, while uim = 𝜓ŵ(k) is the 
component to satisfy the internal model principle. We dis-
cuss the role of � ∈ ℝ below.

To understand why the internal model (14c)–(14f) is 
suitable for disturbance rejection of the perturbation d(k), 
we perform the same calculation as we did in (7), but now 
working in discrete-time. To facilitate this calculation, it 
is helpful to first derive an error model, which informs on 
the evolution of the error. Using (14), we obtain an error 
model

where we have assumed d(k + 1) = d(k) for a constant per-
turbation. Next we compute

(14a)x(k + 1) = Ax(k) + Bu(k)

(14b)e(k) = r(k) − x(k) − d(k)

(14c)w0(k + 1) = Fw0(k) + FGe(k)

(14d)w1(k + 1) = Fw1(k) − Ge(k)

(14e)w2(k + 1) = Fw2(k) − Gu(k)

(14f)ŵ(k) = w0(k) + Ge(k) + Aw1(k) − Bw2(k))

(14g)u(k) = Ke(k) + 𝜓ŵ(k) .

e(k + 1) = Ae(k) − Bu(k) + (A − 1)d(k) ,

We observe that, irrespective of the choice of u(k), ŵ(k) 
evolves according to a stable filter driven by the unknown 
disturbance (A − 1)d(k) , which is the effective disturbance 
arising in the error model. It is therefore possible to use ŵ(k) 
toward cancellation of that disturbance using the input u(k).

To appreciate that our model generates all the standard 
dynamic behaviors associated with visuomotor adapta-
tion [122], we consider the behavior called savings. Fig-
ure 3 shows a simulation for a BLUR experiment to elicit 
savings. The parameter values are: A = 0 , B = 1 , F = 0.8 , 
G = 1 − F , � = 1 , and K = 0.22 . The top left figure shows 
the disturbance value d(k) as a function of k, and the top 
right figure shows x(k). We see that in a first learning (L) 
block the disturbance is d(k) = −30◦ . In the brief unlearning 
(U) block, it is set to its opposite value d(k) = +30◦ . In the 
relearning (R) it is again −30◦ . The bottom figure shows x(k) 
during the learning block superimposed with x(k) during 
the relearning block. We see that relearning is faster than 
learning, demonstrating that savings have indeed occurred 
in the relearning block.

Visuomotor adaptation experiments analogous to the 
error clamp and target blanking experiments for the smooth 
pursuit system, discussed in “VOR, Smooth Pursuit, and 
Gaze Holding”, have also been performed. These provide 
dramatic evidence of the brain’s capability to enable or dis-
able internal models. We highlight two interesting experi-
ments. First, many experimental studies of the form BLN 
have been conducted on the effect of removing the visual 
error in an N block following a learning block [125–127]. 
The major finding is that during the N block, x(k) slowly 
returns to a nominal reference position. Further, Figure 2 of 
[126] shows that the rate of decay is faster in a washout (W) 
block than a no-visual feedback (N) block.

As we already discussed for the oculomotor system, when 
there is no error measurement, we must remove the signal 
e(k) from every filter input in (14). To disable the internal 
model, it is also necessary to disable the efference copy u(k) 
in (14e). The resulting internal model will consist of filters 
that are all stable, and therefore ŵ(k) will gradually return to 
a zero reference value. In summary, if we assume that visuo-
motor adaptation operates in a manner that is consistent with 
the oculomotor system, then gating the nucleo-cortical path-
way may provide an explanation for how internal models can 
be enabled or disabled in visuomotor adaptation. Figure 4 
shows the results for (14) for a BLN experiment using this 
method to disable the internal model during the N block. 
Despite the appeal of relating visuomotor adaptation experi-
ments with slow-eye movement experiments through a com-
mon conceptual mechanism, there is no explicit experimen-
tal evidence to date supporting that the behavior observed in 

ŵ(k + 1) = w0(k + 1) + Ge(k + 1) + Aw1(k + 1) − Bw2(k + 1))

= Fŵ(k) + G(A − 1)d(k) .
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the N block is indeed driven by an internal model. Our main 
point is that, in mathematical terms, there exists a simple 
mechanism to explain how an internal model could be disa-
bled by the brain when a visual error signal does not appear 
(within a specific time window following movement).

