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Abstract— The paper studies the reach control problem
(RCP) to make an affine system defined on a polytopic state
space reach and exit a prescribed facet of the polytope in
finite time without first leaving the polytope. We introduce the
notion of generalized flow conditions, which give a necessary
and sufficient condition for closed-loop trajectories to exit
the polytope. In analogy with Lyapunov stability theory, the
generalized flow condition comprises a functional that decreases
along closed-loop trajectories. We provide a set of results to
analyze whether an instance of RCP is solved, without resorting
to exhaustive simulation of the closed-loop system. This includes
a variant of the LaSalle principle tailored to RCP. An open
problem is to identify suitable classes of functionals that give
rise to a generalized flow condition. We explore functions of
the form V (x) = max{Vi(x)}, and we give evidence that these
functions arise naturally when RCP is solved using continuous
piecewise affine feedbacks.

I. INTRODUCTION

We study the reach control problem (RCP) for affine
systems on polytopes. The problem is for an affine system
defined on a polytopic state space to reach and exit a
prespecified facet of the polytope in finite time without first
leaving the polytope [7]. The problem sits within a family of
reachability problems for hybrid systems [6], [11]. Our inter-
est lies in a subclass, piecewise affine hybrid systems, which
consist of a discrete automaton such that each discrete mode
is equipped with its own continuous-time affine dynamics
defined on a polytope. When the continuous state crosses a
facet of a polytope, the system is transferred to a new discrete
mode. The reachability analysis for piecewise affine hybrid
systems at the continuous level reduces to studying RCP for
an affine system on a polytope [7].

The most definitive results on the problem are focused on
solvability of RCP on simplices by affine feedback [8], [15],
[2]. In this case the so-called flow condition was shown to
be a necessary and sufficient condition so that all trajectories
initiated in a simplex leave it in finite time [8], [15]. However,
in [9], [10] it is shown that for general continuous feedbacks
such as continuous piecewise affine (PWA) feedbacks the
flow condition is no longer necessary for leaving a polytope
P in finite time. Indeed, we have found many examples in
which a given continuous control law does not yield a flow
condition on P; nevertheless, simulation results show that it
solves RCP. The investigation highlights that a more general
test is needed for leaving P in finite time.

We introduce the notion of a generalized flow condition,
which is a necessary and sufficient condition that all trajec-
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tories initiated in P leave it in finite time. Precisely, we seek
a scalar function V (x) on P that decreases along closed-
loop trajectories. There are strong analogies with Lyapunov
stability theory, but the control objective in RCP is very
different. (Indeed, we will see that our function need not be
positive definite.) The generalized flow condition is related
to barrier certificates [12], [13], which are mainly used in the
verification of safety of hybrid systems. Again the considered
problems are different, but more importantly, unlike barrier
certificates, our generalized flow condition does not encode
a safe set. We focus on generalized flow conditions based on
locally Lipschitz functions, and we provide a set of results
that can be used for analysis of solvability of RCP without
the need for calculating the state trajectories. These results
include a Lasalle Principle for RCP on polytopes. Then we
focus on the class of continuous PWA feedbacks, which have
been widely studied [7], [9], [10], [1], [5], [14]. For this
feedback class we conjecture and then prove in a special
case that a suitable generalized flow condition is based on a
functional of the form V (x) = max{Vi(x)}. Finally, we
provide an LP-based computational method for finding a
generalized flow condition of this form.

The paper is organized as follows. Section II provides
some preliminaries on nonsmooth analysis. Section III
presents RCP. In Section IV we introduce the generalized
flow condition. In Section V we present a Lasalle Principle
for RCP on polytopes. In Section VI we propose a suitable
class of functions to generate a generalized flow condition
when using PWA feedback. In Section VII two examples are
given illustrating the findings of the paper.

Notation. Let K ⊂ Rn be a set. The closure is K, and
the interior is K◦. The notation 0 denotes the subset of Rn
containing only the zero vector. The notation co {v1, v2, . . .}
denotes the convex hull of a set of points vi ∈ Rn. The
notation LfV (x) denotes the Lie derivative of function V :
Rn → R with respect to function f : Rn → Rn.

