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Abstract— We present a control-theoretic model of the op-
tokinetic system, an eye movement system for tracking a moving
visual surround. The model adheres to the neural circuit in
the brain and is based on the application of adaptive internal
models to capture the contribution of the cerebellum. The model
is validated through simulations, recovering the basic behaviors
of the optokinetic system known from experimental studies.

I. INTRODUCTION

There is no doubt control theory has much to contribute

to the understanding of the brain [29]. Nevertheless, the

preponderance of recent control-theoretic studies focuses at

the micro- or meso-scale, namely on individual or groups

of neurons; a sample is [6], [15], [37], [38]. The paucity

of control-theoretic brain research at the behavioral level is

epitomized for us by the widespread belief in neuroscience

on the existence of internal models in the brain [52] without

reference to the internal model principle [17] to clarify their

form and function. See [24] for a thorough discussion of this

dichotomy. An opinion is presented in [31], and interesting

related results are presented in [45] from a systems biology

perspective.

It is believed that internal models reside in the cerebellum,

a part of the brain that performs diverse regulatory functions

such as motor control. By 1967, the neural circuit of the

cerebellum had been completely mapped out. Shortly follow-

ing, the Marr-Albus theory proposed that the cerebellum is

a pattern recognition data processing system [1], [33]. The

model was extended to account for dynamic (time depen-

dent) signal processing in [18]. Subsequently, a nonlinear

adaptive control method that learns an inverse model of the

plant was proposed in [21]. A second theory proposes that

the cerebellum learns a forward model of the plant [40].

Despite important advances, researchers have not been able

to achieve a comprehensive model that could, for instance,

reproduce all behaviors of the oculomotor system. We are

exploring adaptive internal models [5], [20], [32], [35], [36],

[44] as an alternative method to model the cerebellum [7],

[8], [9], [19], [22].

Our focus on the oculomotor system is motivated by the

fact that it serves as an exemplar among motor control

systems. The structure and computations of the cerebellum

are identical across all the systems it regulates, differences

arising only in the input/output connections to each cerebellar

module. The oculomotor system has a very simple plant (the

eyeball), is phylogenetically the oldest motor system, and is

believed to provide the blueprint for all other motor systems.
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In [7], [8] we presented a model of the vestibulo-ocular

reflex (VOR), smooth pursuit, and gaze holding eye move-

ment systems, regulated by the floccular complex (FC), by

applying an adaptive internal model design in [44]. The

present paper focuses on the optokinetic system, another eye

movement system regulated by the nodulus/uvula (NU). This

second module of the cerebellum works in concert with the

FC - how it does so raises interesting architectural questions.

Pioneering experimental work in the 1970’s on the optoki-

netic system [14], [41], [49], [50] lead to the discovery of the

velocity storage mechanism (VSM), a behavior in which eye

velocity is stored while following a constant velocity visual

surround, even with intervening saccades (a fast reset of eye

position) in a behavior called nystagmus. A striking feature

of the VSM is that it partially meets the requirements of the

internal model principle, as if evolution made a first attempt

at architecting a neural internal model for this motor system.

Despite a comprehensive experimental record exposing all

major behaviors of the optokinetic system, to this day, the

two most important mathematical models of the optokinetic

system [14], [42] do not include the cerebellum. This paper

aims to fill this gap.

II. REGULATOR PROBLEM

In this section we first orient the reader to a design

approach that inspires our model of the cerebellum. This

regulator design will be somewhat more general that what

is required for the optokinetic system, but it provides us

with a context from which to initiate our modeling work.

We consider an open-loop system

ẋ = Ax+Bu +Bd (1a)

ẇ = (F +Gψ)w (1b)

d = ψw (1c)

e = Cx , (1d)

where x ∈ Rn is the state, w ∈ Rq is the exosystem state,

u ∈ R is the input, d ∈ R is a disturbance, and e ∈ R is

the regulated output. Notice the exosystem (1b) has already

been transformed according to the method in [35]. This is

a disturbance rejection problem in which a disturbance d
enters additively in the control input. The control objective

is to drive the error e to zero.

We impose the following standard assumptions:

(A1) (A,B) is a controllable and (C,A) is observable.

