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Abstract— We study well-posedness and structural stability
of the reach control problem (RCP) for affine systems. We
demonstrate that the affine and piecewise affine feedbacks
introduced in previous papers for solving RCP on a simplex
are well-posed and structurally stable in the presence of small
perturbations of system parameters. We also present general
results on well-posedness and structural stability of RCP on
polytopes by continuous state feedback. Some results echo
classical findings on well-posedness for the robust regulator
problem.

I. I NTRODUCTION

This paper studies the well-posedness and structural sta-
bility of the reach control problem(RCP) on a simplex or
a polytope. The problem is to find a feedback control that
guides closed-loop trajectories of an affine system througha
polytopic state space in order to exit from a prespecified exit
facet, without first crossing other facets. RCP was introduced
in [7] and further developed in [8], [9], [14]. More geometric
tools were developed to obtain conditions for solvability
with different classes of controls in [3], [6], [5]. The quest
has been to identify the smallest feedback control class that
solves RCP when it is solvable by open-loop controls. The
feedback control classes studied so far are affine feedbacks
[8], [14], continuous state feedbacks [3], and piecewise affine
feedbacks [9], [6], [5].

Some of these results rely on an assumption about how
the triangulation [11] of the state space is performed; partic-
ularly, that closed-loop equilibria may only appear on a facet
of any simplex [3]. However, in practice the nominal system
parameters are not precise, so a triangulation for the nominal
system might fail to satisfy this requirement when one goes
to the real-world setup. Therefore, the key question here is
whether the proposed solution methods of [3], [6], [5] remain
valid if system parameters are perturbed. The present work
explores this question and verifies the results obtained in [3],
[6], [5] subject to small perturbations of system parameters.
We study both well-posedness and structural stability, in line
with classical developments for the robust regulator problem
[15]. Similar to our previous work, we show that affine
feedback and continuous state feedback remain equivalent
from the point of view of solvability of RCP even under the
requirement of a structurally stable synthesis.

One of the themes explored in the present work is that two
types of state constraints arise in RCP. We call themsafety
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constraints and non-safety constraints. Safety constraints
define the permitted region in the state-space in which
system trajectories may evolve. These conditions are strict,
i.e. under no condition can they be violated. For example,
in automated anesthesis delivery, the concentration of drug
in the patient’s body should not exceed a safe threshhold. In
contrast, non-safety constraints are state constraints imposed
inside the permitted region of evolution. They guarantee that
desired sequences of events occur (such as crossing certain
facets) or desired sub-regions of the safe region are visited
(such as visiting certain simplices). Under perturbation of
system parameters, these internal, non-safety constraints may
be violated, yet the global system behavior may still be
acceptable; whereas if a safety constraint is violated, the
controller is deemed to have failed. We further clarify this
distinction in Section III. Whether the so-calledinvariance
conditions which restrict trajectories from exiting certain
facets of a simplex are interpreted as safety or non-safety
constraints shapes the nature of results on well-posednessand
structural stability. This flexibility of interpretation allows
to bypass some of the inherent conservativism built into
the mathematical notions of well-posedness and structural
stability.

Notation. Let S ⊂ R
n be a set. The relative interior of

S is denoted ri(S). For a vectorx ∈ R
n, the notationx ≻ 0

(x � 0) meansxi > 0 (xi ≥ 0) for 1 ≤ i ≤ n. The notation
x ≺ 0 (x � 0) means−x ≻ 0 (−x � 0). For a matrix
A ∈ R

n×n, the notationA ≻ 0 (A � 0) meansaij > 0
(aij ≥ 0) for 1 ≤ i, j ≤ n. Notation0 denotes the subset of
R

n containing only the zero vector. Notation co{v1, v2, . . .}
denotes the convex hull of a set of pointsvi ∈ R

n.

II. REACH CONTROL PROBLEM

We consider an n-dimensional simplex S :=
co{v0, v1, . . . , vn} with vertex setV := {v0, v1, . . . , vn}
and facetsF0, . . . ,Fn (the facet is indexed by the vertex
it does not contain). Lethi, i = 0, . . . , n be the unit
normal vector to each facetFi pointing outside of the
simplex. LetF0 be the exit facet inS. Define the index set
I := {1, . . . , n}. For x ∈ S, define the closed, convex cone

C(x) :=
{
y ∈ R

n | hj · y ≤ 0, j ∈ I, x ∈ Fj

}
.

We write cone(S) := C(v0) sinceC(v0) is the tangent cone
to S at v0.