A second set of interesting experiments regarding the 
error clamp, with the form BLC , have been reported includ-
ing [126, 128, 129]. In these experiments a subject makes 
fast arm reaches to a target on a computer screen while 
observing a cursor intended to represent the hand position 
at the end of a reach. A disturbance d(k) is introduced dur-
ing the learning blocks so that the observed cursor angle 
is y(k) = x(k) + d(k) . During error clamp blocks, the error 
observed by the subject is clamped at a constant value 

e(k) ≡ e . Figure 2 of [129] reported results with various sta-
tistics on the error clamp value. These experiments further 
expose interesting on/off behavior of internal models associ-
ated with visuomotor adaptation. In a clamp (C) block with 
e(k) ≡ −2.7 , it is observed that the hand angle remains close 
to its value at the end of the learning block. In a C block 
with e(k) ≡ 0 , the hand angle returned to zero at a slow rate. 
Figure 5 shows the behavior of our model in a BLC(−2.7) 
experiment. We observe the hand angle remains close to 
30◦ , its value at the end of the learning block, as reported 
in [129]. By comparison, the right figure shows a BLC(0) 
experiment. Now the hand angle slowly returns to zero.

The behavior in Fig. 5 is nothing like what a control 
theorist expects of an internal model. We expect that when 
e(k) is clamped at zero, the behavior is as in the left of the 
figure, but when e(k) is clamped at a non-zero value, the 
internal model is unstable. Instead, the experiments dem-
onstrate that the human brain has made a “hedge” on the 
internal model principle: zero error signals induce a return 
to a quiescent state, while a persistent, small, non-zero error 
is necessary to keep the internal model active. We have used 
the parameter 0 < Ψ < 1 to quantitatively characterize this 
hedge. However, we emphasize this modeling intervention 
need not represent the true physiological character of these 
experiments. We believe there are deeper meanings behind 
the curious phenomena reported in [129].

We summarize this section thus: current experimen-
tal evidence may well point to the idea that the reason 
for the special wiring of the cerebellum, particularly the 

Fig. 3   Savings in a BLUR 
experiment. In the bottom figure 
x(k) during the learning block 
is plotted in blue superimposed 
with a horizontally shifted ver-
sion of x(k) during the relearn-
ing block in purple. The purple 
curve is larger than the blue 
curve corresponding to faster 
learning in the relearning block
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nucleo-cortical pathway, is to implement the delicate oper-
ation of enabling and disabling internal models without 
inducing abrupt or unstable behavior in the subject.

Implications for Robotics

We have given evidence that there is value to study the cer-
ebellum from the perspective of disturbance rejection and to 
utilize regulator theory and internal models of control theory 
to derive models of cerebellar function. We argue here that 
the study of the cerebellum using regulator theory has impli-
cations for robotics. We make our case using an example of 
a robot learning a new tool [20]. The discussion is informal, 
as the primary aim is to stimulate new ideas rather than to 
prove the correctness of fully developed algorithms, etc.

Consider a robot equipped with an arm and foveated, 
movable cameras resembling the functionality of the 
human eye. The robot is capable to perform rapid reach-
ing movements with its arm using feedforward, pre-learned 
commands. The robot is tasked with performing such rapid 
movements while manipulating a new handheld tool - for 
example, a brush with a long handle to remove brambles 
from a dog. We pose the problem of training the robot to 
learn a new tool as a disturbance rejection problem. For sim-
plicity, we consider one degree of freedom of movement, say 
the final horizontal angle of the robot’s end effector at the 
end of a reach. We make the following assumptions:

Assumption 8.1 

•	 N stationary targets are randomly positioned in the 
robot’s visual field but sufficiently separated so that the 
robot is able to measure a distinct error between the arm 
(or the tool) end effector and any target. Let ri denote 
the horizontal angular position of the ith target, where 
i ∈ {1,… ,N}.

