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Abstract— We study well-posedness and structural stability constraints and non-safety constraintsSafety constraints
of the reach control problem (RCP) for affine systems. We define the permitted region in the state-space in which
demonstrate that the affine and piecewise affine feedbacks system trajectories may evolve. These conditions aretstric

introduced in previous papers for solving RCP on a simplex . d diti thev be violated. F |
are well-posed and structurally stable in the presence of sail I.e.-under no condition can they be violated. For example,

perturbations of system parameters. We also present gendra iN automated anesthesis delivery, the concentration of dru
results on well-posedness and structural stability of RCP 0 in the patient’s body should not exceed a safe threshhold. In
polytopes by continuous state feedback. Some results echocontrast, non-safety constraints are state constraingesed
clasbi,lcal findings on well-posedness for the robust regulat jnsige the permitted region of evolution. They guarantee th
problem. desired sequences of events occur (such as crossing certain
. INTRODUCTION facets) or desired sub-regions of the safe region are disite
&s{ych as visiting certain simplices). Under perturbatidn o
system parameters, these internal, non-safety constragy
ai%e violated, yet the global system behavior may still be

guides closed-loop trajectories of an affine system thr@ghacceptablg; whereas if a safety constraint is violaf[ed, Fhe
polytopic state space in order to exit from a prespecifietl excc_Jn.troll_er S deem_ed to have failed. We furthgr clgrn‘y this
facet, without first crossing other facets. RCP was intreduc (leStII’I.C.tlon n _Sectlon I.”' Wh.ether. the so—callgqt/anance_
acet, 9 ' conditions which restrict trajectories from exiting certain

in [7] and further developed in [8]’ [, [1.‘.1]' More geomet_r! facets of a simplex are interpreted as safety or non-safety
tools were developed to obtain conditions for solvab|I|tyConstraints shapes the nature of results on well-posednéss
with different classes of controls in [3], [6], [5]. The qtes

. . structural stability. This flexibility of interpretationllaws
has been to |dent|fy t.he smallest feedback control class tht% bypass some of the inherent conservativism built into
solves RCP when it is solvable by open-loop controls. Th

feedback control classes studied so far are affine feedba(;5 ¢ mathematical notions of well-posedness and structural

. Hiine 1e Ability.
[8], [14], continuous state feedbacks [3], and piecewisiaat Notation. Let S € R™ be a set. The relative interior of
feedbacks [9], [6], [5].

. S is denoted I(iS). For a vector: € R™, the notation: > 0
Some of these results rely on an assumption about h 1) "

. . . . > i i >0)for1<i<n.Th tati
the triangulation [11] of the state space is performed;ipart @ = 0) meansz; > 0 (; = 0) for 1 < i < n. The notation

larlv. that closed.| ibri | tae & ™ 0 (x = 0) means—z > 0 (—z > 0). For a matrix
ularly, that closed-loop equilibria may only appear on @fac , - prxn the notationd = 0 (A = 0) meansa;; > 0

of any simplex [3]. Howeyer, in pra_ct|ce the_ nominal syste_rrlaij > 0) for 1 < i, j < n. Notation0 denotes the subset of
parameters are not precise, so a triangulation for the relmin,,, containing only the zero vector. Notation{aa, vs, . . .}

system might fail to satisfy this requirement when one 9083 notes the convex hull of a set of poinise R"
to the real-world setup. Therefore, the key question here Is '

This paper studies the well-posedness and structural s
bility of the reach control problem(RCP) on a simplex or
a polytope. The problem is to find a feedback control th

whether the proposed solution methods of [3], [6], [5] remai Il. REACH CONTROL PROBLEM
valid if system parameters are perturbed. The present workwe consider an n-dimensional simplex S =
explores this question and verifies the results obtained]in [ co{v,, v1,...,v,} with vertex setV := {vg,v1,..., 0.}

[6], [5] subject to small perturbations of system paraneeterand facetsf, ..., F, (the facet is indexed by the vertex
We study both well-posedness and structural stabilityine | it does not contain). Leti;, i = 0,...,n be the unit
with classical developments for the robust regulator @obl normal vector to each faceF; pointing outside of the
[15]. Similar to our previous work, we show that affinesimplex. LetF, be the exit facet inS. Define the index set
feedback and continuous state feedback remain equivalgnt— {1 . n}. Forz € S, define the closed, convex cone
from the point of view of solvability of RCP even under the

requirement of a structurally stable synthesis. Cle)={yeR" | hj-y<0,jel, z€F;}.