Consider an affine control system defined onS:

ẋ = Ax+Bu+ a , x ∈ S , (1)

whereA ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) =

m < n. Let φu(t, x0) denote the trajectory of (1) under a



control u(t) starting fromx0 ∈ S and evaluated at timet.
We assume throughout that only control inputs that provide
for unique solutions of (1) are studied. We are interested in
studying reachability ofF0 from S.

Problem 1 (Reach Control Problem (RCP)):Consider
system (1) defined onS. Find a state feedbacku(x) such
that: for eachx0 ∈ S there existT ≥ 0 andγ > 0 such that

(i) φu(t, x0) ∈ S for all t ∈ [0, T ],
(ii) φu(T, x0) ∈ F0, and
(iii) φu(t, x0) /∈ S for all t ∈ (T, T + γ).

A useful shorthand notation is to writeS
S

−→ F0 by u(x) if
Problem 1 is solved byu(x).

One of the important contributions of [8] was a set of
inequality conditions that guarantee that closed-loop trajec-
tories do not exitS from non-exit facetsF1, . . . ,Fn. We
say the invariance conditions are solvableif there exist
u0, . . . , un ∈ R

m such that

Avi +Bui + a ∈ C(vi) , i ∈ {0, . . . , n} . (2)

Conditions (2) are called theinvariance conditions, and
they are used to construct affine feedbacks [8]. For general
continuous state feedbacks, stronger conditions (also called
invariance conditions) are needed. We say a state feedback
u(x) satisfies the invariance conditionsif

Ax+Bu(x) + a ∈ C(x) , x ∈ S . (3)

III. W ELL-POSEDNESS ANDSTRUCTURAL STABILITY

We review some facts about well-posedness and structural
stability [15]. Consider the system data(A,B, a), whereA ∈
R

n×n, B ∈ R
n×m, anda ∈ R

n. If the matrix elements are
listed in arbitrary order, then(A,B, a) can be regarded as a
point λ in vector spaceRN , whereN = n2+n∗m+n. We
say that RCP iswell-posed atλ if it is solvable at all points
in some neighborhood ofλ in R

N . It is also of interest to
characterize well-posedness for a specific control class. For
instance, we say RCP by continuous state feedback is well-
posed atλ if it is solvable by continuous state feedback at all
points in some neighborhood ofλ in R

N . Similarly, we say
RCP isstructurally stable atλ = (A,B, a) if it is solvable
by a state feedbacku(x) at λ ∈ R

N , and it remains solvable
with the same feedbacku(x) at all points in a neighborhood
of λ in R

N .
Now we introduce the main ideas of the paper on well-

posedness and structural stability of RCP in the general
setting of polytopes rather than simplices, and we also begin
with continuous state feedbacks. These main ideas are then
ramified for the special case of simplices and for other
classes of feedbacks: affine feedbacks and (discontinuous)
piecewise affine feedbacks. We begin by motivating the
problem studied in this section.

On polytopes RCP will typically be solved by continuous
PWA feedback [8] or discontinuous PWA feedback [6], [5].
It is not uncommon that the underlying triangulation of
the polytope is chosen arbitrarily, and the precise behavior
on simplices is not of interest. Rather, the desired global
behavior on the polytope is that the exit facet is reached
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Fig. 1. Safety constraints guarantee that trajectories only exit from F0.
Non-safety constraints guarantee that trajectories only flow from S2 to S1.

in finite time without first exitingP from other facets.
In this context, the safety constraints are those encoded
in the invariance conditions of the polytope; instead “in-
ternal” invariance conditions associated with simplices of
a triangulation might be violated when system parameters
are perturbed. Consider the example in Figure 1 showing a
polytopeP with two simplices. A piecewise affine feedback
is designed so that trajectories only exitP throughF0, and
moreover they only flow fromS2 to S1. The figure on the
left shows the closed-loop velocity vectors at the verticesof
P for the nominal system. The invariance conditions of the
polytope (safety constraints) and the invariance conditions of
the simplices (non-safety constraints) are both satisfied.Now
suppose the system is perturbed, so the closed-loop velocity
vectors are shifted as in the figure on the right. In particular,
the invariance condition ofS1 at v1 is now violated. Now
closed-loop trajectories no longer flow only fromS2 to S1.
Nevertheless, from the point of view of solving RCP onP ,
this behavior is still acceptable.

