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Adaptive Internal Model Theory of the Oculomotor System and the Cerebellum

Mireille E. Broucke

Abstract—We present a computational model of the oculo-
motor system and the cerebellum. In contrast with prevailing
theories of cerebellar function, we propose the cerebellum em-
bodies adaptive internal models of all persistent, exogenous, de-
terministic signals acting on the body and observable through the
error signals it receives. Our model is validated by simulations,
recovering results from a number of oculomotor experiments.

I. INTRODUCTION

This paper presents a control-theoretic model of the oculo-

motor system and the cerebellum. We show that developments

on adaptive internal models [34], [35], [39], [48], [49], [53],

[57] provide a compelling framework to explain the overall

system. We obtain a model that is extremely simple, yet is able

to explain more behaviors than previous models. In addition,

we make a proposal on the function of the cerebellum: the

cerebellum embodies adaptive internal models of persistent,

exogenous, deterministic signals observable through the error

signals it receives.

Since the 1960’s with the pioneering work of D.A. Robin-

son, control-theoretic models have provided a powerful tool to

explain the oculomotor system [45]; these include models of

the optokinetic system, the saccadic system, the smooth pursuit

system, gaze holding, and the vestibulo-ocular reflex (VOR),

among others; see [14], [41], [59] for overviews. Despite

impressive advances, these models tend to be fragmented, with

one model explaining gaze holding but not smooth pursuit, an-

other explaining smooth pursuit but not the VOR, and so forth.

The idea that there can be a unifying principle underlying

all these models is currently not developed. Certain behaviors

such as the so-called predictive capability of the oculomotor

system are not yet fully understood, and the computations of

the cerebellum are often excluded.

Since the 1990’s neuroscientists have explored internal

models as a means to explain the function of the cerebellum

[21], [22], [36], [55]. These internal models of neuroscience

correspond to models of the open-loop plant (for instance,

the arm or the leg or the eye). We have found that in all

cases, neuroscientists use the term “internal model” in a sense

that is distinct from the internal model principle of control

theory [11]. The idea that the cerebellum may be involved

in generating internal models of disturbance signals has been

suggested based on experimental evidence in [7], [8], [29],

but a computational model that includes the internal model

principle has not been presented before.

We summarize our contributions as follows. (i) We present a

comprehensive mathematical model of the slow eye movement

subsystems of the oculomotor system, replicating a number
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of oculomotor experiments. We are not aware of any com-

putational model that collectively explains these behaviors.

(ii) Our model formalizes a hypothesis that the function of

the cerebellum is to provide internal models of persistent,

exogenous, deterministic signals acting on a biological system.

This contrasts with prevailing theories that the cerebellum em-

bodies forward and inverse models of the plant [22], [42]. (iii)

We show that adaptive internal models [34], [35], [39], [48],

[49], [53], [57] provide an ideal starting point to develop this

computational model in the sense that almost no adjustments

to current theoretical frameworks for adaptive internal models

are needed.

This paper is a companion to [4]. In this paper we derive

the model, prove its correctness, discuss the neural circuit,

and present simulations focusing on neurological and lesion

experiments. In [4] we present complementary simulations

focusing on behavioral experiments.

II. CONTROL ARCHITECTURE

The proposed control architecture is shown in Figure 1 and

is based on the neural circuit of the oculomotor system [27].

A visual error signal encoding the difference between target

and gaze angles is transmitted from the visual cortex to the

inferior olive (IO), where it is relayed to appropriate climbing

fiber inputs (CFs) of the cerebellum (C) (specifically, the

floccular complex). The cerebellum also receives mossy fiber

inputs (MFs) containing a mixture of visual, eye movement,

and vestibular information from the medial vestibular nuclei

(MVN) in the brainstem (B) [29]. The sole output of the

cerebellum is transmitted via its Purkinje cells (PCs) to floccu-

lar target neurons (FTNs) in the MVN [43]. The MVN also

receives a head velocity signal from the semicircular canals

of the ear. The output of the MVN is sent both to the neural

integrator (NI) in the brainstem nucleus prepositus hypoglossi

(NPH) and directly to the oculomotor neurons (MNs) of the

oculomotor plant (P). Salient features of this architecture

include: (i) the cerebellum forms a side loop to the main

feedback loop between the plant and the brainstem; (ii) the

brainstem has a direct feedthrough from the vestibular system

to the plant to cancel measurable disturbance signals from

head movement; (iii) the CF cerebellar input is a sensory error

signal carrying visual information; and (iv) the cerebellum has

only one output which acts as a top up to the control command

generated by a brainstem-only pathway. Our aim is to develop

a model that abides by this architecture.