II. BACKGROUND

We require some notions from nonsmooth analysis, par-
ticularly Dini derivatives of locally Lipschitz functions [3],
[16]. Consider

ẋ = f(x) (1)

where f : Rn → Rn is a locally Lipschitz function. Let
φ(t, x0) denote the unique solution of (1) starting at x0. Let
V : Rn → R be a locally Lipschitz function. The upper right
Dini derivative of V (φ(t, x0)) with respect to t is

D+V (φ(t, x0)) := lim sup
τ→0+

V (φ(t+ τ, x0))− V (φ(t, x0))

τ
.



We can also define the upper Dini derivative of V with
respect to f given by

D+
f V (x) := lim sup

τ→0+

V (x+ τf(x))− V (x)

τ
. (2)

It was shown by Yoshizawa [17] that for V locally Lipschitz
D+V (φ(t, x0)) = D+

f V (x) where x = φ(t, x0).

III. REACH CONTROL PROBLEM

Consider an n-dimensional polytope

P := co {v1, . . . , vp}

with vertex set V := {v1, . . . , vp} and facets F0,F1, . . . ,Fr.
The exit facet is the facet F0 of P . Let hi be the unit normal
to each facet Fi pointing outside the polytope. Define the
index sets I := {1, . . . , p}, J = {1, . . . , r}, and J(x) =
{j ∈ J | x ∈ Fj}. For each v ∈ V , define the closed,
convex cone

C(v) :=
{
y ∈ Rn : hj · y ≤ 0, j ∈ J(v)

}
.

(Note that h0 does not appear since F0 is the exit facet). We
consider the affine control system defined on P:

ẋ = Ax+Bu+ a , x ∈ P , (3)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m.
Let B = Im B, the image of B. Also, let φu(t, x0) be the
trajectory of (3) under a control law u starting from x0 ∈ P .
We are interested in studying reachability of F0 from P by
feedback control.

Problem 3.1 (Reach Control Problem (RCP)): Consider
system (3) defined on P . Find a state feedback u(x) such
that:
(i) for every x0 ∈ P there exist T ≥ 0 and γ > 0 such

that φu(t, x0) ∈ P for all t ∈ [0, T ], φu(T, x0) ∈ F0,
and φu(t, x0) /∈ P for all t ∈ (T, T + γ).

RCP says that trajectories of (3) starting from initial condi-
tions in P reach and exit the facet F0 in finite time, while
not first leaving P . We use the shorthand notation P P−→ F0

to denote Problem 3.1 is solved by some control law. A
recently proposed [9], restricted version of RCP will also be
discussed.

Problem 3.2 (Monotonic Reach Control Problem (MRCP)):
Consider system (3) defined on P . Find a state feedback
u(x) such that:
(i) for every x0 ∈ P there exist T ≥ 0 and γ > 0 such

that φu(t, x0) ∈ P for all t ∈ [0, T ], φu(T, x0) ∈ F0,
and φu(t, x0) /∈ P for all t ∈ (T, T + γ).

(ii) There exists ξ ∈ Rn such that for all x ∈ P , ξ · (Ax+
Bu(x) + a) < 0.

The added condition (ii) not present in RCP is called a
flow condition. The new problem is called “monotonic”
because trajectories are required to flow through the polytope
in a common sense with respect to a foliation of parallel
hyperplanes with normal vector ξ.

We conclude our discussion on RCP with conditions that
guarantee that under continuous PWA feedback, closed-loop
trajectories that exit P do so only through F0.

Definition 3.1: We say the invariance conditions are solv-
able if for each v ∈ V there exists u ∈ Rm such that

Av +Bu+ a ∈ C(v) . (4a)

Equivalently,

hj · (Av +Bu+ a) ≤ 0 , j ∈ J(v) . (4b)
Equation (4a) or (4b) is referred to as the invariance condi-
tions; we use this terminology either to refer to the conditions
for a single vertex or referring to the entire collection of
conditions for all vertices of the polytope. Solvability of the
invariance conditions has been shown to be necessary for
solvability of RCP by continuous feedback [7]. For a given
feedback u(x), the following stronger invariance conditions
guarantee that closed-loop trajectories that exit P only do so
via F0

hj · (Ax+Bu(x) + a) ≤ 0, ∀x ∈ Fj , ∀j ∈ J. (5)

IV. GENERALIZED FLOW CONDITIONS

In this section we introduce the main ideas of the paper.
These ideas are simple, yet, like Lyapunov theory, they
have the potential to be far-reaching. We propose a tool
for analysis of controllers for solving RCP on polytopes;
specifically, a tool that tells us if closed-loop trajectories exit
the polytope.