In summary, RCP on a specific simplex may fail under
perturbation of system parameters, whereas RCP remains
solved onP under the same perturbations. A notion of
well-posedness or structural stability should account forthis
flexibility in internal dynamics. For this reason, we first study
well-posedness and structural stability for a polytope.

To that end, we consider ann-dimensional polytopeP :=
co{v1, . . . , vq} with facetsF0, . . . ,Fp. As before, lethi be
the unit normal vector of facetFi pointing outside ofP . Let
F0 be the exit facet inP . All definitions in Sections II are
analogously defined on polytopeP rather than simplexS.
To ensure that RCP remains solvable under perturbation of
parameters, we introduce strict invariance conditions onP .

Definition 1: We say a state feedbacku(x) satisfies the
strict invariance conditionsif for all j ∈ {1, . . . , p} and
x ∈ Fj ,

hj · (Ax+Bu(x) + a) < 0 . (4)
Notice that for ann-dimensional polytope, (4) is equivalent
to sayingAx+Bu(x) + a ∈ int(C(x)). Also note that for a
simplex,p = n. The strict invariance conditions have been
introduced because their solvability is necessary for well-
posedness of RCP.

Lemma 2:Consider polytopeP and system (1) with
system parametersλ = (A,B, a). If RCP by continuous
state feedback is well-posed atλ, then the strict invariance



conditions (4) are solvable.
Proof: Let x ∈ P and defineY(x) := {Ax + Bu +

a | u ∈ R
m}. Y(x) is a non-empty affine space inRn. For a

n-dimensional polytopeP , int(C(x)) is a non-empty, open,
convex set inRn. Suppose by way of contradiction that the
strict invariance conditions are not solvable atx. That is,
Y(x)∩ int(C(x)) = ∅. By Theorem 11.2 of [13], there exists
a hyperplaneH with unit normal vectorξ that containsY(x),
andξ · z < 0 for z ∈ int(C(x)) andξ · z ≤ 0 for z ∈ C(x).
Consider perturbed system parametersλ̃ = (Ã, B̃, ã) with
Ã = A, B̃ = B, andã = a+ ǫξ, with ǫ > 0. We can choose
ǫ > 0 arbitrarily small so that̃λ is arbitrarily close toλ. Also,
for all u ∈ R

m, ξ·(Ãx+B̃u+ã) = ǫ > 0. That is,H strongly
separatesC(x) and Ỹ(x) = {Ãx + B̃u + ã | u ∈ R

m}. In
other words,C(x) ∩ ˜Y(x) = ∅, so the invariance conditions
(3) are not solvable atx. By Proposition 3.1 of [8], RCP by
continuous state feedback is not solvable forλ̃. Since λ̃ is
arbitrarily close toλ, RCP is not well-posed atλ.

The previous result can be strengthened for simplices.
Lemma 3:Consider simplexS and system (1) with sys-

tem parametersλ = (A,B, a). If RCP by open-loop controls
is well-posed atλ, then the strict invariance conditions (4)
are solvable.

Proof: The proof is the same as above. However,
instead of invoking Proposition 3.1 from [8], we invoke
Theorem 6 from [6] which says that solvability of the
invariance conditions is necessary for solvability of RCP by
open-loop controls on a simplex.

When speaking about structural stability for RCP, one
must make a distinct between mere solvability of the in-
variance conditions and the invariance conditions actually
holding for a candidate feedback over a neighborhood of
system parameters.

Lemma 4:Consider polytopeP and system (1) with sys-
tem parametersλ = (A,B, a). If RCP by continuous state
feedbacku(x) is structurally stable, then the strict invariance
conditions (4) hold.

Proof: Suppose by way of contradiction there is a facet
Fj 6= F0 and a pointx ∈ Fj such thathj · (Ax+Bu(x) +
a) ≥ 0. Consider perturbed system parametersλ̃ = (Ã, B̃, ã)
with Ã = A, B̃ = B, and ã = a+ ǫhj , with ǫ > 0. We can
chooseǫ > 0 arbitrarily small so that̃λ is arbitrarily close to
λ. Also, hj · (Ãx+ B̃u(x)+ ã) ≥ ǫ > 0. By Proposition 3.1
of [8], RCP is not solvable usingu(x) for the system̃λ. This
contradicts that RCP byu(x) is structurally stable.

The following result describes general conditions for a
structurally stable synthesis on a polytope.

