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Abstract— It is well-known in adaptive control that when
regressors are not persistently exciting (PE), then parameter
adaptation is not robust. A number of adhoc modifications
of parameter adaptation laws were developed to overcome
this problem. In this paper we examine the PE subspace, a
geometric characterization of a regressor’s excitation which
allows a more intrinsic modification of parameter adaptation
laws. Our modular method, the µ-modification, is premised on
the Use it or Lose it Principle of neuroplasticity, stating that
parameters not excited by a regressor may be forgotten. This
paper develops these ideas in the context of adaptive output
regulation, with attention to the geometric properties of the PE
subspace under linear filtering, such as when using augmented
errors.

I. INTRODUCTION

A longstanding issue of adaptive control is that if regres-
sors are not persistently exciting (PE), then one can only
obtain asymptotic stability, rather than exponential stability,
implying adaptive control is in general not robust. This
problem was intensively studied in the 1980’s, resulting
in a number of modular modifications of standard param-
eter adaptation laws, including the σ-modification, the e1-
modification, and projection and deadzone approaches [1,
Section 8.5]. These techniques either trade off regulation to
achieve robustness, or they rely on some a priori knowledge
of unknown parameters. As such, they have an adhoc quality,
leaving one with the unease that some theoretical structure
remains to be discovered to handle non-PE regressors in an
intrinsic manner.

Study of the PE requirement for robust adaptive control
has recently been revived in [2], [3], [4], [5], [6], [7], [8].
This literature broadly splits into two schools of thought.
Taking inspiration from the classical work [9], the papers [2],
[3], [4], [5] use a so-called initial (or interval) excitation in
the transient phase to extract sufficient excitation to perform
parameter adaptation. The focus on extracting information
from transients arises in scenarios where the PE assumption
is in conflict with the control objective. For example, in
adaptive stabilization, the state regressor is not PE since,
by design, it tends to zero.

The second school of thought comes from the area of adap-
tive output regulation, where regressors arise from exogenous
reference and disturbance signals that are assumed to sustain
their available excitation, even if they are not PE, for the
duration of tracking or disturbance rejection tasks [10], [6],
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[7], [8]. Our work belongs to this school and is premised
on the Use it or Lose it Principle of neuroplasticity [11]:
parameters that are not excited by the regressor should be
gradually forgotten, as they are not needed. This principle is
mathematically elaborated in a modular modification called
the µ-modification [8] that does not trade off regulation
for robustness. As a byproduct, we identify an intrinsic
characterization of non-PE regressors to circumvent the
adhoc quality of classical approaches. Similar methods have
recently been proposed in [6], [7], with application to linear
regression and adaptive observers, respectively. The present
paper considers applications in adaptive output regulation,
and we provide more details on the construction of subspace
estimators.

The contributions as well as organization of the paper are
as follows. In Section II we immediately begin by defining
our notion of a PE subspace of a regressor (called PE
directions in [8]), inspired by adaptive output regulation
with its regressors arising from LTI exosystems. Next, we
present a general error model in Section III that captures
salient features of error models arising in the adaptive
control literature [12], [13], [14], [15], [16]. Using the PE
subspace, one can perform a coordinate transformation on the
parameter estimates that illuminates the lack of robustness
of parameters not excited by the regressor. Then we show
how the µ-modification from [8] resolves this problem. The
specific contribution of this paper relative to [8] is to address
auxiliary (filtered) regressors that arise, for example, when
using augmented errors; and also to show that coupling
between error and parameter dynamics due to regressor
estimation does not hinder the applicability of our technique.

In Section V we apply the foregoing results to the problem
of linear output regulation based on an adaptive regulator
from the literature [14]. This application highlights a novel
perspective to account for PE subspaces in regulator design.
The key property to be established is that the filtered quan-
tities arising in regulator designs based on augmented errors
preserve PE subspaces by way of a geometric invariance
argument. Simulations of adaptive output regulation with and
without the µ-modification are then presented in Section VI.
The Appendix contains a novel supporting result on stability
of perturbed systems.

II. PERSISTENTLY EXCITING SUBSPACES

Given a bounded and piecewise continuous signal w(t) ∈
Rq , we say it is persistently exciting (PE) if there exists



β0, β1, T > 0 such that

β0I ⪯ 1

T

∫ t+T

t

w(τ)w⊺(τ) dτ ⪯ β1I (1)

for all t ≥ t0 ≥ 0, where t0 denotes the initial time.
Given our interest in regressors arising in adaptive output

regulation in the form of states of LTI exosystems, we restrict
our attention to regressors that satisfy either w = 0 or there
exists 1 ≤ qpe ≤ q and W ∈ Rq×qpe having orthonormal
columns such that w =Wwpe with wpe(t) ∈ Rqpe PE. Since
all the excitation of w(t) provided by wpe(t) is confined to
Im(W ), we define the PE subspace

W := Im(W )

and the non-PE subspace as its orthogonal complement W⊥.