One of the themes explored in the present work is that tWge \rite conés) := C(vy) sinceC(vo) is the tangent cone
types of state constraints arise in RCP. We call treafety s 4t Yo.
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. . U3 V3
control u(t) starting fromz, € S and evaluated at time

We assume throughout that only control inputs that provide

for unique solutions of (1) are studied. We are interested in 1o 1o

studying reachability ofFy from S. \
Problem 1 (Reach Control Problem (RCP)onsider

system (1) defined oS. Find a state feedback(z) such o * o
that: for eachry € S there existl’ > 0 and~y > 0 such that v v

() ¢u(t,x0) €S forall t € [0, 7], ! !

(i) ¢u(T,x0) € Fo, and Fig. 1. Safety constraints guarantee that trajectoriey exit from 7.
(iii) ¢u(t, ZCO) ¢ Sforalte (T, T+ 7)_ Non-safety constraints guarantee that trajectories oaly ffom S» to Sy.

A useful shorthand notation is to write - 7, by u(zx) if
Problem 1 is solved by (z).

One of the important contributions of [8] was a set ofin finite time without first exiting? from other facets.
inequality conditions that guarantee that closed-loojedra In this context, the safety constraints are those encoded

tories do not exitS from non-exit facets7,...,F,. We in the invariance conditions of the polytope; instead “in-
say theinvariance conditions are solvablé there exist ternal” invariance conditions associated with simplicds o
ug, ..., uy, € R™ such that a triangulation might be violated when system parameters

are perturbed. Consider the example in Figure 1 showing a
polytopeP with two simplices. A piecewise affine feedback
Conditions (2) are called thénvariance conditionsand is designed so that trajectories only e®itthrough F,, and
they are used to construct affine feedbacks [8]. For genemaloreover they only flow fron®, to S;. The figure on the
continuous state feedbacks, stronger conditions (aldecdcal left shows the closed-loop velocity vectors at the vertickes
invariance conditions) are needed. We say a state feedbakfor the nominal system. The invariance conditions of the
u(x) satisfies the invariance conditioiifs polytope (safety constraints) and the invariance corustiof
the simplices (non-safety constraints) are both satiskiev

Az + Bu(z) +a€l(z), z€S. ®) suppose the system is perturbed, so the closed-loop welocit
I1l. WELL-POSEDNESS ANDSTRUCTURAL STABILITY vectors are shifted as in the figure on the right. In particula
IthF invariance condition of; at v; is now violated. Now
cqosed-loop trajectories no longer flow only frafa to S;.
Nevertheless, from the point of view of solving RCP Bn

Av; + Bu; +a € C(v;) ie{0,....,n}. (2

We review some facts about well-posedness and structu
stability [15]. Consider the system d&td, B, a), whereA €
R™" B e R™™ anda € R". If the matrix elements are

listed in arbitrary order, thefA, B, a) can be regarded as athIS behavior is still acceptable. ific simol tail und
point A in vector spac®”, whereN = n2 +n+m+n. We In summary, RCP on a specific simplex may fail under

say that RCP isvell-posed at\ if it is solvable at all points perturbation of system parameters, wh(_areas RCP _remains
in some neighborhood of in RY. It is also of interest to solved onP under the same perturbations. A notion of

characterize well-posedness for a specific control class. Fwell-posedness or structural stability should accountics

instance, we say RCP by continuous state feedback is WeflllgXIbIIIty in internal dynamics. For this reason, we firsigy

posed af if it is solvable by continuous state feedback at allVe!l-Posedness and structural stability for a polytope.

points in some neighborhood ofin RY. Similarly, we say 10 that end, we consider andimensional polytop@ :=
RCP isstructurally stable at\ = (A, B, a) if it is solvable  €0{v1, -, v} With facetsFy, ..., F,. As before, leth; be
by a state feedback(z) at A € R¥, and it remains solvable the unit normal vector of faceF; pointing outside ofP. Let

with the same feedback(z) at all points in a neighborhood Fo be the exit facet irP. All definitions in Sections Il are
of \in RY. analogously defined on polytog@ rather than simplexS.