III. OCULOMOTOR PLANT AND BRAINSTEM

The horizontal motion of the eye is modeled by considering

the eyeball as a sphere that is suspended in fluid and subjected

to viscous drag, elastic restoring forces, and the pulling of two

muscles. A reasonable approximation is obtained by assuming
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Fig. 1: Control architecture for the oculomotor system.

that the inertia of the eyeball is insignificant [27], [45], [52].

Letting x be the horizontal eye angle and u be the net torque

imparted by the two muscles, we obtain a first order model

ẋ = −Kxx+ u . (1)

The parameter Kx > 0 is constant (or very slowly varying)

such that the time constant of the eye is τx := 1/Kx ≃ 0.2s

[45]. This first order model may be compared with the model

of an ocular motoneuron. Let f be the firing rate, and let

f0 be the baseline firing rate when the eye is stationary at

x = 0. A commonly used model of neuronal firing rate is

f = f0 + c1x+ c2ẋ, where c1 and c2 6= 0 are constants [45],

[52]. Comparing this model with (1), we observe Kx = c1/c2
and u = 1

c2
(f − f0). That is, the torque is proportional to the

firing rate, modulo a constant offset of f0.

Next consider a reference signal r representing the angle of

a target moving in the horizontal plane. Let xh and ẋh denote

the horizontal head angular position and angular velocity,

respectively. The retinal error is defined to be

e := αe(r − xh − x) . (2)

Notice that r − xh − x is the target angle r relative to the

gaze angle xh+x. For sufficiently distant targets, this relative

angle is proportional (through the scale factor αe ∈ R) to a

linear displacement on the retina from the fovea to the target.

Since the goal of the oculomotor system is to drive e to zero,

for the purposes of the present paper we set αe = 1.

Our modeling assumptions are as follows. The eye position

x is assumed to be unavailable for direct measurement [18].

The retinal error signal e (or a scaled version of it) is assumed

to be available as a measurement to the brainstem and to both

MF and CF inputs of the cerebellum [2], [25]. The reference

signal r is unmeasurable. The vestibular system provides a

measurement of the head angular velocity ẋh to the brainstem

but not directly to the cerebellum [13], [45], and it does not

provide the head position xh [45].

To model the brainstem, we start from Robinson’s parallel

pathway model [51] consisting of two parallel pathways that

combine to form the motor command; that is, u = uv + un,

where uv is carried on the direct pathway from the MVN to the

MNs; and un corresponds to an indirect pathway from MVN

to NPH to MNs. The signal un is the output of the brainstem

neural integrator in the NPH. Invoking equation (3) in [44],

the neural integrator is modeled as a leaky integrator:

˙̂x = −K̃xx̂+ uv , un = αxx̂ , (3)

where αx and K̃x are constants (or very slowly varying). Using

the fact that uv = u−αxx̂, this model can be re-expressed as

˙̂x = −K̂xx̂+ u , (4)

where K̂x := K̃x +αx. Finally, we incorporate the idea from

[12] that K̂x = Kx (henceforth we drop the hat); see also [9],

[16]. In sum, we deduce that the brainstem neural integrator

forms an observer of the oculomotor plant. If we define the

estimation error x̃ := x − x̂, then x̃ evolves according to
˙̃x = −Kxx̃, implying that x̂(t) converges exponentially to

x(t). Aside from a momentary perturbation (a push on the

eyeball), x̂(t) well approximates x(t).

Remark 3.1: The major variants of the brainstem model can

be derived from (3). When K̂x = Kx, the model is called a

forward model in the neuroscience literature. With the choice

K̂x = 0 and αx = Kx, the model is called an inverse model,

because it cancels the stable pole of the oculomotor plant.