III. GENERAL ERROR MODEL

Our goal is to demonstrate that the µ-modification is a
modular technique that can be incorporated in a variety of
contexts of adaptive output regulation. To do so, we identify
a canonical error model for adaptive control, encompassing
features arising in classical error models [12]; adaptive back-
stepping [13]; control affine systems [14]; uncertain Euler-
Lagrange systems [15]; and contracting systems [16]. Three
primary observations inform our choice of error model: (i)
we consider the classical setting when the dynamics are
parameterized linearly in the unknown parameters; (ii) a
consistent structure that appears in the closed-loop dynamics
after application of the adaptive control techniques we con-
sidered (e.g., adaptive backstepping, the MRAC matching
conditions) is that unknown parameters are matched with
their estimates; and (iii) the parameter adaptation law gen-
erally consists of three components: a regressor, an error
signal, and an adaptation gain. Here we focus on a scalar
error signal e(t) ∈ R.

Taking together the preceding observations, we consider
an error model e = E [ψ̂, w(t), ν], where E [·] is of the form

ξ̇ = A(t, ξ) +B(t)(ŵ⊺
◦ ψ̂ − w⊺

◦ (t)ψ) (2a)

e = C(t, ξ) +D(t)(ŵ⊺ψ̂ − w⊺(t)ψ) . (2b)

Here ξ(t) ∈ Rn is the error state; ψ ∈ Rq and ψ̂ are
the unknown parameter and its estimate; w◦(t) and w(t)
are (usually unmeasurable) regressors and ŵ◦, ŵ are their
estimates. The presence of both regressors w◦(t) and w(t)
allows for the fact that the regressor used for adaptation may
not be the same regressor interacting with the error state.
For example, in Section V regressors w◦ and w are related
through a filtering process, whereas for SPR linear systems,
w◦ = w. Finally, ν(t) ∈ Rv is the perturbation state to
model estimation errors, as follows:

ν̇ = ∆(t, ν) , (3a)
ŵ◦ = w◦(t) + w̃◦(t, ν) (3b)
ŵ = w(t) + w̃(t, ν) . (3c)

To complete the error model, we consider parameter adapta-
tion laws that are structurally similar to the standard gradient
algorithm:

˙̂
ψ = −γeŵ , (4)

where γ > 0.
Next, we lay out assumptions on this error model so that

the µ-modification may be seamlessly incorporated. First we
have a set of assumptions on the perturbation dynamics.

Assumption 1: The perturbation (3) satisfies:

(E1) the function ∆(·) is piecewise continuous in t and
globally Lipschitz in ν uniformly in t;

(E2) the functions w̃◦(·) and w̃(·) are piecewise continuous
in t and locally Lipschitz in ν uniformly in t. Addi-
tionally, w̃◦(t, 0) = w̃(t, 0) = 0;

(E3) the equilibrium ν = 0 of (3a) is globally exponentially
stable (GES). ▷

Now we place assumptions on the error model itself. The
crucial new assumption is (E6) stating that regressors w◦(t)
and w(t) share the same PE subspace.

Assumption 2: The error model (2) satisfies:

(E4) the functions A(·) and C(·) are piecewise continuous
in t and globally Lipschitz in ξ uniformly in t. Addi-
tionally, A(t, 0) = 0 and C(t, 0) = 0;

(E5) the functions B(·) and D(·) are piecewise continuous
and bounded;

(E6) the PE subspaces of w◦(t) and w(t) coincide. That is,
either w◦ = w = 0 or there exists 1 ≤ qpe ≤ q and
W ∈ Rq×qpe having orthonormal columns such that

w◦ =Ww(◦,pe) , w =Wwpe

with w(◦,pe)(t) and wpe(t) being PE. ▷

Finally, to leverage the vast literature on stability of
adaptive systems, we only ask for stability properties of the
nominal unperturbed system.

Assumption 3: Given any q ∈ N and appropriate w◦(t)
satisfying (E6), when ν = 0 the system (2)-(4) satisfies:

(E7) if w = 0, then ξ = 0 is GES;
(E8) if w(t) is PE, then (ξ, ψ̂) = (0, ψ) is GES. ▷

Remark 1: Global Lipschitz in (E1) and (E4) is used to
guarantee global existence of appropriate converse Lyapunov
functions from GES in (E3), (E7), and (E8). ◁

A. Partial Exponential Convergence

Now that we have established a suitable error model,
we want to understand how the notion of a PE subspace
can be used to achieve partial exponential convergence of
parameters along this subspace. To that end, suppose we have
w = Wwpe with W ∈ Rq×qpe and wpe(t) PE. By (E6),
w◦ = Ww(◦,pe) with w(◦,pe)(t) PE. Apply the coordinate
transformation[