Now we introduce the main ideas of the paper on wellJo ensure that RCP remains solvable under perturbation of

posedness and structural stability of RCP in the generBRrameters, we introduce strict invariance conditionsPon
setting of polytopes rather than simplices, and we alsorbegi Definition 1: We say a state feedbaekz) satisfies the
with continuous state feedbacks. These main ideas are th&fict invariance conditionsf for all j € {1,...,p} and
ramified for the special case of simplices and for othet € ;.
classes of feedbacks: affine feedbacks and (discontinuous) hj - (Az + Bu(z) +a) <0. 4)
piecewise affine feedbacks. We begin by motivating thilotice that for am-dimensional polytope, (4) is equivalent
problem studied in this section. to sayingAx + Bu(z) 4+ a € int(C(z)). Also note that for a
On polytopes RCP will typically be solved by continuoussimplex,p = n. The strict invariance conditions have been
PWA feedback [8] or discontinuous PWA feedback [6], [5].introduced because their solvability is necessary for -well
It is not uncommon that the underlying triangulation ofposedness of RCP.
the polytope is chosen arbitrarily, and the precise belavio Lemma 2:Consider polytopeP and system (1) with
on simplices is not of interest. Rather, the desired globalystem parameters = (A, B,a). If RCP by continuous
behavior on the polytope is that the exit facet is reachestate feedback is well-posed &t then the strict invariance



conditions (4) are solvable. defined orD. Let ¢, (¢, zo; A) be the unique trajectory of the
Proof: Letz € P and define)(x) := {Axz + Bu+ nominal closed-loop system starting from initial conditio
a|uweR™} Y(x)is a non-empty affine space Ri*. Fora ¢ € P. Sinceu(z) solves RCP, there exis{s> 0 and a time
n-dimensional polytopéP, int(C(z)) is a non-empty, open, T > 0 such thatp, (¢, z9; \) € D\ P forall t € (T, T + ).
convex set inkR™. Suppose by way of contradiction that theLet T = ¢, (T + v/2,x0; A), and selectt > 0 such that
strict invariance conditions are not solvableaat That is, B.(Z) C D\ P, whereB.(z) denotes the open ball of radius
Y(z)Nint(C(z)) = 0. By Theorem 11.2 of [13], there exists ¢ centered afr (such a ball exists becaugeis closed).

a hyperplané{ with unit normal vectog that containg)(z), Let\ = (A, B, a) denote the perturbed system parameters.
and¢ -z < 0 for z € int(C(z)) and¢ -z < 0 for z € C(z). By Theorem 3.5 of [10], givel > 0 there existsS > ( such
Consider perturbed system parametirs- (A, B,a) with  that if [A — \|| < 4, then||¢u (T +v/2,20; A) =T <e. In

A=A, B=B, anda = a+ €&, with ¢ > 0. We can choose particular,¢, (T+v/2,xo; ) ¢ P. This shows that all trajec-
e > 0 arbitrarily small so tha is arbitrarily close to\. Also, tories of the perturbed system et Moreover, they must
forallu € R™, ¢-(Az+Bu+a) = € > 0. Thatis,H strongly  exit P through F, becauseu(z) satisfies strict invariance
separate€ (z) and 37(@) = {Az+ Bu+a | ueR™"}. In conditions for the nominal system. That is, we can select
other wordsC(x) N Y(x) = 0, so the invariance conditions 6 > 0 sufficient small such that the invariance conditions,
(3) are not solvable at. By Proposition 3.1 of [8], RCP by which depend continuously on system parameters, still:hold
continuous state feedback is not solvable forSince A is  for all j € {1,...,p} andz € F;,
arbitrarily close to\, RCP is not well-posed aX. ] ~ ~ -
The previous result can be strengthened for simplices. hj - (Az + Bu(z) +a) <0.
Lemma 3:Consider simplexS and system (1) with sys- We conclude RCP is solved usingz) for any A in a
tem parameters = (A, B, a). If RCP by open-loop controls neighborhood of\. It follows that RCP by continuous state
is well-posed at\, then the strict invariance conditions (4)feedback is well-posed and structurally stable\at u
are solvable. We remark that Theorem 5 does not generalize to dis-
Proof: The proof is the same as above. Howevergontinuous control inputs. In particular, it cannot be show
instead of invoking Proposition 3.1 from [8], we invokethat the strict invariance conditions are necessary for l& we