(A2) S = F +Gψ has simple eigenvalues on the imaginary

axis in the complex plane.

(A3) det

[
A− λI B
C 0

]
6= 0 for all λ ∈ σ(S).



(A4) (F,G) is a controllable pair, F ∈ Rq×q is Hurwitz, and

(ψ, S) is an observable pair.

(A5) Dimension q is interpreted as a known upper bound on

the order of the exosystem, while the exosystem parameters

ψ ∈ R1×q are unknown.

(A6) The parameters (A,B,C) are known.

(A7) The measurement is x.

Remark 1: Several assumptions may be relaxed; for in-

stance, we may replace (A1) by (A,B) is stabilizable.

Observability of (ψ, S) is no loss of generality since one

can trim the exosystem by removing the unobservable modes

without affecting the plant. The upper bound q means that

the exosystem may be overmodeled. For instance, a third

order exosystem can model the sum of a step signal and a

sinusoid, but it can also model a step alone by suitable choice

of initial conditions. ⊳

The controller takes the form

u = us + uim , (2)

where us is for closed-loop stability, and uim is to satisfy

the internal model principle. For stabilization, let us = Kx
such that (A+BK) is Hurwitz. To satisfy the internal model

principle, consider the adaptive internal model based on a

minimal order observer proposed in [36] (therein called a

disturbance observer) and given by

ẇ0 = Fw0 + (FN −NA)x−NBu (3a)

ŵ = w0 +Nx (3b)

uim = −ψ̂ŵ , (3c)

where N is selected such that NB = G, and ψ̂ is an estimate

of ψ. Then we have

˙̂w = Fw0 + (FN −NA)x−NBu+N(Ax+Bu+Bd)

= F (w0 +Nx) +Gd

= Fŵ +Gd . (4)

Define w̃ = w − ŵ. Then ˙̃w = Fw̃. The parameter

adaptation rule is

˙̂
ψ = γ(BTPx)ŵT , (5)

where γ > 0 is the adaptation rate, and P ∈ R
n×n is

the symmetric, positive definite solution of the Lyapunov

equation (A+BK)TP+P (A+BK) = −Q, with Q ∈ Rn×n

symmetric and positive definite. Finally, the controller is

u = Kx− ψ̂ŵ . (6)

Define the parameter estimation error ψ̃ := ψ− ψ̂. To prove

correctness of the regulator design, we recall a standard result

of adaptive control [43].

Theorem 2: Consider the system

ẋ = Ax+ B(ψ̃w) (7a)

˙̃
ψ = −γ

(
BTPx

)
wT , (7b)

where γ > 0, A is Hurwitz, and P is the symmetric, positive

definite solution of ATP +PA = −Q, for some symmetric,

positive definite Q. Suppose w ∈ L∞. Then x, ψ̃ ∈ L∞, and

x(t) −→ 0.

Theorem 3: Consider the system (1) satisfying assump-

tions (A1)-(A7), and consider the regulator (3), (5), and

(6). Suppose A + BK is Hurwitz. Then ψ̂, ŵ ∈ L∞,

x(t), e(t) −→ 0, and ψ̃(t)ŵ(t) −→ 0.

Proof: Applying input (6), the closed loop system is

ẋ = (A+BK)x+Bψ̃ŵ +Bψw̃ (8a)

˙̃w = Fw̃ (8b)

˙̃
ψ = −γ(BTPx)ŵT . (8c)

Since F is Hurwitz, from (8b) we get w̃(t) −→ 0. Inclusion

of w̃ in the stability analysis involves a minor extension

of the Lyapunov argument in Theorem 2 based on Young’s

inequality. For parsimony here we consider stability of the

reduced system with states (x, ψ̃)

ẋ = (A+ BK)x+Bψ̃ŵ (9a)

˙̃
ψ = −γ(BTPx)ŵT . (9b)

By assumption (A2), w ∈ L∞, and w̃(t) −→ 0, so ŵ ∈
L∞. Hence, the reduced system satisfies all the assumptions

of Theorem 2. We conclude x, ψ̃ ∈ L∞, x(t) −→ 0, and

e(t) −→ 0. Next, from (9a) we know ẋ ∈ L∞; from (9b)

we know
˙̃
ψ ∈ L∞; and from (4), ˙̂w ∈ L∞. Then considering

ẍ = (A+BK)ẋ+B
˙̃
ψŵ +Bψ̃ ˙̂w ,

we deduce that ẍ ∈ L∞, so ẋ is uniformly continuous. By

Barbalat’s Lemma, ẋ(t) −→ 0. Using (9a), we conclude that

ψ̃(t)ŵ(t) −→ 0.