The inverse model is not accurate since the neural integrator

is leaky [44]; nevertheless, it finds use in models of the

saccadic system [41] to allow modelers to account for gaze

holding at the end of a saccade without explicitly modeling the

contribution from the cerebellum. Namely, the inverse model

inserts a pole at zero to allow the eye to track an exosystem

R(s) = 1/s. ⊳

Remark 3.2: Our assumption that K̂x = Kx implicitly

relies on the existence of two additional brain processes. First

we assume that the brain is capable of long-term adaptation

(over days and weeks) to changes in model parameters (e.g.

weakening of the muscles of the eye) [27]. Second, we assume

the brain is capable of learning transfer, a process by which

adapted parameter values can be transferred from one brain

region to another (cerebellum to brainstem) [19], [50]. ⊳

As a final step in modeling the brainstem, we consider the

components of the signal uv. In our model there are three:

uv = us + uimp − αhẋh. The signal αhẋh is the vestibular

measurement of head angular velocity representing the direct

feedthrough from the semicircular canals to the MNs; the

signal us carries visual information; and the signal uimp is

the output from the PCs of the cerebellum.

IV. DISTURBANCE REJECTION PROBLEM

We approach the derivation of a model of the cerebellum as

a problem of control synthesis: to design a controller to drive

the error e to zero. To this end, we depart from biologically

relevant signals, and we instead use mathematical variables

in order to distinguish disturbances that are cancelled in the

brainstem from disturbances that must be rejected by the

cerebellum. In particular, we define the brainstem-only signal

ub = αxx̂− αhẋh . (5)

Also let uc = us + uimp. Then u = uv + un = ub + uc.

Assuming that x̂(t) ≃ x(t) for t ≥ 0, we obtain the error

model

ė = −K̃xe− uc + ṙ + K̃xr − (1− αh)ẋh − K̃xxh , (6)

where K̃x := Kx − αx.
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We assume that the reference signal r as well as the head

position xh are modeled as the outputs of a linear exosystem.

Let η ∈ R
q be the exosystem state and define the exosystem

η̇ = Sη, r = D1η, xh = D2η, where S ∈ R
q×q , D1 ∈ R

1×q,

and D2 ∈ R
1×q . Then (6) takes the form

ė = −K̃xe− uc + Eη (7)

where E := D1S + K̃xD1 − (1− αh)D2S − K̃xD2 ∈ R
1×q.

It is useful to transform the exosystem using the tech-

nique in [38]. Let (F,G) be a controllable pair with F
Hurwitz. Define the coordinate transformation w = Mη, with

M ∈ R
q×q nonsingular and satisfying the Sylvester equation

MS = FM + GE (w.l.o.g. we assume (E, S) is observable

and the spectra of S and F are disjoint) [38]. Also define

Ψ := EM−1 ∈ R
1×q . In new coordinates, the exosystem

model is ẇ = (F +GΨ)w. Because Eη = Ψw, we can write

the error dynamics (7) in terms of the new exosystem state:

ė = −K̃xe− uc +Ψw . (8)

The parameters (K̃x,Ψ
T) ∈ R

q+1 capture all unknown model

and disturbance parameters.

Problem 4.1: Consider the error model (8). Suppose the

unknown parameters (K̃x,Ψ
T) belong to a known compact

set P ⊂ R
q+1. Find an error feedback compensator such that

for all closed-loop initial conditions and all (K̃x,Ψ
T) ∈ P ,

limt→∞ e(t) = 0. ⊳

V. CEREBELLUM

Our model of the cerebellum takes the form of an adaptive

internal model consisting of an internal model of the distur-

bances impinging on the retinal error combined with a param-

eter estimation process to recover the unknown parameters

[48]. Let ŵ and Ψ̂ be estimates of w and Ψ, respectively. The

controller is

˙̂w = Fŵ +Guc (9)

uc = uimp + us . (10)

The feedback us is selected to make the closed-loop system

asymptotically stable. We choose us = Kee, with Ke > 0
sufficiently large. We choose uimp = Ψ̂ŵ, where Ψ̂ is an

estimate of Ψ. If Ψ̂ = Ψ, then the internal model has the form

˙̂w = (F +GΨ)ŵ +GKee ,

so it includes the unstable poles of the exosystem, thus

satisfying the internal model principle. Based on a Lyapunov

argument, the adaptation law for the parameter estimate is
˙̂
Ψ = eŵT. The overall design is