Theorem 5:Consider polytopeP and system (1) with
system parametersλ = (A,B, a). RCP by continuous state
feedback is structurally stable atλ if and only if it is solvable
at λ by a continuous, locally Lipschitz state feedbacku(x)
satisfying the strict invariance conditions (4).

Proof: (=⇒) Follows from Lemma 4.
(⇐=) Suppose RCP is solvable by a continuous, lo-

cally Lipschitz state feedbacku(x) that satisfies the strict
invariance conditions (4). LetD be an open connected
neighborhood ofP and consider the closed-loop system

defined onD. Let φu(t, x0;λ) be the unique trajectory of the
nominal closed-loop system starting from initial condition
x0 ∈ P . Sinceu(x) solves RCP, there existsγ > 0 and a time
T ≥ 0 such thatφu(t, x0;λ) ∈ D \P for all t ∈ (T, T + γ).
Let x = φu(T + γ/2, x0;λ), and selectǫ > 0 such that
Bǫ(x) ⊂ D\P , whereBǫ(x) denotes the open ball of radius
ǫ centered atx (such a ball exists becauseP is closed).

Let λ̃ = (Ã, B̃, ã) denote the perturbed system parameters.
By Theorem 3.5 of [10], givenǫ > 0 there existsδ > 0 such
that if ‖λ̃− λ‖ < δ, then‖φu(T + γ/2, x0; λ̃)− x‖ < ǫ. In
particular,φu(T+γ/2, x0; λ̃) 6∈ P . This shows that all trajec-
tories of the perturbed system exitP . Moreover, they must
exit P throughF0 becauseu(x) satisfies strict invariance
conditions for the nominal system. That is, we can select
δ > 0 sufficient small such that the invariance conditions,
which depend continuously on system parameters, still hold:
for all j ∈ {1, . . . , p} andx ∈ Fj ,

hj · (Ãx+ B̃u(x) + ã) ≤ 0 .

We conclude RCP is solved usingu(x) for any λ̃ in a
neighborhood ofλ. It follows that RCP by continuous state
feedback is well-posed and structurally stable atλ.

We remark that Theorem 5 does not generalize to dis-
continuous control inputs. In particular, it cannot be shown
that the strict invariance conditions are necessary for a well-
posed and structurally stable solution of RCP. This issue will
be clarified in our future work.

IV. A FFINE FEEDBACK

A general result for structural stability on polytopes using
continuous state feedback was presented in the previous
section. The result immediately specializes to simplices and
affine feedbacks. However, the result is useful only for
analysis, as it does not provide conditions for structurally
stable synthesis. On the other hand, using prior results [9],
[14], progressively more constructive results can be found
which provide necessary and sufficient conditions for a well-
posed and structurally stable synthesis by affine feedback for
simplices.

Theorem 6:Consider simplexS and system (1) with
system parametersλ = (A,B, a). RCP by affine feedback
is structurally stable atλ if and only if there exists an affine
feedbacku(x) = Kx + g such that the strict invariance
conditions (4) hold and there is no closed-loop equilibrium
in S.

Proof: (⇐=) If RCP by affine feedback is structurally
stable atλ, then it is solvable by an affine feedbacku(x)
at λ. Clearly there can be no closed-loop equilibrium inS.
Also by Lemma 4 the strict invariance conditions (4) hold
usingu(x).

(=⇒) Suppose there isu = Kx + g such that the
strict invariance conditions hold and there is no closed-loop
equilibrium in S. By the results of [9], [14],S

S
−→ F0 by

u(x) for the nominal system. Then by Theorem 5, RCP is
structurally stable.

More constructive necessary and sufficient conditions for
existence of affine feedbacks solving RCP on a simplex



were obtained in [3]. These results depend on choosing a
special triangulation of the state space that aligns possible
closed-loop equilibria along faces of simplices. This raises a
question of whether the requirement of a special triangulation
leads to a synthesis that is not well-posed or structurally sta-
ble, since a perturbation of system parameters will generally
destroy the alignment of possible equilibria with faces. The
answer immediately follows from Theorem 5 that a synthesis
based on a special triangulation is well-posed and structurally
stable so long as the conditions of Theorem 5 are satisfied.
We summarize the results below.

Let B = Im(B), the image ofB. Define O := {x ∈
R

n | Ax + a ∈ B}. This set is an affine space correspond-
ing to the possible closed-loop equilibria when using state
feedback. Define

G := S ∩ O .

Associated with G is its vertex index set IG :=
{i | vi ∈ V ∩ G}. The requirement for alignment of the state
space triangulation withG appearing in [3] is as follows.