Theorem 6 from [6] which says that solvability of theposed and structurally stable solution of RCP. This issule wi
invariance conditions is necessary for solvability of RGP bpe clarified in our future work.

open-loop controls on a simplex. |
When speaking about structural stability for RCP, one
must make a distinct between mere solvability of the in- A general result for structural stability on polytopes ggin
variance conditions and the invariance conditions agtualicontinuous state feedback was presented in the previous
holding for a candidate feedback over a neighborhood @fection. The result immediately specializes to simpliges a
system parameters. affine feedbacks. However, the result is useful only for
Lemma 4:Consider polytopé® and system (1) with sys- analysis, as it does not provide conditions for structyrall
tem parameters. = (A, B, a). If RCP by continuous state stable synthesis. On the other hand, using prior results [9]
feedbacku(z) is structurally stable, then the strict invariancg14], progressively more constructive results can be found
conditions (4) hold. which provide necessary and sufficient conditions for a-well
Proof: Suppose by way of contradiction there is a faceposed and structurally stable synthesis by affine feedlmck f
Fj # Fo and a pointr € F; such thath; - (Az + Bu(z) +  simplices.
a) > 0. Consider perturbed system paramefets (A, B, @) Theorem 6:Consider simplexS and system (1) with
with A=A, B= B, anda = a + ¢h;, with ¢ > 0. We can system parameters = (A, B, a). RCP by affine feedback
chooser > 0 arbitrarily small so tha is arbitrarily close to is structurally stable ak if and only if there exists an affine
\. Also, h; - (Az + Bu(z) +a) > e > 0. By Proposition 3.1 feedbacku(z) = K + g such that the strict invariance
of [8], RCP is not solvable using(z) for the system\. This ~ conditions (4) hold and there is no closed-loop equilibrium

IV. AFFINE FEEDBACK

contradicts that RCP by(x) is structurally stable. m inS . _
The following result describes general conditions for a  Proof: (<) If RCP by affine feedback is structurally
structurally stable synthesis on a polytope. stable at), then it is solvable by an affine feedbaegkz)

Theorem 5:Consider polytopeP and system (1) with atA. Clearly there can be no closed-loop equilibriumdn
system parameters = (A, B,a). RCP by continuous state Also by Lemma 4 the strict invariance conditions (4) hold
feedback is structurally stable &if and only if it is solvable usingu(z). _
at A by a continuous, locally Lipschitz state feedbagk:) (=) Suppose there iss = Kz + g such that the

satisfying the strict invariance conditions (4). strict invariance conditions hold and there is no closesplo
Proof: (=) Follows from Lemma 4. equilibrium in S. By the results of [9], [14]S =S, Fo by
(<) Suppose RCP is solvable by a continuous, lox(z) for the nominal system. Then by Theorem 5, RCP is
cally Lipschitz state feedback(z) that satisfies the strict structurally stable. [ |

invariance conditions (4). Lef® be an open connected More constructive necessary and sufficient conditions for
neighborhood ofP and consider the closed-loop systemexistence of affine feedbacks solving RCP on a simplex



were obtained in [3]. These results depend on choosing aThe main conclusion of [3] is that under the Assumption 7,
special triangulation of the state space that aligns plessitRCP is solvable by affine feedback if and only if it is solvable
closed-loop equilibria along faces of simplices. Thiseaia by continuous state feedback. In the following we show
guestion of whether the requirement of a special triangariat that this equivalence can be extended to well-posedness and
leads to a synthesis that is not well-posed or structur#dly s structural stability of RCP.

ble, since a perturbation of system parameters will gelyeral Theorem 10:Consider simplexS and system (1) with
destroy the alignment of possible equilibria with facese Thsystem parameters = (A, B, a). Suppose Assumption 7
answer immediately follows from Theorem 5 that a synthesisolds. Then the following statements are equivalent:

based on a special triangulation is well-posed and stralljur  (a) RCP by affine feedback is structually stable\at

stable so long as the conditions of Theorem 5 are satisfied(h) RCP by continuous state feedback is structually stable

We summarize the results below. at \.

Let B = Im(B), the image ofB. Define O := {x € Proof: (a) = (b) is obvious.