˙̂x = −Kxx̂+ u (11a)

˙̂w = Fŵ +Guc (11b)

˙̂
Ψ = eŵT (11c)

ub = αxx̂− αhẋh (11d)

uc = Ψ̂ŵ +Kee (11e)

u = ub + uc . (11f)

Theorem 5.1: Consider the closed-loop system (8) and (11),

where Kx > 0 and F is Hurwitz. Suppose the unknown pa-

rameters (K̃x,Ψ
T) belong to a known compact set P ⊂ R

q+1.

Then there exists Ke > 0 sufficiently large such that for

all initial conditions (e(0), w(0), ŵ(0), x̃(0), Ψ̂(0)) and for all

(K̃x,Ψ
T) ∈ P , the solution satisfies limt→∞ e(t) = 0.

Proof: The proof is based on [48]. Define the estimation

errors: x̃ = x − x̂, w̃ := ŵ − w + Ge, and Ψ̃ := Ψ̂ − Ψ. In

terms of these errors we have

ė = −Ke+ αxx̃−Ψw̃ − Ψ̃ŵ (12a)

˙̃w = Fw̃ −He+ αxGx̃ (12b)

˙̃x = −Kxx̃ , (12c)

where K := Kx − αx + Ke − ΨG and H := FG + GK̃x.

Suppose that Ψ̃ = 0 in (12), and let ξ̃ := (w̃, x̃). Then (12)

becomes

ė = −Ke+ G̃ξ̃ (13a)

˙̃
ξ = F̃ ξ̃ + H̃e (13b)

where F̃ =

[
F αxG
0 −Kx

]
, G̃ =

[
−Ψ αx

]
, and H̃ =

[
−H
0

]
.

By assumption F is Hurwitz and Kx > 0, so F̃ is Hurwitz.
Given any γ > 0, there exists a symmetric, positive definite

matrix P ∈ R
(q+1)×(q+1) such that PF̃+F̃TP = −γI . Define

the Lyapunov function V := ‖e‖2 + ξ̃TP ξ̃. The derivative of
V along solutions of (13) is

V̇(13) = −2K‖e‖2 + 2eG̃ξ̃ + 2ξ̃
T
PH̃e− γ‖ξ̃‖2

=
[
eT ξ̃T

] [ −2K G̃+ H̃TP

G̃T
+ PH̃ −γI

] [
e

ξ̃

]
.

Since the unknown parameters (K̃x,Ψ
T) belong to a compact

set P , the off-diagonal elements of the matrix above are

bounded. Then by a standard argument we can choose K > 0
sufficiently large (by choosing Ke > 0 sufficiently large) such

that the matrix is negative definite for all (K̃x,Ψ
T) ∈ P .

Now consider (12) with Ψ̃ 6= 0 and define the Lyapunov

function VΨ := V + Ψ̃Ψ̃T. Using (11c), the derivative of VΨ

along solutions of (12) is V̇Ψ = V̇(13) − 2eΨ̃ŵ + 2Ψ̃
˙̃
Ψ

T

=
V̇(13) ≤ 0. Finally, applying the LaSalle Invariance Principle,

we obtain that limt→∞ e(t) = 0, as required.

VI. SIMULATIONS

We validated our model using simulations of experiments

with the slow eye movement systems; see also [3], [4].

The parameter values for the simulations are: Kx = 5,

αx = 0.95Kx, αh = 0.65, Ke = 5, q = 2, F =
[

0 1

−1 −1

]
,

and G =
[
0

1

]
. These values were selected according to the

following criteria. First, Kx is selected to match the known

time constant τx = 1/Kx = 0.2s of the human oculomotor

plant. Second, αx is selected so that K̃x = Kx − αx = 0.25
gives a time constant of τ̃x = 1/K̃x = 4s, in the range of the

known time constant of the combined oculomotor plant and

neural integrator [14]. The final top-up to this time constant

is provided by the cerebellum; see the discussion on gaze

fixation below. We have chosen αh called the VOR gain
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(see below) somewhat arbitrarily; it may range from 0.6 to