One can also use an extended form of the internal model

[28], [36]. Suppose the system matrices (A,B) of (1a) take

the form A = Φ0 + aeT1 , and B = ben, where Φ0 ∈ R
n×n

contains all zeros except for one’s on the upper diagonal; ei is

the ith Euclidean coordinate vector; and a = (a1, . . . , an) ∈
Rn and b ∈ R represent unknown plant parameters. The

extended internal model is

ẇ0 = Fw0 + (FN −NΦ0)x (10a)

ẇ1 = Fw1 −NeT1 x1 (10b)

... (10c)

ẇn = Fwn −NeT1 xn (10d)

ẇn+1 = Fwn+1 −Nenu (10e)

ŵ = w0 +Nx+ a1w1 + . . .+ anwn + bwn+1 ,(10f)

where wi ∈ R
q for i = 0, . . . , n+1. We can verify once again

that ˙̂w = Fŵ + Gd, and ˙̃w = Fw̃. While this model does

suffer from overparametrization of the unknown parameters

ψ, a, and b, its structure is, nevertheless, evocative in our

modeling problem (see the comments in the Conclusion).

III. NEURAL CIRCUIT

A model of the optokinetic system would be of limited

value if it did not match the neural circuit. We describe its

relevant aspects at a high level; see Figure 1.
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Fig. 1: Control architecture for the optokinetic system con-

sisting of the oculomotor plant (P), the brainstem (B), and

the cerebellum (C). The retinal slip velocity e is the error

signal to be regulated.

The visual cortex processes visual signals arrriving from

the retina by way of the optic nerve. The nucleus of the optic

tract (NOT) projects to the vestibular nuclei (VN) of the

brainstem (B). In particular, the NOT sends a measurement

of retinal slip velocity to the VN [13]. The brainstem

comprises several regions (or functions) relevant to the

optokinetic system: the VN, the brainstem neural integrator

(NI), and the velocity storage mechanism (VSM). The VN

act as hubs for signals to and from the cerebellum (see

below). The NI provides an eye position signal [25]. The

VSM, also believed to be located in the VN [42], provides

“velocity storage” of a constant velocity visual surround -

in essence approximating a pure integrator to track constant

disturbances. Finally, the VN output is sent to the oculomotor

neurons (MN) to stimulate the muscles and control eye

movements.

Specific modules of the cerebellum that control eye move-

ment include the floccular complex (FC), and the nodu-

lus/uvula (NU). While the FC was the focus of our prior

work [8], here we are interested in the NU which is known

to regulate the optokinetic system [23]. All modules of the

cerebellum have two types of inputs: mossy fiber (MF) inputs

and climbing fiber (CF) inputs. MF inputs to the NU include:

primary afferents from the vestibular nerve (carrying a head

velocity signal) [2]; a signal from the VN; and a signal from

the NI. The CF input to the NU comes from the NOT by

way of the inferior olive (IO) [3]. Finally, the NU projects

its sole output via its Purkinke cells (PCs) to the VN [10].

IV. OPTOKINETIC SYSTEM

We develop a model of the optokinetic system for hori-

zontal eye motion, informed by the description of the neural

circuit and inspired by the presented regulator design. The

optokinetic system includes behaviors such as nystagmus,

consisting of both fast and slow phases of eye motion, so a

suitable model of the oculomotor plant is a second-order

model [46]. As discussed, the optokinetic system is also

supported by the VSM, which can be modelled as a leaky

integrator [14], [41]. To support the optokinetic reflex, the

brainstem-only pathway of the motor command must include

a feedforward component of the retinal slip velocity, given

by

e := ẋw − ẋh − ẋ .