ψ̃pe

ψ̂⊥

]
=

[
W ⊺

W ⊺
⊥

]
(ψ̂ −WW ⊺ψ) ,



where W⊥ ∈ Rq×(q−qpe) is an orthogonal completion;
namely,

[
W W⊥

]
is an orthogonal matrix. Then the closed-

loop system can be expressed as

ξ̇ = A(t, ξ) +B(t)w⊺
(◦,pe)(t)ψ̃pe +B(t)w̃⊺

◦ ψ̂ (5a)
˙̃
ψpe = −γe◦wpe(t)− γwpe(t)D(t)w̃⊺ψ̂ − γeW ⊺w̃ (5b)
˙̂
ψ⊥ = 0− γeW ⊺

⊥w̃ (5c)

with e◦ := C(t, ξ) +D(t)w⊺
pe(t)ψ̃pe. When ν = 0, by (E2)

one obtains the nominal unperturbed system

ξ̇ = A(t, ξ) +B(t)w⊺
(◦,pe)(t)ψ̃pe

˙̃
ψpe = −γe◦wpe(t)

˙̂
ψ⊥ = 0 .

It is clear from this form that the non-PE dynamics ψ̂⊥ are
decoupled from the (ξ, ψ̃pe) dynamics, and they are stable
but not robust. Also, by (E8) we have that (ξ, ψ̃pe) = (0, 0)
is GES. Such exponential convergence properties are in fact
retained for the perturbed system (5).

Theorem 1: Consider the system (3)-(4) satisfying As-
sumptions 1-3. Then all states are uniformly bounded and:
1) if w = 0, then ξ → 0 exponentially;
2) if w(t) is PE, then (ξ, ψ̂) → (0, ψ) exponentially;
3) otherwise, (ξ,W ⊺ψ̂) → (0,W ⊺ψ) exponentially. ⋄

Proof: Letting (5) denote the closed-loop dynamics, it
suffices to apply Proposition 1 in the Appendix after making
an appropriate identification. To this end, it is useful to
observe that ψ̂ =Wψ̃pe +W⊥ψ̂⊥ +WW ⊺ψ.
1) Since no component of ψ̂ is subject to PE dynamics given

w = 0 = w◦, identify ξ 7→ η, ψ̂ 7→ η⊥, and ν 7→ ν. The
nominal stability property is provided by (E7).

2) Defining ψ̃ := ψ̂ − ψ because w(t) and w◦(t) are PE,
identify (ξ, ψ̃) 7→ η and ν 7→ ν. The nominal stability
property is provided by (E8). Note that η⊥ does not exist
but this does not affect the applicability of Proposition 1.

3) Identify (ξ, ψ̃pe) 7→ η, ψ̂⊥ 7→ η⊥, and ν 7→ ν. The
nominal stability property is once again provided by (E8).
The result then follows since ψ̃pe =W ⊺(ψ̂ − ψ).

System (5) reveals that the PE component of ψ̂ inherits
the desirable exponential stability properties associated with
PE regressors, as is not surprising. Any modification of the
parameter adaptation law should leave the ψ̂pe dynamics
intact. Instead, a modular modification method should target
the ψ̂⊥ dynamics which are not robust.

IV. ROBUST DESIGN USING THE µ-MODIFICATION

In this section we show how to render the closed-loop
system (5) to be exponentially stable by modifying only (5c),
the dynamics lacking excitation. The following regularity
assumption, used in [8], is satisfied by regressors generated
by LTI exosystems.

Assumption 4: The autocovariance matrix of w(t)

Rw(0) := lim
T→∞

1

T

∫ t0+T

t0

w(τ)w⊺(τ) dτ

exists with convergence uniform in t0 ≥ 0. Furthermore,
w(t) is piecewise continuous. ▷

The key idea of the µ-modification is to identify the non-
PE subspace of w(t), such that only the non-PE dynamics are
modified. Given w(t) ∈ Rq , consider the subspace estimator
Ω =

[
v(1) · · · v(q)

]
with dynamics

v̇ = −εw(t)w⊺(t)v + εσtol
(
1− ∥v∥2

)
v , (6)

where v(t) ∈ Rq denotes any column of Ω and ε, σtol >
0 are to be selected sufficiently small. The role of Ω is
to asymptotically identify the non-PE subspace W⊥ =
Im(W⊥). Selecting µ > 0, we introduce the following
leakage term to (4):

˙̂
ψ = −γeŵ − µΩΩ⊺ψ̂ . (7)

The combination (6)-(7) is called the µ-modification.
The subspace estimator (6) is intended to be run as a slow

process by choosing small ε. The leakage term (7) “nibbles
away” at any dynamics not excited by the regressor (i.e.,
ψ̂⊥), in accordance with the Use it or Lose it Principle [11].
Slowness of the design has the desirable property of making
the µ-modification less reactive to transient behaviour or to
noise.