Suppose we are presented with an instance of RCP on a
polytope and we have in hand a continuous feedback u(x)
as a candidate feedback solution. For information on how
to construct candidate feedbacks, the reader is referred to
[7], [8], [15], [9], [10]. Since the invariance conditions (5)
necessarily are satisfied by any continuous feedback solving
RCP [7], we may assume that u(x) already achieves (5).
Immediately we conclude that trajectories can only exit P
through F0. Then to verify if u(x) actually solves RCP on
P , we only have to verify whether all trajectories initiated
in P leave it in finite time. Like Lyapunov theory, we hope
to avoid a verification by exhaustive simulation.

In the literature on RCP for simplices and affine feed-
backs this verification is performed using a flow condition
comprising a linear functional that strictly decreases along
closed-loop trajectories. Since the simplex is compact, the
strictly decreasing condition means closed-loop trajectories
must exit. Such a linear functional always exists if RCP is
solved on a simplex by a given affine feedback [8], [15]. On
the other hand, linear functionals are too restrictive as a class
when verifying feedback solutions on polytopes [9]. Indeed,
we have many examples where a continuous feedback u(x)
is verified to solve RCP via exhaustive simulation, but no
linear functional exists. These examples highlight the need
for a more general tool to verify that trajectories leave P in
finite time.

At the same time there are well-known results in the
literature providing general tests for trajectories to leave
compact sets. For example, Proposition 3.5, Chapter 7, of
[16] gives the following condition: let P be a compact set
and V a continuously differentiable (C1) function defined on



a neighborhood of P . If V̇ (φ(t, x0)) 6= 0, then all trajectories
φ(t, x0) starting in P leave it in finite time.

In sum, on the one hand, we have specific forms of the
flow condition matching specific forms of the feedback, in
the same way that quadratic Lyapunov functions fit with
linear systems and feedbacks. On the other hand, we have
general forms of the flow condition requiring only certain
differentiability assumptions. A generalized flow condition
will comprise a general functional that strictly decreases
along closed-loop trajectories. An open problem is to identify
the most useful classes of functionals for RCP. In this paper
we make some headway on this open problem.

We begin with the most general context. Suppose we
have a feedback u(x) such that the closed-loop vector field
is locally Lipschitz. Suppose we have a functional V (x)
bounded from below on P and satisfying

V (φu(t, x0)) ≤ V (x0)− t (6)

for all x0 ∈ P and t ≥ 0 such that φu(τ, x0) ∈ P ,
τ ∈ [0, t]. It is obvious that trajectories must exit P in finite
time. Conversely, suppose that using u(x), all trajectories
leave P in finite time. Then for each x0 ∈ P , there exist
Tx0

≥ 0 and γx0
> 0 such that φu(t, x0) ∈ P for all

t ∈ [0, Tx0
], and φu(t, x0) /∈ P for all t ∈ (Tx0

, Tx0
+ γx0

).
Define the map T : P 7→ R+ by T (x) := Tx, x ∈ P .
By uniqueness of solutions, T is a well-defined (i.e. single-
valued) function. Also T (x) ≥ 0 on P . By the semi-group
property, T (φu(t, x0)) = T (x0)−t, t ∈ [0, T (x0)]. Thus, we
have proved the following straightforward but fundamental
result showing that existence of a generalized flow condition
satisfying (6) is a necessary and sufficient condition.

Theorem 4.1: Consider the system (3) defined on a poly-
tope P . Let u(x) be a continuous state feedback such that the
closed-loop vector field is locally Lipschitz. All trajectories
starting in P leave it in finite time if and only if there exists
V : P → R such that V (x) is bounded from below on P
and (6) holds.

Next consider the case when V is locally Lipschitz; here
only sufficient conditions can be obtained.