•	 Each target i has associated with it a feedforward 
(non-error-based) motor command denoted uf ,i that 
was acquired through prior experience during nominal 

behavior (without using tools). We assume uf ,i drives 
the robot end-effector directly to target position ri with 
negligible error under nominal conditions.

•	 The visual field is partitioned into sectors called adap-
tation fields. Each adaptation field has associated to it 
an adaptive internal model. For simplicity and ease of 
discussion, we assume there is only one target within 
each adaptation field. Thus, we consider N adaptation 
fields and N internal models.

•	 Because it is highly expensive to process full-field 
visual information, the robot only records error meas-
urements for one target at a time. Thus, the robot has 
the efficacy to select one target at the end of each 
reach, with respect to which it forms an error measure-
ment e(k). The index of the target that forms the error 
measurement at the end of the kth reach is denoted 
m(k) ∈ {1,… ,N}.

•	 The robot has the efficacy to choose one target for the 
next reach. The index of the target for the (k + 1) th 
reach is denoted t(k) ∈ {1,… ,N}.

Let x(k) represent the robot end-effector horizontal angle 
at the end of the kth reach, and d(k) ≡ d is the constant angu-
lar offset introduced by the tool. The open-loop model is:

The first equation says the robot is capable to move to any 
commanded horizontal angular position by using a motor 
command relying on data from the previous reach only. The 
second equation defines the visual error measured at the end 
of the kth reach, namely the difference between the angular 
displacement of the m(k)th target, rm(k) , and the angular dis-
placement of the end of the tool, x(k) + d.

Next, we define the update of the internal models. We 
assume that the trigger signal to update any internal model 
is its own error signal. In other words, index m(k) deter-
mines which internal model is updated. The internal model 
update with index m(k) is 

x(k + 1) = u(k)

e(k) = rm(k) − x(k) − d(k) .

Fig. 5   BLC experiment, com-
paring C(−2.7) and C(0) blocks
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 where m ≡ m(k) . We are using a reduced set of filters com-
pared to the previous internal model design (14) because 
A = 0 . All other internal models, with index i ∈ {1,… ,N} , 
i ≠ m(k) , have an update of the form: 

 This second form of update is a proxy for “no update”. 
We set Fn = 0.999 , meaning the internal model with index 
i ≠ m(k) slowly dissipates its state until the next update when 
again it happens that i = m(k).

We begin our analysis of the model using a motor 
command

where t(k) is the target for the next reach, and uf (k) is the 
feedforward component of the motor command, constituted 
at the end of the kth reach in preparation for use in the next 
one. Here � represents an unknown parameter (that has been 
adapted a priori, hence the adaptation process is omitted). 
We will comment on the role of � below. Several observa-
tions are in order.

•	 The internal model output that appears in the motor 
command is dictated by the choice of feedforward com-
mand, uf (k) = uf ,t(k) , which is itself determined by the 
choice of target for the next reach. Thus, feedforward 
commands and their associated internal model outputs 
are always paired. To say another way, it is not allowed 
to use a motor command u(k) = uf ,j + 𝜓ŵi(k) , if i ≠ j.

•	 Our model dissociates the updating of an internal 
model from the ensuing motor command in the sense 
that the robot can reach for a target t(k) on the next trial 
k + 1 , even if it takes a measurement with respect to a 
target m(k) ≠ t(k) . The consequence of this is that some 
internal model updates are unobservable, possibly only 
to be revealed in later trials or as aftereffects once the 
experiment is concluded.

(15a)w0,m(k + 1) = Fw0,m(k) + FGe(k)

(15b)w1,m(k + 1) = Fw1,m(k) + G(u(k) − uf ,m)

(15c)ŵm(k) = w0,m(k) + Ge(k) + w1,m(k) ,

(16a)w0,i(k + 1) = Fnw0,i(k)

(16b)w1,i(k + 1) = Fnw1,i(k)

(16c)ŵi(k) = w0,i(k, i) + w1,i(k) .