0.9 under natural conditions and is highly adaptable. The

parameter Ke = 5 has been selected to match the transient

response of the smooth pursuit system (see Figure 6); however,

it too appears to be adjustable [4]. The parameter q which sets

the order of the internal model is of great interest and may

vary according to which module of the cerebellum is under

study. For the floccular complex, we have selected q = 2
based on the performance of the human smooth pursuit system;

see Remark 6.1. We have selected F so the adaptive internal

model has stable complex conjugate poles. This behavior

is clearly evident in the damped oscillations of the smooth

pursuit system when initiating tracking of a constant speed

target [46].

Vestibulo-Ocular Reflex: The purpose of the vestibulo-

ocular reflex (VOR) is to stabilize the gaze (sum of eye

and head angles) when the head is moving. This system

has been intensively studied over the last 60 years, and

experiments may be classified as follows. (a) The standard

behavioral experiment with the VOR involves involuntary

sinusoidal rotation of the subject’s head in darkness. The ratio

of peak eye velocity to peak head velocity in steady-state is

called the VOR gain. Another behavioral experiment involves

involuntary sinusoidal rotation of the subject’s head in the

light, while the subject fixates on a stationary target. In this

case, the effective VOR gain jumps to close to unity in human

subjects. (b) VOR Cancellation is an experiment in which

the subject’s head is moved involuntarily while the subject

must track a target that moves with the head. The experiment

is called VOR cancellation because the brain must suppress

its own (brainstem) reflex to move the eyes opposite to the

head. (c) VOR adaptation experiments involve experimental

adaptation of the VOR gain. (d) Neurological experiments

typically record from the cells of the MVN or the Purkinje

cells of the cerebellum. (e) Lesion experiments involve total

cerebellectomy, lesions of the flocculus only, the MVN, the

NPH, or some combination thereof.

First we consider the standard experiment of measuring

the VOR gain. This gain is measured in darkness when the

cerebellum is relatively inactive, so in our model we assume

uc = 0. It can be shown that for a sinusoidal head rotation,

the steady-state eye position evolves as x(t) ≃ −αhxh(t) [4].

Therefore, in our model the parameter αh is precisely the

VOR gain. Results for the second standard VOR experiment

showing that the effective VOR gain in the light is unity

are given in [4, Fig. 1]; the cerebellum adapts to different

frequencies of sinusoidal head rotation. Results for VOR

cancellation showing that the cerebellum is able to cancel the

brainstem reflex signal −αhẋh are given in [4, Fig. 3].

Next we consider experiments involving an adapted VOR

gain. As discussed in Remark 3.2, the VOR gain αh is subject

to an adaptive brain process called long-term adaptation. While

we do not include this process in our model (αh is treated as a

constant), we can consider how an adapted VOR gain affects

short-term behavior of the oculomotor system. In [4, Fig. 2]

we presented results for an experiment exploring the transient

response to a step input of head velocity when the VOR gain

αh has been adapted to values αh = 0.3, 0.5, 0.8 [32]. In a
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Fig. 2: Effect of αh on the VOR. From left to right, the head

(yellow) and eye (blue) angles, the retinal error e, and the

cerebellar component uimp. Notice that the eye position is

unaffected by the value of αh in steady-state.
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Fig. 3: Effect of the frequency of oscillations of the head on

the depth of modulation of the cerebellar component uimp.

From left to right, the head (yellow) and eye (blue) angles,

the retinal error e, and the cerebellar component uimp. Notice

the amplitude of uimp increases as the frequency of oscillation

of the head increases.

second experiment documented in [28], monkeys were adapted

to a new VOR gain by wearing goggles in their cages. It was

found that changes in the VOR gain had no affect on the

monkey’s ability to track a moving target. This behavior is

explained in our model when we consider that the cerebellar

component uimp compensates for whatever fraction of the

vestibular signal entering the error is not already cancelled

by the brainstem component −αhẋh. In a third experiment

involving an adapted VOR gain, it has been demonstrated that

the VOR in the light is unaffected by changes in the VOR

gain [37]. Figure 2 shows this experimental behavior with

our model, where αh = 2 for t ∈ [0, 15] and αh = −1 for

t ∈ [15, 30]. It is clear from the left figure in Figure 2 that

our model predicts that in steady-state, the VOR in the light

is unaffected by changes in the VOR gain.