Theorem 4.2: Consider the system (3) defined on a poly-
tope P . Let u(x) be a continuous state feedback such that
the closed-loop vector field f(x) is locally Lipschitz on a
neighborhood of P . All trajectories starting in P leave it
in finite time if there exists V : Rn → R that is locally
Lipschitz on a neighborhood of P and satisfies

D+
f V (x) ≤ −1 , x ∈ P . (7)

Now we focus on a particular form of V that appears to
have special relevance to RCP. Let I0 = {1, 2, · · · , L}, and
suppose for each i ∈ I0, Vi(x) : Rn → R is a C1 function.
Define

V (x) := max
i∈I0

Vi(x) . (8)

Lemma 4.3 ([4]): Consider the system (1) and let V (x)
be as in (8). Then V (x) is locally Lipschitz and

D+
f V (x) = max

i∈I(x)
LfVi(x)

where I(x) = {i ∈ I0 | Vi(x) = V (x)}.
With this choice of V the condition (7) can be further

relaxed.
Theorem 4.4: Consider the system (3) defined on a poly-

tope P . Let u(x) be a continuous state feedback such that
the closed-loop vector field f(x) is locally Lipschitz on a
neighborhood of P . Let V be as in (8). All trajectories
starting in P leave it in finite time if D+

f V (x) < 0, x ∈ P .
Note that the above results are generic in the sense that

they are also true for compact non-convex sets. This fact is
useful in solving examples (See Example 7.2). In Section VI,
we explore in greater depth the properties of polytopes, and
we provide a suitable class of generalized flow conditions
for RCP on polytopes by PWA feedbacks.

V. LASALLE PRINCIPLE FOR RCP

In this section we study the case where a generalized
flow condition has not been found, but we have identified a
locally Lipschitz function V satisfying D+

f V (x) ≤ 0 for all
x ∈ P . The question is whether this information is enough to
deduce that closed-loop trajectories exit P . For this we use
an argument similar to the LaSalle principle, but we use it
in the opposite way to how the LaSalle principle is normally
applied. The LaSalle principle is used in Lyapunov theory
in the case when a positive definite Lyapunov function is
not available, but some function that is non-increasing along
solutions is available. It allows to show that trajectories tend
to an invariant set. Instead, we use the LaSalle principle in
the case when a generalized flow condition is not available,
but some function that is non-increasing along solutions is
available. We use this information to show that trajectories
exit from P if there is no invariant set in a particular subset
of P . An example is given in Section VII. Thus, the novelty
and the contribution are in showing that a LaSalle principle
is meaningful in the context of RCP, despite RCP imposing
the opposite requirement of Lyapunov stability. As such, the
proof method is almost identical to the standard LaSalle
principle, so it is omitted.

Theorem 5.1 (LaSalle): Consider the system (3) defined
on a polytope P . Let u(x) be a continuous state feed-
back such that the closed-loop vector field f(x) is locally
Lipschitz on a neighborhood of P . Suppose there exists
V : Rn → R that is locally Lipschitz on a neighborhood
of P and satisfies D+

f V (x) ≤ 0, x ∈ P . Let M := {x ∈
P | D+

f V (x) = 0}. If M does not contain an invariant set,
then all trajectories starting in P leave it in finite time.

VI. PWA FEEDBACK

In this section we focus on (continuous) PWA feedback
which is widely used to solve RCP on polytopes [7], [8],
[9]. There are currently two techniques to solve RCP on
polytopes by PWA feedback: MRCP [9] and simplex meth-
ods [8], [15]. MRCP imposes that the closed-loop system
satisfies a linear flow condition, like the case of simplices
with affine feedback, but it does not require that all the invari-
ance conditions of individual simplices of the triangulation
are satisfied by the feedback. On the other hand, simplex



Fig. 1. Invariance conditions of S1 are not solvable at v3.

methods relax the requirement for a linear flow condition, but
they require that the invariance conditions of each simplex
in the triangulation be satisfied. We have found examples
in which both techniques fail; nevertheless via exhaustive
simulation we verify that a PWA feedback solves RCP on
a polyope [9], [10]. Evidently existing techniques are not
general enough to explain why a given continuous PWA
feedback solves RCP.

In comparing MRCP with the proposed approach, it is
clear that MRCP is merely a special case when the gener-
alized flow condition is a linear functional. More interesting
is the question of the relationship between generalized flow
conditions and simplex methods. That is, what class of
generalized flow conditions emerges when RCP is solved
by simplex methods? The answer may give clues about the
preferred classes of generalized flow conditions for PWA
feedback. Because this problem has not been formulated
before, we study it in the simplest possible context. We
consider the case when P ⊂ Rn consists of two simplices
S1 and S2. Let T = {S1,S2} denote the triangulation of P .
See Figure 1. Saying that RCP is solved by simplex methods
using a PWA feedback u(x) on T means that

• S1
S1−→ F0 using u1(x) = K1x+ g1, and

• S2
S2−→ F using u2(x) = K2x+g2, where F = S1∩S2.