uf (k) = uf ,t(k)

u(k) = uf (k) + 𝜓ŵt(k)(k) ,

To understand why this model works, we consider a sce-
nario that can be viewed as a typical mode of operation. Sup-
pose the robot performs repetitive reaches to the same target 
t ∈ {1,… ,N} for all trials (a more general scenario with 
switching between targets is shown in the simulation). That 
is, t(k) = t for some t ∈ {1,… ,N} and for all k ≥ 1 . Thus, the 
feedforward component of the motor command is

During the first j − 1 trials, the robot also makes meas-
urements relative to this same target. That is m(k) = t for 
k = 1,… , j − 1 . Therefore, the error recorded during the first 
j − 1 reaches is

Using the update rules for the internal models given above, 
we compute the internal model update:

We see that the internal model update associated with the 
target t is the one we expect, based on the analogous con-
tinuous-time computation (7). If G = 1 − F and j is suffi-
ciently large, then ŵt(k) converges to −d . Meanwhile, the 
other internal models slowly dissipate their values; that is,

Now suppose the robot chooses to make a measurement rela-
tive to some target m(j) ≠ t at trial k = j , such that

We want to know the effect of this “extraneous” meas-
urement on the updates of the internal model outputs ŵi , 
i ∈ {1,… ,N} . On the jth trial, the following updates occur:

and for all i ∈ {1,… ,N} with i ≠ m(j):

uf (k) = uf ,t , ∀k ≥ 1 .

e(k) = rt − x(k) − d .

ŵ
t
(k + 1) = Fw0,t(k) + FGe(k) + Ge(k + 1) + Fw1,t(k)

+ G[u(k) − u
f
(k)]

= Fw0,t(k) + FGe(k) + G[r
t
− x(k + 1) − d]

+ Fw1,t(k) + G[u(k) − u
f
(k)]

= Fŵ
t
(k) + G(−d) .

ŵi(k + 1) = Fnŵi(k) , i ∈ {1,… ,N} , i ≠ t .

e(j) = rm(j) − x(j) − d .

ŵm(j)(j) = w0,m(j)(j) + Ge(j) + w1,m(j)(j)

w0,m(j)(j + 1) = Fw0,m(j)(j) + FGe(j)

w1,m(j)(j + 1) = Fw1,m(j)(j) + G(u(j) − uf ,m(j)) ,

ŵi(j) = w0,i(j) + w1,i(j)

w0,i(j + 1) = Fnw0,i(j)

w1,i(j + 1) = Fnw1,i(j) .
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Now we look at the next trial. Suppose the robot returns 
its attention to the original target such that m(j + 1) = t . 
Therefore,

Then we compute

The second term contains significant information in this 
update. Assuming again that G = 1 − F and j is sufficiently 
large, then ŵt(j) converges to −d . Therefore, the term 𝜓ŵt(j) 
represents a transfer of learning from the internal model for 
target t to the internal model for target m(j). The parameter � 
captures the proportion of learning that is transferred, which 
would ideally be close to 1.

The last two terms in (17) are to be interpreted as per-
turbations. The third term includes the (unseen) error w.r.t. 
target t at trial j, namely rt − x(j) − d , which becomes small 
as the robot continues to reach for target t. The fourth 
term is G2[rt − rm(j)] . Typical values for the parameters are 
F = 0.9 and G = 0.1 . Suppose the targets t and m(j) are 
30◦ apart. Then this perturbation term will have a value 
of 0.3. This perturbation may induce an acceptable deg-
radation relative to the term G𝜓ŵt(j) if d(k) is an order of 
magnitude larger or more. One may also devise a strategy 
where measurements are taken only relative to targets in 
contiguous adaptation fields, so that rt − rm(j) is below a 
threshhold. In summary, the previous computation shows 
that, in theory, learning acquired by the internal model 
with index t can be transferred to the internal model with 
index m(j).

e(j + 1) = rt − x(j + 1) − d .

(17)

ŵm(j)(j + 1)

= w0,m(j)(j + 1) + w1,m(j)(j + 1)

= F[w0,m(j)(j) + w1,m(j)(j)] + FGe(j) + G(u(j) − uf ,m(j))

= F[w0,m(j)(j) + w1,m(j)(j)] + FG[rm(j) − x(j) − d]

+ G[rt + 𝜓ŵt(j) − rm(j)]

= FFnŵm(j)(j − 1) + G𝜓ŵt(j) + FG[rt − x(j) − d]

+ (1 − F)G[rt − rm(j)] .