R™ | Az + a € B}. This set is an affine space correspond¢b) =—> (a) Suppose RCP by continuous state feedback

ing to the possible closed-loop equilibria when using state(z) is well-posed and structurally stable &t Then, it is

feedback. Define solvable by affine feedback at using Theorem 8.1 of [3]
Gg=8n0. and the strict invariance conditions (4) are solvable by the

Associated with G is its vertex index setlg := results of Lemma 4 (or 2). If = 0, then by Theorem 8,
{i | v; € V N G}. The requirement for alignment o?the;tateRCP by affine feedback is well-posed and structurally stable

. i . S . Suppose instead # () and either’3 N condS) # 0 or there
space triangulation witly appearing in [3] is as follows. exigfs a linearly ir?ilependent selecti@b;{. ) iﬁﬂ | b €

Assumption 7:SimplexS and system (1) satisfy the fol- 5 - ¢(;,)1. Then by Theorem 9, RCP by affine feedback
lowing condition: if G 7 0, theng is a r-dimensional face s \vell-posed and structurally stable &t Suppose instead
of S, where( < x < n. B ncondS) = 0 and every selectiofbs,...,b..1 | b; €

Theorem 8:Consider simplexS and system (1) with 5 ¢(y,)} is linearly dependent. Then, by Theorem 7.3 of
system parameters = (A, B,a). SupposeG = (). RCP  [3] RCP is not solvable by continuous state feedback, a
by affine feedback is structurally stable &tif and only if  contradiction. Hence, RCP by affine feedback is structyrall
the strict invariance conditions (4) are solvable. stable at\. m

Proof: (=) Select the control;; € R™ for each
vertex v; to satisfy the strict invariance conditions (4).
Using the method of [8], one can find uniqué and g¢ So far we have obtained a general result on structural
corresponding to the affine feedbagks) = K + g such stability of RCP on polytopes by continuous state feed-
that u(v;) = u;, 0 < i < n. SinceG = (), the closed-loop back in Theorem 5, and we have specialized this result

system has no equilibria if. Then, the result follows from to simplices and affine feedback in Theorems 8 and 9.
Theorem 5. We particularly address that the non-generic triangutatio
(«<=) If RCP by affine feedback is structurally stableof Assumption 7 does not confound the well-posedness and

at A = (A, B,a), then the strict invariance conditions areStructural stability outcome. Unfortunately, these firirare
solvable forS at A using Theorem 5. m hot sufficient to close the investigation of well-posedness

p and structural stability of RCP. For it is known that, even
under Assumption 7, the class of continuous state feedbacks
is not large enough to solve RCP on simplices [3]. In [€],

fS] a discontinuous control method based on piecewise affine

feedback is developed to address those cases when RCP
(i) The strict invariance conditions (4) are solvable. is solvable by open-loop controls but not by continuous
(i) Either B N condS) # 0 or there exists a linearly siate feedback. Unfortunately, the general well-posesines

independent selectiofby, ..., bxy1 [ bi € BNC(vi)}.  and structural stability result of Theorem 5 no longer amli
Proof: (=) If there existsu = Kz +g s.t. (i) and (i)  because it is only for continuous state feedbacks. By aalref

hold, thenS S, Fo by affine feedback [3]. Thus, an affine analysis of the method of [6], [5], we show precisely when

feedback exists such that the strict invariance condit{@)s a structurally stable synthesis is obtained.

hold and there is no closed-loop equilibriumdn Then, the Following the results of [3] and under Assumption 7, we
result follows from Theorem 5. study the case when RCP is not solvable by continuous state

(«<=) If RCP by affine feedback is structurally stablefeedback but it is solvable by open-loop controls.

at A\ = (4, B,a), then the strict invariance conditions are Assumption 11:Simplex S and system (1) satisfy the

solvable forS at A using Theorem 5. For condition (ii), if following conditions.

neither case is true, then by Theorem 7.3 of [3], RCP iR1) G = co{vy,...,vst1}, Whered < k < n.

not solvable by continuous state feedback. Therefore, RGR2) BN condS) = 0.