Moreover, the controller

u(x) =

{
u1(x), x ∈ S1
u2(x), x ∈ S2 \ S1

is continuous. Define the closed-loop vector field f(x) :=
Ax + Bu(x) + a. What form does the generalized flow
condition take in this case?

Theorem 6.1: Consider a polytope P , a triangulation T =
{S1,S2} of P , and a continuous PWA feedback u(x) defined
on T. If S1

S1−→ F0 and S2
S2−→ F using u(x), then there

exist affine functions V1, V2 : Rn → R such that

V (x) = max{V1(x), V2(x)} (9)

satisfies D+
f V (x) < 0 for all x ∈ P .

Proof: Let S1 = co {v1, · · · , vn+1}, S2 =
co {v2, · · · , vn+2}, h be the unit normal vector to F point-
ing out of S2, and define α := h · x, x ∈ F . By [15] there

exists ξ1 ∈ Rn such that

ξ1 · (Ax+Bu(x) + a) < 0 , x ∈ S1 . (10)

We choose V1(x) = ξ1 · x. Second, because S2
S2−→ F ,

the invariance conditions hold at vn+2. By the geometry
of the simplex, h is a negative linear combination of the
outward normal vectors of the facets contains vn+2. Thus,
(−h) · (Avn+2 +Bu(vn+2) + a) < 0. Also, because u(x) is
continuous and S1

S1−→ F0

(−h) · (Avj +Bu(vj) + a) ≤ 0 , vj ∈ F . (11)

Now define
ξ2 := ξ1 − ch (12)

where c > 0 is selected sufficiently large such that ξ2 ·
(Avn+2 + Bu(vn+2) + a) < 0. Using (10), (11), and (12),
we get ξ2 · (Avj +Bu(vj) + a) < 0, vj ∈ F . Since u(x) is
affine on S2, we get ξ2 · (Ax+Bu(x) +a) < 0, x ∈ S2. We
choose V2(x) = ξ2 · x+ cα and let V (x) be as in (9).

It remains to show D+
f V (x) < 0 for x ∈ P . From above,

LfV1(x) < 0, x ∈ S1 and LfV2(x) < 0, x ∈ S2. Recall
that ch · x = cα for x ∈ S1 ∩ S2 and h points outside
of S2. Thus ch · x = (ξ1 − ξ2) · x ≤ cα, x ∈ S2, and
ch · x = (ξ1 − ξ2) · x ≥ cα, x ∈ S1. Define the sets Γ1 :=
{x ∈ P | V1(x) ≥ V2(x)} = {x ∈ P | ξ1 · x ≥ ξ2 · x+ cα}
and Γ2 := {x ∈ P | V2(x) ≥ V1(x)} = {x ∈ P | ξ1 · x ≤
ξ2 · x+ cα}. Clearly we have Γi = Si, i = 1, 2. Finally, we
apply Lemma 4.3 to get D+

f V (x) < 0 for all x ∈ P .

The goal of the previous result was to discover a form
of the generalized flow condition that naturally arises from
solving RCP via simplex methods. The result appears to
be primarily of theoretical interest because if we know that
S1

S1−→ F0 and S2
S2−→ F , then we know that RCP is solved.

However, the result is of practical interest when simplex
methods fail, yet a flow condition of the form (9) may still
be relevant. A typical scenario is when simplex methods fail
because the invariance conditions of S1 are not solvable at
some vertices on F . For instance, in Figure 1 the invariance
conditions of P are solvable at v3. However, for any u(v3)
that we select, the velocity vector Av3 + Bu(v3) + a will
point outside S1, and so S1

S1−→ F0 always fails for any PWA
feedback u(x) on T. Despite this failure, the overall problem
to exit the polytope may still be solved by the same u(x)
and by verifying a generalized flow condition of the form
(9). The next result gives a computational test that explicitly
depends on the form of generalized flow condition given in
the proof of Theorem 6.1.