Next, we must consider the effect of these updates on the 
other internal models. Thus, we compute

We see that this internal model experiences a perturba-
tion e(j + 1) that corrupts its estimate of the disturbance d. 
However, if j is sufficiently long, then e(j + 1) is small, so 
this perturbation should cause a minor degradation in the 
next trial. Finally, for internal models with indices i ≠ t and 
i ≠ m(j):

These internal models continue to dissipate their values.
Simulation results using the model are shown in Fig. 6. 

Parameter values in the model are: F = 0.95 , G = 1 − F , 
� = 1 , Fn = 0.9998 . There are three targets with horizon-
tal angular positions r(1) = 0 , r(2) = 45 , and r(3) = −20 . 
The handheld tool causes a disturbance in the arm position 
by an amount of −45◦ . After a baseline block of 20 trials 
with no tool, the robot picks up the tool and reaches for 
target 1 for 60 trials, then target 2 for 60 trials, and target 
3 for the last 60 trials. While the robot reaches for target 
1, it measures an error with respect to (w.r.t.) target 2 at 
the end of every 8th reach; and w.r.t. target 3 at the end of 
every 12th reach. We see in the right figure that the internal 
models begin “charging up” as they collectively estimate 
the disturbance induced by holding the tool. By the time 
the robot reaches the second target, the first internal model 
is almost fully charged. Only infrequent measurements are 
needed to retain a fresh estimate of the disturbance by this 
internal model. Finally, by the end of the experiment, all 
internal models have approached a consensus value on the 
disturbance induced by holding a tool. The robot may save 
the motor memory, so if this tool is encountered again, the 
revised motor commands may be immediately recalled.

The model we have presented for simple tool learning 
may be related to a well-known visuomotor experiment with 

ŵt(j + 1) = w0,t(j + 1) + Ge(j + 1) + w1,t(j + 1)

= w0,t(j) + Ge(j + 1) + w1,t(j)

= ŵt(j) + Ge(j + 1) .

ŵi(j + 1) = w0,i(j + 1) + w1,i(j + 1) = Fnŵi(j) .

Fig. 6   A robot arm reaching 
for each of three targets, while 
occasionally glancing at the 
other two. The left figure shows 
the arm angle and the right 
figure shows ŵ

i
(k) for the three 
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human subjects reported in [130]. A subject is presented 
with two targets separated by a fixed angle of 45◦ . The sub-
ject is instructed to aim for the second target at r(2) = 45◦ 
while observing a cursor position on a computer screen dis-
played at the end of each reach. The cursor position has been 
rotated by d(k) = −45◦ from the true hand angle, so that by 
aiming for the second target, the subject is able to make the 
error between the cursor and the first target at r(1) = 0◦ be 
close to zero.

We can simulate this experiment using our learning 
model. We assume the subject aims for the second target 
in all trials, so t(k) = 2 , according to the instructions of the 
experimenter. However, the subject occassionally shifts 
attention to the error formed w.r.t. the first target [131, 132]. 
Suppose the subject attends to the first target at the end of 
20 percent of trials and to the second target in 80 percent 
of trials. Simulation results are shown in Fig. 7. The top 
figures show qualitatively the same results as obtained in 
[130]. The bottom figure shows the response of the internal 
models - both are estimating −d(k) = 45 (the minus sign is 
an artifact of our choice of parameters and is not significant). 
The second internal model is faster because it experiences 
more frequent updates. The hand angle ultimately reaches 90 
to place the cursor at r(2) = 45 , subject to the disturbance of 
d(k) = −45 . The interesting behavior appears in the washout 
trials (the last 20 trials), when the subject again focuses on 
the first target at t(1) = 0 , and we observe the aftereffects of 
the first internal model having charged up during the previ-
ous phase.

We conclude this section with three remarks. 