Assumption 7:SimplexS and system (1) satisfy the fol-
lowing condition: if G 6= ∅, thenG is a κ-dimensional face
of S, where0 ≤ κ ≤ n.

Theorem 8:Consider simplexS and system (1) with
system parametersλ = (A,B, a). SupposeG = ∅. RCP
by affine feedback is structurally stable atλ if and only if
the strict invariance conditions (4) are solvable.

Proof: (=⇒) Select the controlui ∈ R
m for each

vertex vi to satisfy the strict invariance conditions (4).
Using the method of [8], one can find uniqueK and g
corresponding to the affine feedbacku(x) = Kx + g such
that u(vi) = ui, 0 ≤ i ≤ n. SinceG = ∅, the closed-loop
system has no equilibria inS. Then, the result follows from
Theorem 5.

(⇐=) If RCP by affine feedback is structurally stable
at λ = (A,B, a), then the strict invariance conditions are
solvable forS at λ using Theorem 5.

Theorem 9:Consider simplexS and system (1) with
system parametersλ = (A,B, a). SupposeG 6= ∅ and
Assumption 7 holds. RCP by affine feedback is structurally
stable atλ if and only if

(i) The strict invariance conditions (4) are solvable.
(ii) Either B ∩ cone(S) 6= 0 or there exists a linearly

independent selection{b1, . . . , bκ+1 | bi ∈ B ∩ C(vi)}.
Proof: (=⇒) If there existsu = Kx+g s.t. (i) and (ii)

hold, thenS
S

−→ F0 by affine feedback [3]. Thus, an affine
feedback exists such that the strict invariance conditions(4)
hold and there is no closed-loop equilibrium inS. Then, the
result follows from Theorem 5.

(⇐=) If RCP by affine feedback is structurally stable
at λ = (A,B, a), then the strict invariance conditions are
solvable forS at λ using Theorem 5. For condition (ii), if
neither case is true, then by Theorem 7.3 of [3], RCP is
not solvable by continuous state feedback. Therefore, RCP
by affine feedback is not well-posed, and so not structurally
stable.

The main conclusion of [3] is that under the Assumption 7,
RCP is solvable by affine feedback if and only if it is solvable
by continuous state feedback. In the following we show
that this equivalence can be extended to well-posedness and
structural stability of RCP.

Theorem 10:Consider simplexS and system (1) with
system parametersλ = (A,B, a). Suppose Assumption 7
holds. Then the following statements are equivalent:

(a) RCP by affine feedback is structually stable atλ.
(b) RCP by continuous state feedback is structually stable

at λ.
Proof: (a) =⇒ (b) is obvious.

(b) =⇒ (a) Suppose RCP by continuous state feedback
u(x) is well-posed and structurally stable atλ. Then, it is
solvable by affine feedback atλ using Theorem 8.1 of [3]
and the strict invariance conditions (4) are solvable by the
results of Lemma 4 (or 2). IfG = ∅, then by Theorem 8,
RCP by affine feedback is well-posed and structurally stable.
Suppose insteadG 6= ∅ and eitherB ∩ cone(S) 6= 0 or there
exists a linearly independent selection{b1, . . . , bκ+1 | bi ∈
B ∩ C(vi)}. Then by Theorem 9, RCP by affine feedback
is well-posed and structurally stable atλ. Suppose instead
B ∩ cone(S) = 0 and every selection{b1, . . . , bκ+1 | bi ∈
B ∩ C(vi)} is linearly dependent. Then, by Theorem 7.3 of
[3], RCP is not solvable by continuous state feedback, a
contradiction. Hence, RCP by affine feedback is structurally
stable atλ.

V. PIECEWISE AFFINE FEEDBACK

So far we have obtained a general result on structural
stability of RCP on polytopes by continuous state feed-
back in Theorem 5, and we have specialized this result
to simplices and affine feedback in Theorems 8 and 9.
We particularly address that the non-generic triangulation
of Assumption 7 does not confound the well-posedness and
structural stability outcome. Unfortunately, these findings are
not sufficient to close the investigation of well-posedness
and structural stability of RCP. For it is known that, even
under Assumption 7, the class of continuous state feedbacks
is not large enough to solve RCP on simplices [3]. In [6],
[5] a discontinuous control method based on piecewise affine
feedback is developed to address those cases when RCP
is solvable by open-loop controls but not by continuous
state feedback. Unfortunately, the general well-posedness
and structural stability result of Theorem 5 no longer applies
because it is only for continuous state feedbacks. By a careful
analysis of the method of [6], [5], we show precisely when
a structurally stable synthesis is obtained.