Corollary 6.2: Consider a polytope P and a triangulation
T = {S1,S2} of P , where S1 = co {v1, · · · , vn+1} and
S2 = co {v2, · · · , vn+2}. Let u(x) be a continuous PWA
feedback on T that satisfies invariance conditions of P , and
does not achieve invariance conditions of S1 at vertices
vk, · · · , vn+1 ∈ F , where 2 < k ≤ n + 1. Suppose that



the following linear programming (LP) problem is solvable

f(v1)T 0
...

...
f(vn+1)T 0
f(vk)T −h · f(vk)

...
...

f(vn+2)T −h · f(vn+2)
0 −1


[
ξ1
c

]
< 0 . (13)

Then there exists a function V (x) of the form (9) such that
D+
f V (x) < 0 for all x ∈ P .
Corollary 6.2 provides a simple tool for verifying that all

closed-loop trajectories initiated in P leave it in finite time
for the case where existing techniques fail.

VII. EXAMPLES

Example 7.1: In this example we show how to use the
generalized flow condition to check if a given locally Lips-
chitz control law u(x) solves RCP on P . Consider the system

ẋ =

 0 −1 −1
−1 −2 −1

1 0 −2

x+

 0
−1
0.5

u+

 1
1
1

 (14)

defined on a polytope P . The polytope is shown in Figure 2.
The vertices of P are v0 = (0, 0, 0), v1 = (1, 0, 0), v2 =
(0, 1, 0), v3 = (0, 0, 1), and v4 = (1, 1, 1). The exit facet
is F0 = co {v1, v3, v4}. Let S1 := co {v1, v2, v3, v4} and
S2 := co {v0, v1, v2, v3}.

Suppose that the following continuous PWA feedback is
used on P

u(x) =


[
−1 −1 −1

]
x+ 1 , x ∈ S1[

0 0 0
]
x+ 0 , x ∈ S2 .

It is required to verify that u(x) solves RCP on P . Let
f(x) := Ax + Bu(x) + a. Then f(v0) = (1, 1, 1), f(v1) =
(1, 0, 2), f(v2) = (0,−1, 1), f(v3) = (0, 0,−1), and
f(v4) = (−1,−1,−1). It is easily verified that the f(vj)
satisfy the invariance conditions (4). As continuous PWA
feedback is used, invariance conditions (4) imply (5), and
so trajectories that leave P do so only through F0. Then,
we check that P does not contain closed-loop equilibria. It
can be verified that 0 /∈ co {f(v1), f(v2), f(v3), f(v4)}, and
0 /∈ co {f(v0), f(v1), f(v2), f(v3)}. Therefore, there exists
a linear flow condition on each simplex Si [15]. However,
the no-equilibrium condition is not sufficient to conclude that
all trajectories initiated in P leave it in finite time [9].

To verify that closed-loop trajectories leave P , we first
check if MRCP is satisfied. We compute 0.5f(v0) +
0.5f(v4) = 0 or 0 ∈ co {f(v0), f(v1), . . . , f(v4)}, and
so there does not exist ξ ∈ Rn such that ξ · f(x) < 0,
x ∈ P . So u(x) does not solve MRCP. Next we check if
u(x) solves RCP using simplex methods. Let F := S1 ∩S2,
and h be the unit normal vector to F pointing toward S1.
We compute h = ( 1√

3
, 1√

3
, 1√

3
) and h ·f(v3) < 0; hence, the

velocity vector f(v3) dips inside S2. Therefore, u(x) does

Fig. 2. P for Examples 7.1 and 7.2

not achieve S1
S1−→ F0, and u(x) does not solve RCP by

simplex methods.
We conclude RCP is not solved by u(x) via any existing

technique. Now we check if a generalized flow condition
exists. It is verified that v3 is the only vertex on F at which
the velocity vector f(v3) does not satisfy the invariance
conditions of S1. Based on Corollary 6.2 we check the
existence of a generalized flow condition with V of the form
(9) by solving the LP

f(v1)T 0
f(v2)T 0
f(v3)T 0
f(v4)T 0
f(v3)T −h · f(v3)
f(v0)T −h · f(v0)

0 −1


[
ξ1
c

]
< 0 .