Theorem 2: Consider system (3)-(4) satisfying Assump-
tions 1-4. Also, let β0 > 0 be the lower PE bound in (1) for
wpe(t). If w = 0, set β0 = ∞. Then for every σtol ∈ (0, β0)
there exists ε⋆ > 0 such that for every ε ∈ (0, ε⋆) the µ-
modification, which replaces (4) with (6)-(7) using an initial
condition Ω(t0) ∈ Rq×q having full rank, guarantees modulo
independently and exponentially vanishing terms:
1) if w = 0, then (ξ, ψ̂) = (0, 0) is GES;
2) if w(t) is PE, then (ξ, ψ̂) = (0, ψ) is GES;
3) otherwise, (ξ, ψ̂) = (0,WW ⊺ψ) is GES. ⋄

Proof Sketch: The proof is very similar to the proof of [8,
Theorem 2]. After some algebra, one obtains a closed-loop
system similar to (5). Of particular interest are the non-PE
dynamics (5c), which are now of the form

˙̂
ψ⊥ = −µΛψ̂⊥ − γeW ⊺

⊥w̃ − µW ⊺
⊥Ω̃ψ̂

for some matrix Λ ≻ 0 [8, Corollary 1] where Ω̃ := ΩΩ⊺ −
W⊥ΛW

⊺
⊥. For the purpose of establishing GES, we treat

the signals ν and Ω̃ as exogenous and not states. The result
then follows by applying standard Lyapunov arguments using
appropriate converse Lyapunov functions for GES.

Remark 2: As discussed in [8], knowledge of some appro-
priate σtol > 0 can be viewed as a design tolerance setting
the desired minimum excitation of the regressor wpe(t). ◁

We conclude that the µ-modification enables exponential
stability of all states without sacrificing asymptotic regulation
of the error. In cases when one only has access to an estimate
ŵ = w(t) + w̃(t, ν), one builds the subspace estimator

v̇ = −εŵŵ⊺v + εσtol
(
1− ∥v∥2

)
v . (8)

The results in [8, Section 6] suggest that this design works
as intended provided the transient w̃ is sufficiently small.
Smallness of the transient can be achieved by waiting before
turning on the µ-modification.



V. LINEAR ADAPTIVE OUTPUT REGULATION

As an application of our foregoing results, we consider
the problem of output regulation of a known LTI plant with
unknown LTI exosystem. Consider the SISO system

ẋ = Ax+Bu+ Eζ (9a)

ζ̇ = Sζ (9b)
e = Cx+Dζ , (9c)

where x(t) ∈ Rn is the state, u(t) ∈ R is the control input,
ζ(t) ∈ Rq is the exosystem state, and e(t) ∈ R is the error.
As is standard in regulator theory, we assume the following.

Assumption 5: The system (9) satisfies:

(A1) the triplet (C,A,B) is detectable and stabilizable;
(A2) S only has simple eigenvalues on the jω-axis;
(A3) the non-resonance condition holds:

det

[
A− λI B
C 0

]
̸= 0 ∀λ ∈ σ(S) .

▷
Using (A3), let (Π,Γ) solve the regulator equations

ΠS = AΠ+BΓ + E , 0 = CΠ+D .

Consider the error state z := x − Πζ. Then system (9) can
be expressed in matched disturbance form:

ż = Az +Bu−Bd ζ̇ = Sζ

e = Cz d = Γζ .

Our goal is to regulate the error to zero while rendering the
closed-loop dynamics exponentially stable.

Assumption 6: The following information is known:

(A4) the matrices (C,A,B) are known;
(A5) wlog the pair (Γ, S) is observable;
(A6) dimension q is interpreted as a known upper bound on

the exosystem order;
(A7) the measurement is e. ▷

The prototypical regulator we utilize as our starting point
is that of [14, Ch. 4.1.3.2], which has the form

u = us + uim (11)

with us for closed-loop stability and uim for disturbance
rejection.

A. Invariance of Excitation under Linear Filters

A crucial step in our regulator design will be to establish
that the PE subspace of some relevant regressor w is well-
defined, and that any auxiliary regressors required in the
design will meet the assumption (E6); namely that they share
the same PE subspace as w. These properties ultimately
emerge from the LTI exosystem that models the disturbance.
In this section we work through the key results.

First we characterize the excitation present in disturbances
generated by LTI exosystems. We say a specific d(t) ∈ R is
sufficiently rich of order s if s is the smallest integer such

that there exists Γ◦ ∈ R1×s and S◦ ∈ Rs×s, with S◦ only
having simple eigenvalues on the jω-axis, such that

ζ̇◦ = S◦ζ◦ , d = Γ◦ζ◦

for an appropriate initial condition ζ◦(t0) ∈ Rs. If d = 0,
we say d(t) is sufficiently rich of order 0. Note that the pair
(Γ◦, S◦) must be observable since s is the smallest integer
for which we can build an LTI exosystem for the specific
d(t). Moreover, the state ζ◦(t) ∈ Rs must be PE. Lastly, our
definition of sufficient richness is equivalent to the classical
definition [17], where d(t) has exactly s spectral lines.

Next we convert the exosystem to a canonical form [14]
suitable for adaptive control. Given any controllable pair
(F,G) ∈ Rq×q × Rq with F Hurwitz, define the new
exosystem state w := Mζ and parameter ψ⊺ := ΓM−1.
Following [14], M ∈ Rq×q can be selected so that the
exosystem takes the form

ẇ = Fw +Gd (12a)
d = ψ⊺w . (12b)

Now we establish existence of a PE subspace of w by
following the procedure in [10, Section 4.1]; see also [8].