by affine feedback is not well-posed, and so not structurallfR3) The maximum number of linearly independent vectors

stable. [ ] in any set{by,...,b.y1 | bi € BNC(v;)} (with only

V. PIECEWISEAFFINE FEEDBACK

Theorem 9:Consider simplexS and system (1) wit
system parametera = (A, B,a). SupposeG # () and
Assumption 7 holds. RCP by affine feedback is structurall
stable at\ if and only if



one vector for eacl8 N C(v;),: € Ig) is m with 1 <  stringent constraint on the number of inputs. This conser-

m < K. vativism arises from two sources. First, well-posedness is
(R4) BNC(v;) #0, i€ lg. an inherently conservative notion; for instance, by alluyvi
Let p := x+1—m > 1. One of the principal findings arbitrary perturbations of parameters, the physics of teays

of [6], [4] is the existence of so-called reach control iredic can be violated. Second, the requirement that the invagianc
To present the result we require the following notation. Letonditions must hold strictly is conservative. We have saen

r1,...,7p > 0 be integers and define the numbers our study of polytopes in Section Il that it may be tolerable
to allow invariance conditions on internal simplices tocol

mp = riteetrertl, k=1,....p with equality constraints, even if these are apparently-non
ro= ritee 4Ty robust, so long as global behavior on the polytope achieves
Theorem 12 ([6], [4]): Suppose Assumption 11 holds. the requirements of RCP. . o
Then there exist integers, ..., r, > 2 and a decomposition  In [6], [5] a subdivision algorithm for synthesizing piece-
of B into p subsets such that wise affine feedbacks consisting of steps is proposed.
BNCw;) C Bi:=5pbmys--- bmy4r—1},i=mi,...,mi+r —1, Lemma 14 shows that only one step of the algorithm is
®)  required. We now investigate the extent to which the single
step subdivision algorithm can provide a well-posed and
BACw:) C By i=plbmy ..., by try 1} i = gy 1 — 1, structurally stable synthesis for RCP.

®) We are focused on the case wh&h = Fy =
whereb; € BN C(v;). Each set{b,,,,...,bm,1rp_1} iS co{vr,...,va} and By = sp{by, ..., bn | Sz € BNC(vi)}-
linearly independent if any one vector is removed and foP"e can see thal, ¢ #o := {y € R" | ho -y = 0}

eachk =1,...,p, there exist coefficients; such that for otherwise all velocity vectors of (1) o, are tangent
o to Fo, and assuming uniqueness of solutions, by a standard

by +ry—1 = Cmybmy ++ -+ Cmytry—2bmy 4 —2, ¢ < 0. argument trajectories starting inside will not be able to
(7)  reachF, in finite time. It is then easy to show that, without
The integers{ri,...,r,} are called thereach control loss of generality (by reordering indicdd,...,n}), there
indices of system (1) with respect to simpleX. We ad- is b; € BN C(vy) “pointing out” of Fy. That is,
ditionally require the following result.

Lemma 13 ([6], [4]): Suppose Assumption 11 holds. ho b1 >0. 9)
Then fork = 1,...,p, i = my,...,m, + 1 — 1, and  We consider any point’ in the open segmetity, v1). That
JeTI\{mp,...,my + 7 — 1}, is, let A € (0,1) and define

hj-b; =0, (8) v = v + (1= Nwg . (10)

We have seen in Theorem 5 that the strict invariance ) ) o )
conditions (4) are necessary for a well-posed and struturaNOW define the following simplices i
stable synthesis by continuous state feedback. Lemma 13 S' = co{v/,v1,vs,
shows that strict invariance conditions are not achievable
when reach control indices are defined. Essentially, reach
control indices are defined when the system has insufficieAtso define the new exit facet forS? by Fj :=

ceUn}
S? = cof{vo,v,va,...,0n}.

inputs. Therefore, to rule out the possibility of the equali co{v’,vs,...,v,}. See Figure 2. The following lemma pro-
constraints (8) which are not robust to perturbation ofeyst vides a formula for the normal vectér of 7).
parameters, we require that the system have sufficientsnput Lemma 15 ([6], [5]): Let hg = —y1h1 —. .. — Ynhy With

Lemma 14:Suppose Assumption 11 holds. If the stricty, > 0, and letA € (0,1). Then the normal vector tG,
invariance conditions (4) are solvable, then=x =n —1.  pointing out ofS! is
Proof: By Theorem 12,8 N C(v;) C By, i = n

my,...,mp+r,— 1. Thus, the equality constraints (8) hold B =~1hy + /\Z%hj =~1(1 = AN)hy — Ahg. (11)

for any b; € BN C(v;), i = mg,...,mi + 1 — 1. This =2
contradicts that the strict invariance conditions are alole. Lemma 16 ([6], [5]): Suppose Assumption 11 holds.
It must be that for every: = 1,...,p, There existsv’ € (vg,v1), such thatB N condS!) # 0.