A solution of this LP is ξ1 = (−167.855, 150.962, 66.055),
and c = 71.303. Then, we calculate ξ2 = ξ1 − ch =
(−209.023, 109.795, 24.888). We define V (x) = max(ξ1 ·
x, ξ2 · x + cα). By Corollary 6.2, D+

f V (x) < 0, x ∈ P .
By Theorem 4.4, all closed-loop trajectories exit P in finite
time. Since the invariance conditions of P hold, they do so
only through F0. We conclude that u(x) solves RCP on P .

Example 7.2: In this example RCP is not solvable by
continuous PWA feedback using any existing technique.
However, we show using the results presented in this paper
that there exists a continuous PWA feedback solving RCP
on P . Consider the system

ẋ =

 1.25 3 0
−1 −11.5 −1

−1.25 1 −2

x+

 10
−1
−10

u+

 0
1
0


(15)

defined on a polytope P . The polytope is shown in Figure 2.
The vertices of P are v0 = (0, 0, 0), v1 = (1, 0, 0), v2 =
(0, 1, 0), v3 = (0, 0, 1), and v4 = (1, 1, 1). The exit facet is
F0 = co {v1, v3, v4}. The control objective in this example
is to solve P P−→ F0 by continuous PWA feedback.

First, it can be verified using Corollary 4.5 of [9] that
MRCP is not solvable by continuous PWA feedback. Sec-
ondly, it can be shown using an argument similar to the
one used in Example 6.2 of [9] that RCP is not sovable by



(a) (b)

Fig. 3. Two triangulations of P for Example 7.2

simplex methods for any choice of triangulation of P .
Hence, RCP is not solvable by continuous PWA feedback

using any known technique. Now we use the results
presented in this paper to show there exists a continuous
PWA feedback that solves RCP on P . First, we construct
a candidate feedback solution, which is a continuous
PWA feedback that satisfies the necessary conditions for
solvability of RCP. Following Proposition 4.4 of [9], we
select the B−extremal control values: u(v0) = 0, u(v1) =
−0.13158, u(v2) = 0.1, u(v3) = 0, and u(v4) = 0.3158.
This assignment achieves the invariance conditions (4) at
all vertices. If we triangulate P as shown in Figure 3(a)
(S1 = co {v1, v2, v3, v4} and S2 = co {v0, v1, v2, v3}),
then P will contain a closed-loop equilibrium point since
0 ∈ co {f(v1), f(v2), f(v3), f(v4)}. Instead, we triangulate
P as shown in Figure 3(b) (S1 = co {v0, v1, v3, v4},
S2 = co {v0, v2, v3, v4}, and S3 = co {v0, v1, v2, v4}),
and construct the affine feedback on each simplex [7].
We get u(x) = Kix + gi, x ∈ Si, where K1 =
[−0.1316 0.4474 0], g1 = 0, K2 = [0.2158 0.1 0], g2 = 0,
K3 = [−0.1316 0.1 0.3474], g3 = 0. It can be
checked that 0 /∈ co {f(v0), f(v1), f(v3), f(v4)},
0 /∈ co {f(v0), f(v2), f(v3), f(v4)}, and 0 /∈
co {f(v0), f(v1), f(v2), f(v4)}. So, using u(x) P does not
contain closed-loop equilibrium points. Now we show, using
the results obtained in this paper, that the above continuous
PWA feedback u(x) solves RCP on P .

Proposition 7.1: Given the polytope P and system (15),
P P−→ F0 using u(x).

Proof: First, we show that all closed-loop trajecto-
ries initiated in P leave it in finite time. Let V (x) =
max(V1(x), V2(x)), where V1(x) = x3−x1 and V2(x) = 0.
We study D+

f V (x) on P . In this example we have Γ1 =
{x ∈ P : x3 − x1 ≥ 0} and Γ2 = {x ∈ P : x3 − x1 ≤ 0}.
Then, we study LfV1(x) on Γ1. We have LfV1(x) =
−2.5x1 − 2x2 − 2x3 − 20u(x). It can be verified that
LfV1(x) ≤ 0, x ∈ Γ1, with equality holding only at v0.
Also, it is clear that LfV2(x) = 0, x ∈ Γ2. So, for all
i = 1, 2 we have LfVi(x) ≤ 0, x ∈ Γi. Using Lemma
4.3, it follows that D+

f V (x) ≤ 0, x ∈ P . Also, equality
holds for all x ∈ P satisfying x3 − x1 ≤ 0. This gives
M = {x ∈ P : x3 − x1 ≤ 0}. Now to apply Theorem 5.1,
it remains to show M does not contain invariant sets. The

set M is compact, and it can be verified that M⊂ S1 ∪S3.
Consider the function W (x) := f(x)TPf(x) defined onM,
where P is a symmetric matrix determined by solving the
following set of linear matrix inequalities (LMIs)

(A+BKi)
TP + P (A+BKi) < 0, i = 1, 3.