Lemma 1: Consider system (12) with σ(F + Gψ⊺) =
σ(S) and suppose (A2) holds. For a fixed initial condition,
suppose d(t) ∈ R is sufficiently rich of order s > 0. Then
there exists a PE regressor wpe(t) ∈ Rs and a matrix W ∈
Rq×s having orthonormal columns such that w =Wwpe. ⋄
Thus W := Im(W ) is the PE subspace of w.

Auxiliary regressors are required in the regulator design in
[14], which arise by filtering the disturbance through a known
LTI system. We must verify that such linear filtering does not
destroy the PE subspace of w. A key result, stated next with
a proof in the Appendix, is known in the literature [14],
but it is normally presented using the Swapping Lemma,
which obscures its geometric content. Here we re-interpret
the result to say that if a disturbance is filtered through a
linear system, then regressors arising from exosystem states
associated with the unfiltered and filtered disturbances are
related by a linear coordinate transformation. This prepares
the groundwork for a geometric interpretation in which PE
subspaces are invariant under certain types of filtering.

Lemma 2: Consider system (12) with σ(F + Gψ⊺) =
σ(S) and suppose (A2)-(A3) hold. Define Ad := A − LdC
where Ld is selected so that Ad is Hurwitz. Then there exists
initial conditions zd(t0) ∈ Rn and wf (t0) ∈ Rq such that
the filtered disturbance df obtained by filtering d as

żd = Adzd +Bd (13a)
df = Czd (13b)

can be equivalently generated by

ẇf = Fwf +Gdf (14a)
df = ψ⊺wf . (14b)

Moreover, there exists a nonsingular matrix Hf ∈ Rq×q such
that the filtered regressor satisfies wf = Hfw. ⋄



As a result of Lemma 2, we can write d = ψ⊺
fwf where

ψ⊺
f := ψ⊺H−1

f . Then, provided we build an observer for
wf , it is clear that we need to derive an adaptation law to
estimate ψf ∈ Rq if we want to reject the disturbance d.
Noting that the filtered disturbance satisfies

df = ψ⊺wf = ψ⊺
fHfwf =: ψ⊺

f w̄ ,

it suggests that we can construct the augmented error

ē := ψ̂⊺
f w̄ − df = (ψ̂f − ψf )

⊺w̄

using an estimate ψ̂f of ψf for the purpose of parameter
adaptation. Given that the matrix Hf is not directly avail-
able, the following lemma shows how one can generate the
augmented regressor w̄. Its proof is similar to Lemma 2 and
is thus omitted.

Lemma 3: Consider Hf and wf as defined in Lemma 2,
and let w̄ := Hfwf . Then there exists a filter satisfying

Ż = AdZ +Bw⊺
f (15a)

w̄⊺ = CZ (15b)

for some appropriate Z(t0) ∈ Rn×q . ⋄
The key theme underlying Lemmas 2-3 is that filtering

through the stable transfer function Hd(s) := C(sI −
Ad)

−1B is equivalent to the application of the linear trans-
formation Hf . With this insight in mind, we can now explain
the effect of filtering on PE subspaces.

Suppose we are given a disturbance d(t) for some initial
condition ζ(t0) and let s denote its sufficient richness. If s =
0 then d = 0, implying that w = wf = w̄ = 0. Otherwise, we
have 1 ≤ s ≤ q. If s < q, then the exosystem is overmodeled,
and it is known that the regressor w(t) (and wf (t), w̄(t)) is
not PE. The following is the key statement when s ≥ 1: the
PE subspaces of w, wf , and w̄ are well defined, and they
coincide. The proof relies on the geometrically appealing fact
that W is invariant under the map Hf .

Lemma 4: Consider wf (t) and w̄(t) as defined in Sec-
tion V-A and let W be as defined in Lemma 1. Then
there exist PE regressors w(f,pe)(t), w̄pe(t) ∈ Rs such that
wf =Ww(f,pe) and w̄ =Ww̄pe. ⋄

Proof: Since wpe(t) ∈ Rs is PE, there exists times
{ ti }si=1 such that Y :=

[
wpe(t1) · · · wpe(ts)

]
∈ Rs×s

is invertible. Noting ẇ = (F + Gψ⊺)Wwpe = Wẇpe

and letting Ẏ :=
[
ẇpe(t1) · · · ẇpe(ts)

]
, we have that

(F + Gψ⊺)W = WȲ with Ȳ := Ẏ Y −1. Let the poly-
nomials Nd(·), Dd(·), and the matrix Hf be as in the
proof of Lemma 2. Then Nd(F + Gψ⊺)W = WNd(Ȳ )
and Dd(F + Gψ⊺)W = WDd(Ȳ ), where Nd(Ȳ ) and
Dd(Ȳ ) have full rank (see related statements in the proof
of Lemma 2) because all other matrices do. Consequently
Dd(F + Gψ⊺)−1W = WDd(Ȳ )−1 and so HfW = WH̄f

with H̄f := Dd(Ȳ )−1Nd(Ȳ ) invertible. As a result, one has

wf = Hfw = HfWwpe =WH̄fwpe

w̄ = Hfwf = HfWH̄fwpe =WH̄2
fwpe .