Signal ẋw ∈ R is the horizontal angular velocity of the visual

field, ẋh is the horizontal angular velocity of the head, and

ẋ is the horizontal angular velocity of the eye. A non-zero

ẋw is induced in experiments when a subject is seated inside

a rotating optical drum.

Taken together, the open-loop model of the oculomotor

plant and brainstem for the optokinetic system is

ẋ1 = x2 (11a)

ẋ2 = α2(−x2 −Kxx1 + u) (11b)

˙̂x = −Kxx̂+ u (11c)

v̇ = −Kvv +Kve (11d)

ub = αXx̂− αVORẋh + αOKe+ αVv . (11e)

Equations (11a)-(11b) comprise the second-order model of

the oculomotor plant. Equation (11c) is the brainstem neural

integrator; see [8]. Equation (11d) is the velocity storage

integrator. Signal x1 is the eye angle; x2 = ẋ is the eye

angular velocity; u is the motor command, regarded as an

acceleration input; x̂ is an estimate of x; v is the state

of the velocity storage integrator; αOKe models the drive

provided by the optokinetic reflex, where αOK is the called

the optokinetic gain; the vestibulo-ocular reflex is modeled

by αVORẋh, where αVOR is the VOR gain; and αVv models

the drive provided by the velocity storage integrator. The

brainstem-only component of the motor command is ub.

Next we model the cerebellar contribution to the optoki-

netic system. Experimental evidence supports the idea that

the driving signal of the optokinetic system is the retinal

slip velocity [42]. Moreover, this is the error signal that

the cerebellum regulates to zero. This choice of error signal

partitions the work of the cerebellum so that the NU regulates

a velocity error, while the FC regulates a positional error. The

error model associated with the NU is

ė = −α2e− α2u+ α2Kxx1 + ẍw − ẍh + α2ẋw − α2ẋh .

The motor command is split as

u = ub + us + uim ,

where us is a component for closed-loop stability, and uim
is the output of the NU. This error model is highly stable

due to the known large value of α2 ≃ 250, so we assume

us = 0. Substituting ub in the error model and assuming

x̂(t) ≡ x1(t), we have

ė = −α2(1 + αOK)e− α2uim + α2K̃xx̂ (12)

− α2(1 − αVOR)ẋh − α2αVv + α2d ,

where d := 1

α2

[ẍw − ẍh] + ẋw is the disturbance that must

be rejected. This model may be regarded as a first-order

model of velocity error dynamics, despite the fact that it

includes a positional term α2K̃xx̂ arising from an incomplete

cancellation of the drift term Kxx1 of the oculomotor plant

by the neural integrator (11c). Because the eye position is



constantly reset during nystagmus, x1 remains small. We

therefore treat the positional term as a bounded disturbance

acting on the velocity error dynamics. We assume this extra

disturbance is not rejected by the cerebellum, so some small

steady-state errors will remain.

Experimental evidence supports the idea that the NU is

dedicated to constant velocity disturbances [23]; whereas

the floccular complex (FC) handles sinusoidal disturbances.

Thus, we assume the exosystem associated with the NU is

first order. For the internal model we use a modification of

the extended design in Section II

ẇ0 = Fw0 + FGe (13a)

ẇ1 = Fw1 −Ge (13b)

ẇ2 = Fw2 −Guim (13c)

ẇ3 = Fw3 −Gx̂ (13d)

ẇ4 = Fw4 −Gẋh (13e)

ẇ5 = Fw5 −Gv (13f)

ŵ =
1

α2

w0 +
1

α2

Ge− (1 + αOK)w1 − w2 (14)

+ K̃xw3 − (1− αVOR)w4 − αVw5 .

What distinguishes this model from a standard regulator

design is the appearance of feedforward signals x̂, ẋh, and v
whose inclusion is predicated by the neural circuit; thus the

additional filters (13d)-(13f).