Following the results of [3] and under Assumption 7, we
study the case when RCP is not solvable by continuous state
feedback but it is solvable by open-loop controls.

Assumption 11:Simplex S and system (1) satisfy the
following conditions.
(R1) G = co{v1, . . . , vκ+1}, where0 ≤ κ < n.
(R2) B ∩ cone(S) = 0.
(R3) The maximum number of linearly independent vectors

in any set{b1, . . . , bκ+1 | bi ∈ B ∩ C(vi)} (with only



one vector for eachB ∩ C(vi), i ∈ IG) is m̂ with 1 ≤
m̂ ≤ κ.

(R4) B ∩ C(vi) 6= 0 , i ∈ IG .
Let p := κ + 1 − m̂ ≥ 1. One of the principal findings

of [6], [4] is the existence of so-called reach control indices.
To present the result we require the following notation. Let
r1, . . . , rp ≥ 0 be integers and define the numbers

mk := r1 + · · ·+ rk−1 + 1 , k = 1, . . . , p

r := r1 + · · ·+ rp .

Theorem 12 ([6], [4]): Suppose Assumption 11 holds.
Then there exist integersr1, . . . , rp ≥ 2 and a decomposition
of B into p subsets such that

B ∩ C(vi) ⊂ B1 := sp{bm1
, . . . , bm1+r1−1} , i = m1, . . . ,m1 + r1 − 1 ,

(5)

.

.

.
.
.
.

B ∩ C(vi) ⊂ Bp := sp{bmp , . . . , bmp+rp−1} , i = mp, . . . ,mp + rp − 1 ,

(6)

where bi ∈ B ∩ C(vi). Each set{bmk
, . . . , bmk+rk−1} is

linearly independent if any one vector is removed and for
eachk = 1, . . . , p, there exist coefficientsci such that

bmk+rk−1 = cmk
bmk

+ · · ·+cmk+rk−2bmk+rk−2 , ci < 0 .
(7)

The integers{r1, . . . , rp} are called thereach control
indices of system (1) with respect to simplexS. We ad-
ditionally require the following result.

Lemma 13 ([6], [4]): Suppose Assumption 11 holds.
Then for k = 1, . . . , p, i = mk, . . . ,mk + rk − 1, and
j ∈ I \ {mk, . . . ,mk + rk − 1},

hj · bi = 0 , (8)
We have seen in Theorem 5 that the strict invariance

conditions (4) are necessary for a well-posed and structurally
stable synthesis by continuous state feedback. Lemma 13
shows that strict invariance conditions are not achievable
when reach control indices are defined. Essentially, reach
control indices are defined when the system has insufficient
inputs. Therefore, to rule out the possibility of the equality
constraints (8) which are not robust to perturbation of system
parameters, we require that the system have sufficient inputs.

Lemma 14:Suppose Assumption 11 holds. If the strict
invariance conditions (4) are solvable, thenm = κ = n− 1.

Proof: By Theorem 12,B ∩ C(vi) ⊂ Bk, i =
mk, . . . ,mk + rk− 1. Thus, the equality constraints (8) hold
for any bi ∈ B ∩ C(vi), i = mk, . . . ,mk + rk − 1. This
contradicts that the strict invariance conditions are solvable.
It must be that for everyk = 1, . . . , p,

I \ {mk, . . . ,mk + rk − 1} = ∅ .

This can only happen ifp = 1 and r1 = n. In turn, this
implies κ = n − 1 and m̂ = κ + 1 − p = n − 1. Since
m 6= n, this impliesm = n− 1.

We note that the outcome of Lemma 14 echoes similar
results for the robust regulator problem. See, for instance,
Corollary 8.2 of [15]. Lemma 14 illustrates the conservatism
of well-posedness and structural stability in the form of a

stringent constraint on the number of inputs. This conser-
vativism arises from two sources. First, well-posedness is
an inherently conservative notion; for instance, by allowing
arbitrary perturbations of parameters, the physics of a system
can be violated. Second, the requirement that the invariance
conditions must hold strictly is conservative. We have seenin
our study of polytopes in Section III that it may be tolerable
to allow invariance conditions on internal simplices to hold
with equality constraints, even if these are apparently non-
robust, so long as global behavior on the polytope achieves
the requirements of RCP.