Next we consider neurological experiments with the VOR.

An experiment reported in [30] demonstrated that the depth

of firing rate of the output of the cerebellum increases with

the frequency of sinusoidal head rotation while the subject

fixates on a stationary target. In this case, r = 0 and

xh = ah sin(βht). Considering the error model (6), the cere-

bellum must reject a disturbance signal with the form −(1−
αh)ẋh − K̃xxh. In particular, the term ẋh = ahβh cos(βht)
is proportional to βh. Figure 3 shows the simulation results

for ah = 15, βh = 0.1Hz for t ∈ [0, 20]; βh = 0.2Hz for

t ∈ [20, 40]; and βh = 0.5Hz for t ∈ [40, 60]. We see in

the right figure that the amplitude of uimp increases as the

frequency of the head rotation increases.

Finally, we consider lesion experiments with the VOR. A

number of researchers have studied the VOR in the situation

when the cerebellum is disabled either due to disease or cere-

bellectomy [58]. We illustrate this effect for VOR cancellation,

in which the eyes must track a head fixed target; that is, the

target position is mechanically coupled to the head position by
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Fig. 4: VOR cancellation with the cerebellum disabled. From

left to right, the head (yellow) and eye (blue) angles, the retinal

error e, and the brainstem component ub. The head movement

is no longer suppressed.

an experimental apparatus so that r(t) = xh(t). Simulation

results are shown in Figure 4 with uc = 0 to disable the

cerebellum. We observe in the left figure that the subject is no

longer able to suppress the VOR - the blue curve shows that

the eye position is not stabilized, despite a head-fixed target.

This result corroborates many experimental findings [58].

In a second lesion experiment, a careful study of the effects

of disabling the neural integrator on the VOR, OKR, gazing

holding, and smooth pursuit appeared in [6]. In our model,

disabling the neural integrator corresponds to removing the

observer (11a) and setting ub = −αhẋh. For experiments

conducted in total darkness, also uc = 0. Therefore, in

darkness the eye evolves according to dynamics ẋ = −Kxx−
αhẋh. Comparing with the normal eye dynamics in darkness:

ẋ = −K̃xx − αhẋh, we notice the change is in the constant

K̃x = 0.05Kx ≪ Kx, where K̃x was selected to approximate

the known time constant of the combined oculomotor plant and

neural integrator. For instance, for gaze holding with the head

stationary, the eye drifts back to center with the time constant

of the oculomotor plant. If the head angular velocity is a

constant ẋh = v, then the eye position converges exponentially

to x = −αhv/Kx, rather than approximately tracking a ramp

(with a very slow exponential decay). This is the behavior

recovered in experiments [6]: a step of constant head velocity

in total darkness evokes a step change in eye position, not in

eye velocity.

Gaze Fixation: The purpose of the gaze fixation or gaze

holding system is to stabilize the gaze on a stationary object.

Gaze holding has been described as a distributed brain func-

tion, involving the oculomotor plant, the brainstem, and the

cerebellum, and consisting of three time constants [14], [27].

The first time constant may be measured in darkness with the

eye in an eccentric position at lights out, in an animal whose

NPH has been lesioned [6]. With the head stationary, ub = 0.

Also uc = 0 because the cerebellum (flocculus) is inactive

in darkness. Then the eye evolves according to the dynamics

ẋ = −Kxx, so the first time constant of gaze holding is

τx = 1/Kx, the time constant of the oculomotor plant itself.

The second time constant is measured in normal (un-lesioned)

subjects with the lights out. Then ub = αxx̂ and uc = 0.

Assuming x̂(t) ≃ x(t), the eye evolves according to dynamics

ẋ = −K̃xx, so the second time constant of gaze holding is

τ̃x := 1/K̃x, the time constant of the combined oculomotor

plant and neural integrator. Finally, the third time constant is

measured in the light while the subject fixates on a stationary

target at an eccentric position. That is, r 6= 0 is constant and
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Fig. 5: Smooth pursuit of a sinusoidal target. The signals are

the same as in Figure 3.