Defining w(f,pe) := H̄fwpe and w̄pe := H̄2
fwpe, which are

PE by [12, Lemma 6.1], proves the result.

Remark 3: Lemmas 1-4 make it clear that PE subspaces
depend on the initial conditions of the exosystem. Since
initial conditions are generally assumed unknown, one should
not expect to know the relevant PE subspaces and thus a
subspace estimator must be employed, as done in the µ-
modification. ◁

B. Regulator Design

The main obstacles in arriving at an error model amenable
to application of the µ-modification have been surpassed
in the previous section. The rest of the design steps now
follow the literature [14]. The adaptive internal model for
the regulator is

˙̂zd = Aẑd +Bu+ Ld(e− Cẑd) (16a)
˙̂wf = Fŵf +G(Cẑd − e) (16b)

uim = ψ̂⊺
f ŵf , (16c)

where Ld ∈ Rn is selected such that Ad := A − LdC is
Hurwitz, by (A1). The parameter adaptation law is

˙̂
Z = AdẐ +Bŵ⊺

f (17a)

ˆ̄w⊺ = CẐ (17b)
ˆ̄e = ψ̂⊺

f
ˆ̄w − (Cẑd − e) (17c)

˙̂
ψf = −γ ˆ̄e ˆ̄w , (17d)

where γ > 0. Finally, the dynamic stabilizer is

˙̂zs = Aẑs +Bus + Ls(e− Cẑs) (18a)
us = Kẑs , (18b)

where Ls, K
⊺ ∈ Rn are selected such that As := A− LsC

and Acl := A+BK are Hurwitz, by (A1).

C. Closed-Loop System

To apply our prior developments in Sections III-IV, in-
cluding partial exponential convergence and robustness with
the addition of the µ-modification, we need to show that
the resulting closed-loop system for the considered output
regulation problem adheres to the presented error model.

First, we start with the perturbation state representing
estimation errors. Defining z̃d := ẑd − z, žd := z̃d − zd,
w̃f := ŵf − wf , and Z̃ := Ẑ − Z, it is easily verified that[

˙̌zd
˙̃wf

]
=

[
Ad 0
GC F

] [
žd
w̃f

]
, ˙̃Z = AdZ̃ +Bw̃⊺

f .

Additionally, we have

˜̄w := ˆ̄w − w̄ = (CZ̃)⊺ .

Making the identifications (žd, w̃f , Z̃) 7→ ν, w̃f 7→ w̃◦, and
˜̄w 7→ w̃, we can verify Assumption 1.

(E1): holds because the (žd, w̃f , Z̃) dynamics are LTI;
(E2): holds because w̃f and ˜̄w are linear in (žd, w̃f , Z̃);
(E3): holds because Ad and F are Hurwitz.



Second, we write out the error dynamics. Defining the
state z̃s := ẑs − z, one obtains ż˙̃zs

˙̌zd

 =

Acl BK 0
0 As 0
0 0 Ad

 zz̃s
žd

+

BB
0

 (ŵ⊺
f ψ̂f − w⊺

fψf )

ˆ̄e = −Cžd + ( ˆ̄w⊺ψ̂f − w̄⊺ψf ) .

A small technicality that appears is that now žd must be a
component of both the error state ξ and the perturbation state
ν. This can be circumvented by defining an additional state
ž′d having the same dynamics as žd, and using it for the above
error dynamics. In doing so, we are considering a slightly
more general system, with the original closed-loop system
recovered when žd(t0) = ž′d(t0). Making the identifications
(z, z̃s, ž

′
d) 7→ ξ, ψ̂f 7→ ψ̂, wf 7→ w◦, w̄ 7→ w, and ˆ̄e 7→ e,

we can verify Assumption 2.
(E4): holds by linearity in (z, z̃s, ž

′
d);

(E5): holds because the associated functions are constant;
(E6): holds by Lemma 4.

Third, we recall that the adaptation law is simply

˙̂
ψf = −γ ˆ̄e ˆ̄w

with γ > 0. By setting (žd, w̃f , Z̃) = (0, 0, 0) we have the
nominal unperturbed system ż˙̃zs

˙̌z′d

 =

Acl BK 0
0 As 0
0 0 Ad

 zz̃s
ž′d

+

BB
0

w⊺
f (t)(ψ̂f − ψf )

˙̂
ψf = −γw̄(t)w̄⊺(t)(ψ̂f − ψf ) + γw̄(t)Cž′d

for which we can verify Assumption 3.
(E7): holds because Acl, As, and Ad are Hurwitz;
(E8): holds by the classical result [12, Theorem 2.16] and

because we have a cascade interconnection of GES
systems.