Moreover,b; € B condSt) with 1’ - b; < 0.
I\ Amis - omi £ =13 =10 Now we show that solvability of the strict invariance

This can only happen ip = 1 andr; = n. In turn, this conditions forS* and for S? is inherited from solvability
impliesk = n—1andm = k+1 —p = n — 1. Since of the strict invariance conditions faf.
m # n, this impliesm =n — 1. [ ] Lemma 17:Suppose Assumption 11 holds. If the strict

We note that the outcome of Lemma 14 echoes similanvariance conditions (4) fo§ are solvable, then the strict
results for the robust regulator problem. See, for instancivariance conditions fo§' are solvable.
Corollary 8.2 of [15]. Lemma 14 illustrates the conservatis Lemma 18:Suppose Assumption 11 holds. If the strict
of well-posedness and structural stability in the form of anvariance conditions forS are solvable, then the strict
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HenceS N O
and B N condS)
problem by a continuous state feedback according to [3].
We use the method of [6], [5] to triangulate where one
step of triangulation is enough. We choose = (0.5,1)

so thatB N condS') # 0. Then §? = co{vg,v,v1},

= cof{v’, vy, v2}, Ffy = co{v/,v1}, and i’/

We have

O={z|zy=21}.

G = co{v, v}, K = 1, m = 1,
0. Therefore, we cannot solve the

(—1,0.5).

To satisfy the strict invariance conditions f6¢ we choose

Fig. 2. Subdivision into two sub-simplice$! and S2. control inputs at the vertices to hgy = —1, v/ = —.5, and
ug; = 1. To satisfy the strict invariance conditions f&¢
we choose control inputs at the vertices to de= —.5,

invariance conditions fo§? are solvable. up = —1, anduy; = —1. The associated piecewise affine

Proof: By assumption the strict invariance conditionsfeedback is

are solvable foiS, and since the strict invariance conditions
for S? are identical (the only facet which changed &% is
Fo, which plays no role in invariance conditions), they are
also solvable fois2.

Theorem 19:Consider simplexS and system (1) wit
system parameters = (A, B,a). Suppose Assumption 11
holds. Then RCP by piecewise affine feedback is structural
stable at\ if and only if the strict invariance conditions are
solvable forS.

Proof: (=) Follows from Lemma 3.

(<) Suppose the strict invariance conditions are solv-
able. By Lemma 14p = 1, r; = n, andm =k =n — 1.
Consider the subdivision f into 5! andS? as above. Lem- 2
mas 17 and 18 guarantee that the strict invariance conditior|3]
(4) are solvable foS' andS?, as well. Similar to the proof

of Theorem 24 of [6], it can be verified that! 8—1> Fo

ands? -5, F¢ by affine feedbacks. Hence, no closed-loop
equilibria appear inS! and S?. Using Theorem 6, RCP by [5]
affine feedback is structurally stable & and S2.

Now, for RCP to be structurally stable &% we should
further verify that for the nominal systeth= (A, B,a) as
well as for the perturbed systetn= (A, B,a) trajectories
only progress frond, to S;. Consider the boundary between
S and §? given by F). We must show that for any, €
S\ F}, closed-loop trajectories do not rea#j. This can
be deduced from the proof of Lemma 17 where it is show 8]
that the controlgu’, us, ..., u,} can be selected so that

h' - (Av' + Bu' + a)
R - (Av; + Bu; + a)

(1]

(4]

6

< 0 [9]

< 0, 1=2,...,m.

If w = K,z + g1 is the affine feedback obtained fi! H(ﬂ
using the above control values, then by convexity,( Az +
B(Ky1z+g1)+a) < 0 forall z € F, from which the result
easily follows. Since these inequalities are strict, theulte
is applicable to the perturbed system, as well. |

Example 20:Consider a simplexS defined by vertices (13]
vo = (—1,1), v1 = (0,0) andv, = (1,1), and consider the [14]
affine system

[ e 2] 2]

[12]

[15]

Now
p are satisfied and moreover, the feedback contrabfosolves
the strict invariance conditions fdi. Hence, by Theorem 19,
@CP is structurally stable by the piecewise affine feedback
(20).

B 0.3333 —1.6667 |z +1, ze€S?
R B S I R P zeS'.

we may verify that the conditions of Assumption 11
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