	 (i)	 The fact that the models in this section do not have 
a component Ke(k) in the motor command carries 
some significance that we have not expanded on. Our 
future work will explore the capability to enable or 
disable this component.

	 (ii)	 Analyses presented in this section are intended as 
plausibility arguments. A rigorous stability analysis 
using stability techniques for switched systems [133] 
is needed.

	 (iii)	 Despite the fact that visuomotor adaptation appears 
to be an ideal context for the application of reinforce-
ment learning algorithms, the experimental evidence 
does not support this form of learning [134, 135]. 
This raises intriquing questions about why an error-
driven approach may be better suited than reinforce-
ment learning for this brain process.

Conclusion

This paper has presented an overview of results on the use 
of regulator theory to interpret and model the contribution 
of the cerebellum to motor systems. We considered the slow 
eye movement systems: the VOR, gaze holding, and smooth 
pursuit, as well as the optokinetic system. We found that 
using regulator theory one could derive models that are con-
sistent with the known neural circuits and also recover the 

Fig. 7   Mazzoni and Krakauer’s 
experiment. The top left figure 
displays the disturbance d(k) 
and the hand angle x(k) as a 
function of the trial number 
k. The top right figure shows 
the error r

t(k) − x(k) − d with 
respect to the first target. The 
bottom figure shows the internal 
model states ŵ1(k) , ŵ2(k) as a 
function of k 
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standard experimental results for those motor systems. We 
also surveyed results for visuomotor adaptation; despite the 
fact that the models are discrete-time difference equations 
rather than differential equations, a nearly identical meth-
odology as in continuous time could be employed to derive 
a model that recovers many of the standard experimental 
results. A pattern in the motor systems we examined is that 
the cerebellum must be endowed with a special capability to 
enable and disable internal models without causing damage 
to the body. We have identified the nucleo-cortical path-
way as a possible mechanism to implement this capability. 
Finally, the paper argues that mathematical modeling of the 
cerebellum can well serve as a research agenda to develop 
humanoid robots that possess cerebellar-like intelligences.

Our view of cerebellar function to perform disturbance 
rejection of exogenous signals adds to a current debate in 
neuroscience on whether the cerebellum contains internal 
models of the plant or of the environment [2–4, 136]. Also, 
how do so-called forward models contribute to the genera-
tion of internal models of either the plant or the environment 
[25, 26]? Ultimately, certain aspects of the debate between 
internal (forward) models of the plant and internal models 
of the environment may turn out to be semantic. Witness 
that, mathematically speaking, a forward model of the plant 
can be utilized toward disturbance rejection of signals in the 
environment, as we have done in our model of visuomotor 
adaptation [9].

Consider the study in [137] in which it is reported that the 
cerebellar flocculus of the monkey contains a forward model 
of the oculomotor plant. A monkey performs vertical smooth 
pursuit of a sinusoidal target that lies at a vertical eccentric 
position of up to 20◦ to the left or right of center. This means 
the eye is rotated from its central position to the left or right 
in order to foveate the vertically moving target. The mechan-
ics of the oculomotor plant generate torsional forces that are 
not present in the motor command sent to the oculomotor 
neurons to drive the eye. These torsional forces are amplified 
during smooth pursuit with the eye in an eccentric position. 
It is observed that the mossy fibers to the cerebellum do not 
carry torsional information, but vertical Purkinje cells of the 
floccular complex do carry such information. It is proposed 
that the floccular complex computes an estimate of torsional 
eye movement since the torsional signal is present in the PCs 
but not the mossy fibers.

A question that must be raised is: is the output of the 
floccular complex purely a signature of the plant dynamics 
or rather a signature of the disturbance signal (a sinusoid) 
filtered through the oculomotor plant? In the latter case, the 
internal model would provide an estimate of the filtered dis-
turbance. Strictly speaking, the internal model would not be 
a forward model of the plant (the brainstem neural integrator 
more closely resembles a forward model of the plant). We 
believe asking questions of this nature, both theoretically 

and experimentally, can help to resolve the current contro-
versy between forward models of the plant v.s. internal mod-
els of disturbances in the cerebellum.
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