In [6], [5] a subdivision algorithm for synthesizing piece-
wise affine feedbacks consisting ofp steps is proposed.
Lemma 14 shows that only one step of the algorithm is
required. We now investigate the extent to which the single
step subdivision algorithm can provide a well-posed and
structurally stable synthesis for RCP.

We are focused on the case whenG = F0 =
co{v1, . . . , vn} andB1 = sp{b1, . . . , bn | bi ∈ B ∩ C(vi)}.
One can see thatB1 6⊂ H0 := {y ∈ R

n | h0 · y = 0}
for otherwise all velocity vectors of (1) onF0 are tangent
to F0, and assuming uniqueness of solutions, by a standard
argument trajectories starting insideS will not be able to
reachF0 in finite time. It is then easy to show that, without
loss of generality (by reordering indices{1, . . . , n}), there
is b1 ∈ B ∩ C(v1) “pointing out” of F0. That is,

h0 · b1 > 0 . (9)

We consider any pointv′ in the open segment(v0, v1). That
is, let λ ∈ (0, 1) and define

v′ = λv1 + (1− λ)v0 . (10)

Now define the following simplices inS:

S1 = co{v′, v1, v2, . . . , vn}

S2 = co{v0, v′, v2, . . . , vn} .

Also define the new exit facet forS2 by F ′
0 :=

co{v′, v2, . . . , vn}. See Figure 2. The following lemma pro-
vides a formula for the normal vectorh′ of F ′

0.
Lemma 15 ([6], [5]): Let h0 = −γ1h1− . . .−γnhn with

γi > 0, and letλ ∈ (0, 1). Then the normal vector toF ′
0

pointing out ofS1 is

h′ = γ1h1 + λ

n∑

j=2

γjhj = γ1(1− λ)h1 − λh0 . (11)

Lemma 16 ([6], [5]): Suppose Assumption 11 holds.
There existsv′ ∈ (v0, v1), such thatB ∩ cone(S1) 6= 0.
Moreover,b1 ∈ B ∩ cone(S1) with h′ · b1 < 0.

Now we show that solvability of the strict invariance
conditions forS1 and for S2 is inherited from solvability
of the strict invariance conditions forS.

Lemma 17:Suppose Assumption 11 holds. If the strict
invariance conditions (4) forS are solvable, then the strict
invariance conditions forS1 are solvable.

Lemma 18:Suppose Assumption 11 holds. If the strict
invariance conditions forS are solvable, then the strict
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Fig. 2. Subdivision into two sub-simplicesS1 andS2.

invariance conditions forS2 are solvable.
Proof: By assumption the strict invariance conditions

are solvable forS, and since the strict invariance conditions
for S2 are identical (the only facet which changed forS2 is
F0, which plays no role in invariance conditions), they are
also solvable forS2.

Theorem 19:Consider simplexS and system (1) with
system parametersλ = (A,B, a). Suppose Assumption 11
holds. Then RCP by piecewise affine feedback is structurally
stable atλ if and only if the strict invariance conditions are
solvable forS.

Proof: (=⇒) Follows from Lemma 3.
(⇐=) Suppose the strict invariance conditions are solv-

able. By Lemma 14,p = 1, r1 = n, andm = κ = n − 1.
Consider the subdivision ofS into S1 andS2 as above. Lem-
mas 17 and 18 guarantee that the strict invariance conditions
(4) are solvable forS1 andS2, as well. Similar to the proof

of Theorem 24 of [6], it can be verified thatS1 S1

−→ F0

andS2 S2

−→ F1
0 by affine feedbacks. Hence, no closed-loop

equilibria appear inS1 andS2. Using Theorem 6, RCP by
affine feedback is structurally stable onS1 andS2.

Now, for RCP to be structurally stable onS, we should
further verify that for the nominal systemλ = (A,B, a) as
well as for the perturbed system̃λ = (Ã, B̃, ã) trajectories
only progress fromS2 to S1. Consider the boundary between
S1 andS2 given byF ′

0. We must show that for anyx0 ∈
S1 \ F ′

0, closed-loop trajectories do not reachF ′1
0 . This can

be deduced from the proof of Lemma 17 where it is shown
that the controls{u′, u2, . . . , un} can be selected so that

h′ · (Av′ +Bu′ + a) < 0

h′ · (Avi +Bui + a) < 0 , i = 2, . . . , n .