0 0.5 1 1.5 2
Time (secs)

0

10

20

30

40

50

E
ye

 A
ng

ul
ar

 V
el

oc
ity

 (
de

g/
s)

Fig. 6: Smooth pursuit of a ramp target with velocity v =
5, 10, 20, 30 (blue, red, yellow, purple).

xh = 0. Assuming that x̂(t) ≃ x(t), the error dynamics (6)

take the form

ė = −K̃xe− uc + K̃xr . (14)

We see that to make the error go to zero it is necessary

that uimp ≃ K̃xr. Then the eye will evolve according to the

dynamics ẋ = −K̃x(x − r) +Kee. In particular, the steady-

state value of x is r, so our model predicts an infinite time

constant for gaze holding in the light. In practice, this time

constant is closer to 25s, potentially depending on the subject’s

fatigue. Note that our model does not consider the effect on

the time constants of remembered targets.

Finally, our model predicts that because the cerebellar

component uimp must cancel a disturbance K̃xr for gazing

holding, the output of the PCs will be proportional to the eye

position. This behavior is observed experimentally in many

studies [40].

Smooth Pursuit: The purpose of the smooth pursuit system

is to keep a moving object centered on the fovea. Experiments

with the smooth pursuit system may be categorized, analo-

gously with the VOR, as behavioral, neurological, and lesion

experiments. Here we discuss three behavioral experiments;

see [4] for further results.

Figure 5 depicts smooth pursuit with our model for a sinu-

soidal target r(t) = ah sin(βht), with ah = 15, βh = 0.1Hz

for t ∈ [0, 10] and βh = 0.2Hz for t ∈ [10, 20]. We see that the

cerebellar output uimp is strongly modulated during tracking

of a sinusoidal target, as observed experimentally [29]. Fig-

ure 6 depicts the transient response of our model for smooth

pursuit of a ramp target r(t) = vt with v = 5, 10, 20, 30. This

transient response matches that reported in Figure 3 in [46].

In a series of experiments researchers explored the differ-

ence between target stopping and target blanking. In target

stopping, a target with a ramp position is abruptly stopped.

It is demonstrated experimentally that during target stopping,

the oculomotor system switches from smooth pursuit to gaze

fixation [33], [46]. In target blanking the target is blanked
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Fig. 7: Smooth pursuit with target stopping at t = 2s. From

left to right, the eye angle (blue), the retinal error e, and the

cerebellar component uimp.

out or occluded, so that it is no longer visible. It is shown

experimentally that with target blanking the eye continues to

track for some time [7], [8]. Figure 7 depicts target stopping,

in which r(t) = 10t for t ∈ [0, 2], and r(t) = 20◦ for t ≥ 2.

We observe that the error decays to zero with an exponential

envelope after target stopping, as expected for the gaze fixation

system. Target blanking is interpreted in our model to be the

same as the error clamp experiment in which the smooth

pursuit system continues to track for some time; see [4].

Remark 6.1: A well-known feature of the smooth pursuit

system is that its tracking capability improves as the target

motion becomes more predictable [1]. For example, humans

are capable of perfect tracking of a single sinusoid or a ramp

signal, while tracking multiple sinusoids is degraded [56]. For

this reason, we have selected q = 2. Further experimentation is

needed to confirm the value of q. The effect of an overmodeled

(q too large) or undermodeled (q too small) exosystem has

been investigated in [34], [35]. The extent to which these

theoretical guarantees are applicable in a biological context

requires further investigation. ⊳

VII. DISCUSSION

A mapping between brain projections and signals in our

model is as follows; see [5]. The retinal error signal e descends

from the visual cortex and is utilized in our model in three

forms: as the projection from the IO to the CF input in (11c);

as a visual MF input us; and again as a visual signal us in the

MVN. Note that us may be distinct in the MVN v.s. the MFs;

here it is the same signal only because of the mathematical

parsimony of the adaptive internal model design [48]. Next,

the projection from the PCs to the MVN corresponds to the

signal uimp. From the MVN this signal then projects to the

MF input of the cerebellum and to the MNs. The direct

projection from the vestibular system to the MVN and thence

to the MNs is modeled by αhẋh. The eye position signal

αxx̂ nominally corresponds to the projection from the NPH to

the MNs; however, we do not make precise statements about

its location as the neural substrate of the NPH is still under

investigation [9], [16], [17]. As a final note, the MF inputs to

the flocculus have been classified as visual, vestibular, and eye

movement MFs [29]. In our model uimp carries an estimate

of all persistent disturbances acting on the retinal error, so this

signal alone may account for the mixture of signals observed

on the MF inputs of the cerebellum.