Taking the derivative of ŵ and utilizing (12), we ver-

ify ˙̂w = Fŵ + Gd. If the plant parameters were

known, then ŵ would provide a regressor for param-

eter adaptation. Since these parameters are not known,

we used the extended regressor and parameters ψd :=(
1

α2

ψ,−(1 + αOK)ψ,−ψ, K̃xψ,−(1− αVOR)ψ,−αVψ
)T

and

ŵd := (w0 + Ge,w1, w2, w3, w4, w5). Then d = ψw =
ψŵ+ ε = ψdŵd + ε, where ε = ψw̃ vanishes exponentially.

Finally, we choose

uim = ψ̂dŵd , (15)

where ψ̂d is an estimate of the unknown parameters ψd. The

parameter adaptation rule is

˙̂
ψd = γeŵT

d , (16)

where γ > 0 is the adaptation rate.

Remark 4: A mapping between the neural circuit and

signals in our model is the following. Referring to (11e),

the output of the neural integrator is the signal αXx̂; the

direct feedthrough of the retinal slip velocity to support the

optokinetic reflex is the signal αOKe; and the output of the

VSM is αVv. Signal e in (16) is the projection from the IO

to the CF input of the cerebellum. Signals e, uim, x̂, ẋh,

and v in (13) are the MF inputs to the cerebellum. The PC

output of the cerebellum is uim. ⊳

V. STABILITY ANALYSIS

Our stability analysis focuses on the case when there is no

head movement, ẋh = 0. Also, we only study the envelope

behavior of the eye velocity (see Figure 2) by ignoring

the velocity resets caused by saccades. This assumption is

reasonable due to the very fast initial rise of velocity in

the slow phase of nystagmus following a saccade due to

the optokinetic reflex. A full hybrid stability analysis is of

interest theoretically, though it may not add significantly to

the plausibility of the model from a neuroscience perspective.

We begin with a nominal case when K̃x = 0, meaning

there is no perturbation due to eye position. Define the

parameter estimation error ψ̃d = ψd − ψ̂d. Then the closed-

loop system is

ė = −α2(1 + αOK)e − α2αVv + α2ψ̃dŵd (17a)

v̇ = −Kvv +Kve (17b)

˙̃
ψd = −γeŵT

d . (17c)

Notice we omitted the exponentially stable w̃ dynamics (see

the justification in the proof of Theorem 3). Define the state

ξ := (e, v) ∈ R2. Then we can write (17) as

ξ̇ = Aξ +Bψ̃dŵd (18a)

e = Cξ (18b)

˙̃
ψd = −γeŵT

d , (18c)

where

A =

[
−α2(1 + αok) −α2αV

Kv −Kv

]
, B =

[
α2

0

]
, C =

[
1 0

]
.

Recall that a strictly proper rational H(s) is strictly positive

real (SPR) if there exists ǫ > 0 such that ℜ [H(s− ǫ)] ≥ 0,

for all s ∈ C with ℜ(s) ≥ 0.

Lemma 5: A transfer function H(s) is SPR if and only if

H(s) is stable and ℜ [H(jω)] > 0, ∀ω ≥ 0.

Lemma 6: Consider the error model (18) with

α2, αOK, αV,Kv > 0. Then H(s) = C(sI − A)−1B is

SPR.

Proof: According to Lemma 5, we must first verify A
is Hurwitz. The characteristic polynomial is det(sI −A) =
s2 + (Kv + α2(1 + αOK))s+ α2Kv(1 +αOK + αV). Since the

coefficients are strictly positive, A is Hurwitz. Second, we

compute H(jω) =

α2(jω +Kv)

(α2Kv(1 + αOK + αV)− ω2) + jω(Kv + α2(1 + αOK))
.

Then we have ℜ [H(jω)] =

α2

2K
2

v
(1 + αOK + αV) + α2

2ω
2(1 + αOK)

(α2Kv(1 + αOK + αV)− ω2)2 + ω2(Kv + α2(1 + αOK))2
> 0 ,

where we use α2, αOK, αV,Kv > 0, by assumption. By

Lemma 5, H(s) is SPR.

The main findings from adaptive control for the considered

error model are the following. Recall that w : R+ → Rq is

persistently exciting (PE) if there exist c1, c2, δ > 0 such that

c1I ≤
∫ t0+δ

t0
w(τ)w(τ)Tdτ ≤ c2I , for all t0 ≥ 0.