Lastly, since wf and w̄ are states of LTI exosystems, they
are piecewise continuous and almost periodic. Thus by [18,
Appendix, Theorem 6] their autocovariance matrices exists,
satisfying Assumption 4.

VI. SIMULATION

We simulate system (9) with matrices

A =

[
0 1
0 0

]
, B =

[
0
1

]
, E =

[
1
−1

]
,

C =
[
1 0

]
, D = 1 , S = 0 ,

and initial conditions x(t0) =
[
0 0

]⊺
and ζ(t0) = 0.5. The

regulator (11), (16)-(18) is built with values

F =

[
0 1
−1 −1

]
, G =

[
0
1

]
, Ld = Ls =

[
1
1

]
,

K =
[
−1 −1

]
, γ = 1 ,

and all initial conditions set to zero. When including the
µ-modification (7)-(8), we use σtol = 0.1, ε = 1, and
µ = 1 with initial condition Ω(t0) selected randomly as an
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(b) µ-modification on

Fig. 1: Comparison of the error e (red) and parameter ψ̂f

adaptation dynamics (green, olive green) with noise injected.

Fig. 2: Columns of the subspace estimator (blue, light blue)
and a plot of the non-PE subspace (grey dashed lines).

orthogonal matrix. The subspace estimator (8) is built using
ŵf rather than ˆ̄w to reduce the effects of transients due to
filtering since their PE subspaces coincide (see Lemma 4).

Since the exosystem can only generate constants, the
effective disturbance d is sufficiently rich of order at most
s = 1. Consequently, our internal model of dimension
q = 2 is overparameterized. It can then be shown that
the non-PE dynamics consists of ψ̂(f,⊥) = (ψ̂f )2 (olive
green). To demonstrate that we have robustified the non-
PE parameter dynamics, we additively inject white Gaussian
noise with 0.05 mean and 0.2 variance into the (ψ̂f )2
dynamics. Figure 1 shows how the parameter adaptation
dynamics are rendered robust using the µ-modification in the
presence of noise. In particular, we retain asymptotic error
regulation while the µ-modification keeps all states bounded.
A visualization of the non-PE subspace W⊥ = { 0 } × R
recovered by our subspace estimator is found in Figure 2.

VII. CONCLUSION

The paper further develops the idea of PE subspaces,
introduced in [8], in the context of adaptive output regulation
where regressors generally arise from LTI exosystems. We
show by way of a general error model how to robustify
parameter adaptation laws by forgetting the parameters that
are not excited by associated regressors, in line with the
Use It or Lose It Principle of neuroplasticity. That is,



parameters that lie in the subspace orthogonal to the PE
subspace should be gradually forgotten. An application of
adaptive output regulation for a SISO LTI plant is carried
out, particularly highlighting the key property of invariance
of the PE subspace under various filtering operations needed
in the regulator design.

The key limitation of the µ-modification is that it assumes
perturbation terms arising from estimation errors vanish inde-
pendently. A more sophisticated stability analysis is needed
to handle the general problem in which coupling terms
between the adaptation dynamics and regressor estimates
appear. Another avenue is to elaborate how robustness is
provided by the µ-modification beyond simply exponential
stability.

APPENDIX

Proof: [Lemma 2] Let Ad be given. We will construct all
relevant quantities in reverse order, starting with the matrix
Hf relating the state w to a filtered regressor wf . Then we
show this filtered regressor is in fact the state of an exosystem
in the canonical form [19]. At last, we relate this system to
the filtered disturbance df produced by filtering d.

Consider C(sI − Ad)
−1B =: Nd(s) / Dd(s), where we

select Nd(·) and Dd(·) as coprime polynomials. Define

Hf := Dd(F +Gψ⊺)−1Nd(F +Gψ⊺) . (19)

Note Dd(F + Gψ⊺) is invertible because Ad is Hurwitz,
σ(Ad)∩σ(F+Gψ⊺) = ∅ by (A2), and by the Spectral Map-
ping Theorem. Also, note that Nd(F +Gψ⊺) is invertible by
(A3). To see this, (A3) states that no zero of C(sI−A)−1B
is an eigenvalue of F +Gψ⊺ because σ(F +Gψ⊺) = σ(S).
Since (C,A,B) and (B⊺, A⊺, C⊺) represent the same SISO
transfer function and zeros are unaffected by state feedback,
we conclude the same of C(sI − Ad)

−1B. As a result,
Nd(F + Gψ⊺) is invertible because the Spectral Mapping
Theorem implies that it has no zero eigenvalue. Overall, (19)
is invertible.

Define the state wf := Hfw, the output df := ψ⊺wf , and
note that Hf and F +Gψ⊺ commute. Therefore

ẇf = Hf ẇ = Hf (F +Gψ⊺)w = (F +Gψ⊺)wf ,

meaning that wf is generated by (14) with initial condition
wf (t0) = Hfw(t0).