The problem is feasible, and we get

P =

 0.2066 0.0941 0.0791
0.0941 0.086 0.0001
0.0791 0.0001 0.1538

 .
The function W (x) is locally Lipschitz, but not C1 on M.
Using Proposition 1.5 in Chapter 2 of [3], it can be shown
that there exists ε > 0 such that D+

f W (x) < −ε, x ∈ M.
By rescaling W we can apply Theorem 4.2 (which clearly
also applies to nonconvex sets) to obtain that all trajectories
initiated inM leave it in finite time. Therefore,M does not
contain invariant sets. Then by Theorem 5.1, all trajectories
initiated in P leave it in finite time. As u(x) satisfies the
invariance conditions of P , then P P−→ F0 using u(x).

REFERENCES

[1] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace. Ultra-fast
stabilizing model predictive control via canonical piecewise affine
approximations. IEEE Transactions on Automatic Control. Vol. 56,
issue 12, pp. 2883-2897, Dec. 2011.

[2] M.E. Broucke. Reach control on simplices by continuous state feed-
back. SIAM Journal on Control and Optimization. vol. 48, issue 5, pp.
3482-3500, February 2010.

[3] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski. Nonsmooth
Analysis and Control Theory. Springer-Verlag New York Inc., 1998.

[4] J. M. Danskin. The theory of max–min, with applications. SIAM
Journal on Applied Mathematics. Vol. 14, no. 4, pp. 641–664, 1966.

[5] B.A.G. Genuit, L. Lu, W.P.M.H. Heemels. Approximation of PWA
control laws using regular partitions: an ISS approach. 18th IFAC
World Congress. Milano, Italy, August 2011, pp. 4540-4545.

[6] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems.
IEEE Control Systems Magazine. Vol. 29, no. 2, pp. 28–93, April 2009.

[7] L.C.G.J.M. Habets and J.H. van Schuppen. A control problem for
affine dynamical systems on a full-dimensional polytope. Automatica.
no. 40, pp. 21–35, 2004.

[8] L.C.G.J.M. Habets, P.J. Collins, and J.H. van Schuppen. Reachability
and control synthesis for piecewise-affine hybrid systems on simplices.
IEEE Trans. Automatic Control. no. 51, pp. 938–948, 2006.

[9] M. K. Helwa and M. E. Broucke. Monotonic Reach Control on
Polytopes. IEEE Conf. Decision and Control and European Control
Conf. pp. 4741-4746, December 2011.

[10] M. K. Helwa and M. E. Broucke. Monotonic Reach Control on
Polytopes. IEEE Trans. Automatic Control. Accepted, April 2012.

[11] Z. Lin and M. E. Broucke. On a reachability problem for affine
hypersurface systems on polytopes. Automatica, vol. 47, issue 4, pp.
769–775, April 2011.

[12] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems
using barrier certificates. The 7th International Conf. Hybrid Systems:
Computation and Control, pp. 477–492, 2004.

[13] S. Prajna, A. Rantzer. Convex programs for temporal verification of
nonlinear dynamical systems. SIAM Journal on Control and Optimiza-
tion. Vol. 46, no. 3, pp. 999–1021, 2007.

[14] L. Rodrigues and S. Boyd. Piecewise-affine state feedback for
piecewise-affine slab systems using convex optimization. Systems and
Control Letters. 54(9), pp. 835–853, September 2005.

[15] B. Roszak and M. E. Broucke. Necessary and sufficient conditions for
reachability on a simplex. Automatica. vol. 42, no. 11, pp. 1913–1918,
November 2006.

[16] N. Rouche, P. Habets, M. Laloy. Stability Theory by Liapunov’s Direct
Method. Springer-Verlag, New York Inc., 1977.

[17] T. Yoshizawa. Stability Theory by Lyapunov’s Second Method. Math-
ematical Society of Japan, 1966.