Theorem 7 ([43]): Consider (18). Suppose that H(s) =
C(sI −A)−1B is SPR. Then ξ, e, ψ̃d ∈ L∞.

(i) If ŵd ∈ L∞, then e(t) −→ 0.
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Fig. 2: Untrained OKN and OKAN I

(ii) If ŵd, ˙̂wd ∈ L∞ and ŵd is PE, then the equilibrium

(ξ, ψ̃T
d ) = (0, 0) of (18) is globally exponentially stable.

We apply this result to our model.

Theorem 8: Consider (18) with α2, αOK, αV,Kv > 0. Sup-

pose d 6= 0 is a constant disturbance. Then the equilibrium

(ξ, ψ̃d) = (0, 0) is globally exponentially stable.

Proof: By Lemma 6, H(s) is SPR. Since d is a non-

zero constant disturbance, w is also constant and non-zero,

so it and ŵd are PE. Also, ŵd, ˙̂wd ∈ L∞. By Theorem 7, the

equilibrium (ξ, ψ̃d) = (0, 0) is globally exponentially stable.

Now we consider the case when K̃x 6= 0. Now the closed-

loop system is

ξ̇ = Aξ +Bψ̃dŵd +Bν (19a)

e = Cξ (19b)

˙̃
ψd = −γeŵT

d , (19c)

where ν := K̃xx̂ is regarded as a bounded, unmodeled

disturbance. Recall (19) is said to be input-to-state stable

(ISS) if there exists a class KL function β1(·) and a class

K function β2(·) such that for any (ξ(0), ψ̃d(0)) and any

ν ∈ L∞, ‖ξ(t)‖ ≤ β1(‖ξ(0)‖, t) + β2(sup0≤τ≤t ‖ν(τ)‖).
Theorem 9: Consider the closed-loop system (19) with

α2, αOK, αV,Kv > 0. Suppose d 6= 0 is a constant distur-

bance. Then (19) is ISS.

Proof: The result follows by applying Lemma 4.6 of

[26].

VI. SIMULATIONS

We examine five basic behaviors of the optokinetic system.

The parameter values for the simulations are: α2 = 250,

Kx = 5, Kv = 0.05, αV = 10, αOK = 1, αVOR = 0.65,

αX = Kx, F = −0.01, G = 0.01, and γ = 1e − 12. The

parameters α2, Kx, and Kv were selected according to the

known time constants of the oculomotor plant and the VSM.

Parameters αV = 10, αOK = 1, and αVOR = 0.65 are all highly

adaptable (through a process of long-term adaptation) and

can be selected fairly arbitrarily. The choice αX = Kx implies

that eye position is not a disturbance in these simulations

(this is not a requirement however). Parameters F and G
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Fig. 3: Trained OKN and OKAN I

were selected to give a reasonable time constant for the NU.

The choice of γ reflects the relatively longer time (on the

order of, say, 30 minutes) for the NU to go from trained to

untrained conditions. Finally, in order to make the figures

easier to view, we display saccades only every 5s. In reality

they typically occur roughly every 0.5s [12].

OKN and OKAN I. Optokinetic nystagmus (OKN) is

perhaps the signature behavior of the optokinetic system. It

is an eye movement in which the eye tracks the velocity

of a (full-field) moving visual surround during the so-called

slow phase, followed by a saccade to rapidly reset the eye

position to zero in the fast phase. OKN is characterized by

a fast initial rise in slow-phase eye velocity, followed by a

slower rise to a steady-state velocity that nearly matches the

velocity of the surround [14, Fig. 3A], [41, Fig. 3B, 4B].

The second signature behavior of the optokinetic system

is optokinetic after-nystagmus I (OKAN I), a behavior fol-

lowing OKN when the lights are turned off. During OKAN

I nystagmus continues in the same direction as OKN, even

though there is no visual stimulation. After a quick initial

drop, the slow-phase velocity slowly decays to zero during

OKAN I [14, Fig 2], [12, Fig 1]; also [41], [48].