Next we construct a filter of the form (13), which we will
show generates df . By definition of wf , we have Dd(F +
Gψ⊺)wf = Nd(F +Gψ⊺)w. Since ẇf = (F +Gψ⊺)wf and
ẇ = (F +Gψ⊺)w, equivalently

Dd

(
d

dt

)
[w⊺

f ] = Nd

(
d

dt

)
[w⊺] .

Now consider the filter

Żd = AdZd +Bw⊺ , w⊺
⋆ = CZd

with Zd(t0) ∈ Rn×q selected such that CZd(t0) = w⊺
f (t0).

By linear systems theory, it is known that w⋆ must satisfy

Dd

(
d

dt

)
[w⊺

⋆ ] = Nd

(
d

dt

)
[w⊺] .

Given that w⋆ and wf have identical initial conditions and
satisfy the same ODE, it must be that w⋆ = wf . Thus
df = ψ⊺wf = CZdψ, which suggests to define zd := Zdψ.
Differentiation shows zd satisfies (13) and generates df with
initial condition zd(t0) = Zd(t0)ψ.

The following justifies why terms that vanish indepen-
dently may be safely ignored. To the best of our knowledge,
the presented result is new. However, related stability results
are obtained in Center Manifold Theory [20, Appendix B].

Proposition 1: Suppose η = 0 is GES for the system[
η̇
η̇⊥

]
=

[
f(t, η)

0

]
, (20)

where f(·) is piecewise continuous in t and globally Lips-
chitz in η uniformly in t. Consider p(t, η, η⊥, ν) piecewise
continuous in t satisfying

∥p(t, η, η⊥, ν)∥ ≤ p̄1(ν)∥(η, η⊥)∥+ p̄2(ν)

for some p̄i(·) ≥ 0 locally Lipschitz with p̄i(0) = 0. Given
∆(t, ν) piecewise continuous in t and globally Lipschitz in
ν uniformly in t, consider the perturbed system[

η̇
η̇⊥

]
=

[
f(t, η)

0

]
+ p(t, η, η⊥, ν) (21a)

ν̇ = ∆(t, ν) , (21b)

where ν = 0 is GES. Then all states are uniformly bounded
and η → 0 exponentially. ⋄

Proof: We first prove uniform boundedness of all states.
Since ν = 0 is GES, there exists cν , λ > 0 such that
∥ν(t)∥ ≤ cν∥ν(t0)∥e−λ(t−t0) for all t ≥ t0 and clearly
ν is uniformly bounded. Since η = 0 is GES for (20),
there exists a converse Lyapunov function Vf (t, η) satisfying
the conclusions of [21, Theorem 4.14]1 for the η dynamics.
Consider the function V0(t, η, η⊥) := Vf (t, η) + ∥η⊥∥2 and
take its Lie derivative with respect to (21a). Then

V̇0(t, η, η⊥) ≤ γ1(ν(t))V0(t, η, η⊥) + γ2(ν(t)) (22)

for some appropriate γi(·) after a couple applications of
Young’s inequality and by writing ν as an exogenous signal.
Because the p̄i(·) are locally Lipschitz with p̄i(0) = 0, so are
the γi(·). As a result, pick any δ > 0 and suppose the initial
conditions satisfy ∥(η, η⊥, ν)(t0)∥ ≤ δ. Then there exists
c(γ,i)(δ) ≥ 0 such that γi(ν(t)) ≤ c(γ,i)∥ν(t)∥, implying

γi(ν(t)) ≤ cνc(γ,i)∥ν(t0)∥e−λ(t−t0)

for all t ≥ t0 ≥ 0. Substituting into (22), an application of
the Comparison Lemma to upper bound V0(·) makes it clear
that η and η⊥ are uniformly bounded.

We now outline the proof for exponential convergence,
which follows a standard Lyapunov argument. Again because
ν = 0 is GES, there exists a converse Lyapunov function
V∆(t, ν) satisfying the conclusions of [21, Theorem 4.14]
for the ν dynamics. Let V (t, η, ν) := Vf (t, η) + ϵV∆(t, ν)

1The continuous differentiability assumption in [21, Theorem 4.14] may
be relaxed by considering upper Dini derivatives, leaving the proof virtually
unchanged.



for some ϵ > 0 to be selected sufficiently large. Taking its
time derivative with respect to trajectories of (21), after some
algebra we get

V̇ (t, η, ν) ≤ −a3∥η∥2 − ϵb3∥ν∥2 + a4p̄1(ν(t))∥η∥2

+ a4 (c1∥η⊥(t)∥L∞ + c2) ∥η∥∥ν∥ ,

where we have omitted the time dependence of some vari-
ables, a3, a4 > 0 are bounding constants from Vf (·), b3 > 0
is a bounding constant from V∆(·), and the ci(δ) are selected
to satisfy p̄i(ν(t)) ≤ ci∥ν(t)∥. The ∥η∥∥ν∥ cross-term can
be dealt with using the Peter-Paul inequality, whereas the
a4p̄1(ν(t)) term vanishes uniformly in the initial conditions
and so the technique in [8, Proposition 2] can be applied to
deal with it. This concludes the proof.
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