While we have not provided a detailed mapping to cell

types in the MVN, our model may be amenable to such a

mapping. For example, consider the EH neurons, a class of

FTNs thought to be involved in long-term adaptation of the

VOR gain [47]. These cells receive inputs from the PCs and

the vestibular system; that is, ueh = uimp + αehẋh. During

steady-state smooth pursuit with passive head rotation, our

model predicts uimp ≃ ṙ+ K̃xr− (1−αh)ẋh − K̃xxh. Since

x(t) ≃ r(t) − xh(t), this becomes uimp ≃ ẋ+ K̃xx+ αhẋh.

Therefore, our model predicts ueh ≃ ẋ+K̃xx+(αh+αeh)ẋh,

which is the formula obtained experimentally in [47, Fig. 14].

The neural circuit in [10] differs from our control archi-

tecture in two primary ways: (i) they assume a pure head

velocity signal arrives at the MF inputs of the cerebellum;

(ii) they assume the full motor command u is an MF input

whereas we only use uc. First, our model does not included a

pure head velocity MF input. Not only are there no primary

afferents [13], but all secondary afferents in the MVN carry

other signals as well [45]. Additionally, the resting rate of

vestibular only MF inputs does not match that of vestibular

nerve fibers, whereas they have resting rates comparable to

vestibular only neurons in the MVN [26], [31]. Finally, the

smooth pursuit system, which relies in the cerebellum, is fully

functional without any vestibular signal [54].

Second, our model does not make use of the projection from

the NPH to the flocculus, presumed to provide an efference

copy of the motor command u as an MF input, as doing so

leads to inconsistencies with lesion experiments. If the NPH

(but not the MVN) is lesioned, it is known that the VOR

and smooth pursuit systems are still functional, showing minor

changes in their transient responses [6], [20], [23]. It is also

known that smooth pursuit is abolished after ablation of the

flocculus [58]. If we assumed the projection from the NPH to

the flocculus were u, we would arrive at a paradox that the

smooth pursuit system can still function without an MF input

to the cerebellum when the NPH is lesioned. In contrast, after

lesioning the MVN, the VOR, the OKR, gaze holding, and

smooth pursuit are all disabled or strongly modified, consistent

with the idea that damage to the MVN effectively disables the

flocculus [6].

The previous discussion reveals an apparent variability

in the interpretion of the MF inputs in different models.

Interestingly, this variability is mirrored in the variants of

adaptive internal models in the control literature - as a deeper

understanding of the MF inputs emerges, control theorists

may respond in kind with alternative adaptive internal model

designs. For example, an alternative design replaces (11b) by

a minimal order observer:

˙̂w = Fŵ +Guc + (FG+GK̃x)e . (15)

The benefit of this design is that it separates the rate of

adaptation from stability of e, thereby obviating the need for

high gain feedback (indeed our use of high gain feedback

is not motivated by any biological considerations). On the

other hand, (15) requires a more careful match up of system

parameters, an assumption that must be justified in a biological

context. For this reason we have elected to use (11b) here.

VIII. CONCLUSIONS

We have presented a model of the oculomotor system

that incorporates a model of the cerebellum based on the
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internal model principle of control theory. Our interpretation

of cerebellar function contrasts with the prevailing view in

neuroscience that the cerebellum provides adaptive internal

models of the systems it regulates. While adaptive internal

models of signals v.s. systems may appear superficially to be

similar, the mathematical and conceptual consequences of the

distinction are important.

Here we have focused on one module of the cerebellum:

the floccular complex. Our future work will examine other

modules such as the nodulus/uvula. Also, we require a control

theoretic framework to explain long term adaptation, where the

cerebellum will play the role of a teacher for the brainstem.
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