Figure 2 shows simulation results for OKN and OKAN

I using our model, with the optokinetic drum rotating at a

constant velocity of 60 deg/s for 60s. The initial condition

on all states and parameters is zero. At the start of OKN, the

slow-phase velocity jumps to about 55% of the steady-state

value, then rises more slowly and stabilizes around 55◦/s.
These characteristics can be attributed to the large retinal

slip velocity at the onset of the experiment and the charging

of the VSM, respectively. The non-zero steady-state error

during OKN is observed because the NU internal model is

“untrained”, meaning this is the first time the experiment is

run with a specific subject.

Once the lights are extinguished at t = 60s, visual

signals are no longer present and the cerebellum is effectively

inactive, so the signal e is unavailable and uim = 0. This

causes the slow-phase eye velocity to rely on the dynamics

from the VSM, which slowly dissipates its stored velocity,

creating OKAN I. The slow-phase velocity experiences a

10% drop, then decays with a time constant of about 18s.
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Fig. 4: OKAN suppression with a 5s interval of gaze fixation.

If the subject is involved in repeated trials of the same

experiment eliciting OKN and OKAN I, the NU is “trained”

over time. In this case, the OKN steady-state slow-phase eye

velocity increases [34, Fig 1], the OKAN I time constant

decreases [14, Fig 7], and the OKAN I duration decreases

[50, Fig 2, 3]. These results are shown in Figure 3, in which

all initial conditions are set to zero except the initial condition

for ψ̂d, which is set to its true value ψd.

OKAN Suppression. OKAN suppression or fixation sup-

pression is an experiment in which the lights are turned

on for a brief period of time during OKAN, revealing a

stationary optokinetic drum on which the subject fixates.

Figure 4 shows the results of our model when the lights are

turned on 2s after the onset of OKAN I. The lights are left on

for 5s, then turned off again. During fixation, the slow-phase

eye velocity drops rapidly, as shown between the dashed red

lines. This is due to the reappearance of the visual signal e
(with ẋw = 0), so the large error causes the velocity signal

to drop, along with the inhibitory effects of the cerebellum

causing the effective VSM time constant to drop [48]. Once

the lights are turned off again, the velocity is able to recover

at a depressed value due to the VSM having not dissipated

all of its stored activity. Longer fixation periods are known

to inhibit the slow-phase velocity so that it cannot recover

when the lights are turned off again [14, Fig 8]. For example,

with a fixation period of 15s introduced 2s after the onset of

OKAN I, the slow-phase eye velocity is completely inhibited,

as is shown in Figure 5.

OKN Suppression. OKN suppression is an experiment in

which a subject fixates on a target straight ahead while the

illuminated optokinetic drum is rotating. Although nystag-

mus is not elicited, the VSM still charges while the drum is

moving due to a reduced measurement of e. This causes a

small velocity jump at the start of OKAN I when the lights

are turned off, followed by a decay to zero [51, Fig 8]. This

behaviour is replicated by our model as seen in Figure 6,

where we have taken e to be 20% of its full value. We

observe that the stored activity of the VSM causes the slow-

phase velocity to rise just past 10◦/s once the lights turn off,

to elicit OKAN I.

OKAN II. OKAN II is a second phase of OKAN that arises

only after a subject has become habituated to unidirectional
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Fig. 5: OKAN suppression with a 15s interval of gaze

fixation.
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Fig. 6: OKN suppression.

optokinetic stimulation. That is, the optokinetic drum only

spins in the positive or negative sense. The presence of

OKAN II depends on the duration of the optokinetic stim-

ulation. After potentially many hours of stimulation (lasting

24 hours to 8 days in some experiments [39]), it is observed

that the eye velocity in the slow phase of nystagmus reverses

direction from the original stimulus direction [50]. OKAN II

is believed to arise from a process of long-term adaptation

[30], [39], [50] as a compensatory behavior to offset a natural

condition called gaze-evoked nystagmus in which weakening

of the muscles of the eye on one side causes the eye to slip in

one direction only, resulting in repeated corrective saccades

to maintain steady gaze.