If u = K1x + g1 is the affine feedback obtained forS1

using the above control values, then by convexity,h′ · (Ax+
B(K1x+g1)+a) < 0 for all x ∈ F ′

0, from which the result
easily follows. Since these inequalities are strict, the result
is applicable to the perturbed system, as well.

Example 20:Consider a simplexS defined by vertices
v0 = (−1, 1), v1 = (0, 0) andv2 = (1, 1), and consider the
affine system

ẋ =

[
−1 1
0 0

]
x+

[
0
1

]
u+

[
0
0

]
.

We have
O = {x | x2 = x1} .

Hence S ∩ O = G = co{v1, v2}, κ = 1, m = 1,
and B ∩ cone(S) = 0. Therefore, we cannot solve the
problem by a continuous state feedback according to [3].
We use the method of [6], [5] to triangulateS where one
step of triangulation is enough. We choosev′ = (0.5, 1)
so that B ∩ cone(S1) 6= 0. Then S2 := co{v0, v′, v1},
S1 := co{v′, v1, v2}, F ′

0 = co{v′, v1}, andh′ = (−1, 0.5).
To satisfy the strict invariance conditions forS2 we choose
control inputs at the vertices to beu0 = −1, u′ = −.5, and
u21 = 1. To satisfy the strict invariance conditions forS1

we choose control inputs at the vertices to beu′ = −.5,
u2 = −1, and u11 = −1. The associated piecewise affine
feedback is

u =

{ [
0.3333 −1.6667

]
x+ 1 , x ∈ S2

[
−1 1

]
x− 1 , x ∈ S1 .

Now we may verify that the conditions of Assumption 11
are satisfied and moreover, the feedback control forS2 solves
the strict invariance conditions forS. Hence, by Theorem 19,
RCP is structurally stable by the piecewise affine feedback
(20).

REFERENCES

[1] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints.Automatica. vol. 35, pp. 407–428, March
1999.

[2] A. Berman and R.J. Plemmons.Nonnegative Matrices in the Mathe-
matical Sciences.Academic Press, New York. 1979.

[3] M.E. Broucke. Reach control on simplices by continuous state feed-
back.SIAM Journal on Control and Optimization. vol. 48, issue 5, pp.
3482-3500, February 2010.

[4] M.E. Broucke. On the reach control indices of affine systems on sim-
plices.8th IFAC Symposium on Nonlinear Control Systems(NOLCOS
’10). August 2010.

[5] M.E. Broucke and M. Ganness. Reach control on simplices by
piecewise affine feedback.American Control Conference(ACC ’11).
June 2011.

[6] M.E. Broucke and M. Ganness. Reach control on simplices by piece-
wise affine feedback.IEEE Transactions on Automatic Control. Under
revision, April 2012. Available at: www.control.utoronto.ca/∼broucke.

[7] L.C.G.J.M. Habets and J.H. van Schuppen. Control of piecewise-linear
hybrid systems on simplices and rectangles, in: M.D. Di Benedetto
and A.L. Sangiovanni-Vincentelli (Eds.)Hybrid Systems: Computation
and Control, Lecture Notes in Computer Science. Springer Verlag, vol.
2034, pp. 261–274, 2001.

[8] L.C.G.J.M. Habets and J.H. van Schuppen. A control problem for
affine dynamical systems on a full-dimensional polytope.Automatica.
no. 40, pp. 21–35, 2004.

[9] L.C.G.J.M. Habets, P.J. Collins, and J.H. van Schuppen.Reachability
and control synthesis for piecewise-affine hybrid systems on simplices.
IEEE Trans. Automatic Control. no. 51, pp. 938–948, 2006.

[10] H.K. Khalil. Nonlinear Systems, 2nd edition. Prentice Hall, 1996.
[11] C. W. Lee. Subdivisions and triangulations of polytopes. Handbook

of Discrete and Computational Geometry. CRC Press Series Discrete
Math. Appl., pp. 271–290, 1997.

[12] Z. Lin and M. E. Broucke. On a reachability problem for affine
hypersurface systems on polytopes.Automatica, vol. 47, issue 4, pp.
769-775, April 2011.

[13] R.T Rockafellar. Convex Analysis. Princeton University,Princeton,
New Jersey 1970.

[14] B. Roszak and M. E. Broucke. Necessary and sufficient conditions for
reachability on a simplex.Automatica. vol. 42, no. 11, pp. 1913–1918,
November 2006.

[15] W.M. Wonham.Linear Multivariable Control: a Geometric Approach,
3rd edition. Springer, 1985.