OKAN II may be explained in our model by considering

that weakening of the eye muscles in one direction would

correspond to a reduction in the parameter Kx for stimulus

in the positive sense. We posit that the long-term adaptation

process that is activated by prolonged unidirectional nystag-

mus is a process that calibrates the time constant of the neural

integrator via a parameter K̂x to match the time constant of

the oculomotor plant determined by Kx. Instead of utilizing

(11c) in which time constants are matched, to elicit OKAN
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Fig. 7: OKN followed by OKAN I and OKAN II

II we utilize the neural integrator model

˙̂x = −K̂xx̂+ u . (20)

To model that the muscles have been weakened, we assume

K̂x ≪ Kx. Define the parameter mismatch

∆Kx := Kx − K̂x > 0 .

Also define the estimation error x̃ = x − x̂. Based on

a first-order model of the oculomotor plant, a reasonable

approximation of the estimation error dynamics is:

˙̃x = −K̂xx̃−∆Kxx1 .

If the optokinetic experiment involves a slow phase on the

positive sense, then x1(t) ≥ 0 (or on average x1(t) is

positive). Since ∆Kx > 0, x̃(t) will progressively drift with

more negative values.

The oculomotor plant model during OKAN when the

lights are off is

ẋ1 = x2

ẋ2 = α2(−x2 −Kxx1 + αXx̂+ αVv)

= α2(−x2 − K̃xx1 − αXx̃+ αVv) .

We see that the effect of the mismatch between plant and

neural integrator is to introduce a term αXx̃. The neural

integrator generally works to cancel the eye position term

−Kxx1 via its contribution αxx̂. Since we now have a

parameter mismatch in which K̂x ≪ Kx, we would expect

αx to be greatly reduced as well. We posit that αx < 0 so

that the residual signal causes the slow-phase velocity to drift

in the negative sense. In summary, OKAN II arises during

OKAN when the cerebellum is inactive and when the VSM

has depleted its contribution, so αVv ≃ 0. What remains is

the negative drive supplied by the drift term αXx̃.

Our model generates OKAN II with parameter values of

Kx = 5, K̂x = 0.001, αX = −0.002Kx. Because the results

are now dependent on the eye position, the simulations

use a small saccade interval to demonstrate more realistic

values. Figure 7 shows an experiment starting with 60s of

unidirectional optokinetic stimulation before the lights are

extinguished. OKAN I proceeds for about 53s as it decays
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Fig. 8: Longer duration of OKN, followed by OKAN I and

OKAN II

to zero. Now the appearance of OKAN II is observed as the

slow-phase velocity switches to being negative due to the

negative positional term αxx̃. The velocity peaks at about

−3.5◦/s, and eventually decays to zero (not pictured). These

characteristics are comparable to behavioral studies [12, Fig

1].

With repeated trials or a longer stimulus duration, OKAN

I is known to decrease in duration while OKAN II is known

to increase in peak velocity and in duration [50, Fig 2], [12,

Fig 2]. Figure 8 shows results with our model over 100s

of optokinetic stimulation in the positive sense. Comparing

to Figure 7, the duration of OKAN I has decreased and the

peak velocity of OKAN II has indeed increased with a longer

stimulation duration.

VII. CONCLUSION

We presented a model of the optokinetic system that

includes the computations of the cerebellum and recovers five

standard behaviors of this eye movement system. The model

is inspired by our hypothesis that the primary function of the

cerebellum is disturbance rejection. An architectural feature

of the model is the use of feedforward signals from sensory

inputs; for instance (13e) utilizes a head velocity signal

from the semicircular canals of the ears. Such feedforward

signals may provide a mechanism by which parallel internal

models work together. Further investigation is needed on

this interesting question (indeed we did not include head

movement in the present simulation study).

We did not simulate the passage from an untrained to

trained NU since, in practice, the simulation time would

be too long. On the other hand, making γ larger for faster

parameter convergence results in unrealistic transients. The

main issue appears to be that the NU model (13), while

consistent with the neural circuit, is overparameterized.

This phenomenon of poor transients with faster parameter

adaptation need not a priori imply a modeling error, as

parameter adaptation (depending on the species) appears to

occur slowly in the brain. It does echo known limitations

on transient performance in adaptive control. Continued

theoretical development of adaptive internal models is a



crucial area for future work by control theorists to address

such limitations.
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