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Abstract—We study the reach control problem (RCP) for a single input
affine system with a simplicial state space. We extend prewvis results by
exploring arbitrary triangulations of the state space; particularly allowing
the set of possible equilibria to intersect the interior of smplices. In the
studied setting, it is shown that closed-loop equilibria, evertheless, only
arise on the boundary of simplices. This allows to define a nan of
reach controllability which quantifies the effect of the cortrol input on
boundary equilibria. Using reach controllability we obtain necessary and
sufficient conditions for solvability of RCP by affine feedbak.

I. INTRODUCTION
This paper studies theeach control problen{RCP) on simplices.

The problem is for trajectories of an affine system defined on
simplex S to exit a prespecified exit facet in finite time without

feedbacks are equivalent with respect to solvability of R[BP
By allowing for more general triangulations as in this papee
provide more flexibility to the designer. At the same timédficlilties
immediately assert themselves because it is no longer kifoaffine
feedbacks remain the central object of study for solving R
first and a significant contribution of the paper is the swipg
discovery that despite arbitrary triangulations (not eciftg O to
lie on the boundary ofS), closed-loop equilibria still only appear
on the boundary o when using admissible affine feedbacks. The
second contribution of the paper is the introduction of a metion
of reach controllability that captures precisely how thésendary
equilibria are affected by the input. The third contributics new
necessary and sufficient conditions for solvability of RGPdffine
feedback. These conditions improve those in the literaf8fe[13]
which are stated as properties to be verified for a given caieli
controller.

Recent results on RCP include [4], [5], [1], [10], [9], [6]eBause

first leaving the simplex. The problem has been studied over©hthe choice of triangulation of [3], so-called reach cohindices

series of papers [3], [7], [8], [13] due to its fundamentakuna
among reachability problems. The reader is referred to[8],[7],
[8], [12], [13] for further motivations, including how thergblem
arises in reachability problems for hybrid systems. Foating
the reach control problem on a simplex is well-founded sitiee
simplex is a canonical object for partitioning space, arapjpears in
many disciplines ranging from algebraic topology to comagionhal
geometry. Since any convex polytope can be triangulatedarstet of
simplices, solution methods for RCP on a simplex can be detén
to polytopes [10].

[4] emerged as important structural information about tbhetl
system allowing to completely resolve what class of feekbao
use for RCP [5]. An alternate class of feedbacks was propased
[1]. The construction of the indices relies on certai#f-matrices.
Unfortunately, when we go to the more general triangulatised
in this paper, this structure disappears. Section IV prewidhe
mathematical machinery that was formerly provided #matrices.
Second, [10] studies RCP on polytopes in the spirit of [7]c&Bese
of the generality of polytopes, the results are primarilyneuical
methods to compute feedbacks. When restricted to simplibey

In [3] RCP was studied under the assumption that the stateesp&ecover the results of [3], [7], [13]. Hence, [10] does noowde
was triangulated so tha®, the set of possible equilibria of the affineNeW information for the present problem. In conclusion, [8], [1],
system, intersected witls was either the empty set or a face ofl10] provide no avenue for solving the problem studied hEmeally,

S. In this paper we assum@ intersects the interior of, and we
study only single input systems. Remarkably it emerges ithah

equilibrium appears using an affine feedback to solve RG® the
equilibrium is, nevertheless, on the boundarySotUsing this finding,
we propose a notion akach controllabilityfor determining if RCP
is solvable by affine feedback. Simply put, an affine systemeash
controllable on a simplex if each equilibrium can be “pushu

the simplex boundary by an admissible affine feedback. Becthe
feedback is affine, the equilibrium is affected by the cdritput only
through the control values applied at vertices of the fac&asning
the equilibrium. In this sense, reach controllability meas the
extent to which the control input can affect the dynamicsame$ of
the simplex. Since the simplex is a canonical geometricabpibis
gives rise to an intrinsic notion related to how the contrgdtem
is actuated; hence, the monicker “reach controllabilitiFinally,
using reach controllability, we obtain new necessary arfticgnt
conditions for solvability of RCP in the current setting.

The contributions of the paper relative to the literature as
follows. First, we relax the requirement that the state spé&c
triangulated with respect to the sé, departing from our earlier
investigations [3]. This requirement had originally bedacpd for
two reasons. First, the choice of triangulation of the stgtace is
under the discretion of the designer, so in principle therad loss
to impose a triangulation that makes the synthesis problasiee
Second, using this triangulation, unequivocal results fen role of
affine feedbacks are possible - affine feedbacks and conisnsiate
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a preliminary version of this paper appeared in [14].

The paper is organized as follows. In Section Il we define the
reach control problem. In Section Ill a new necessary c@mdit
for single-input systems for solvability of RCP by contimsostate
feedback is presented, adding to the known necessary momit
[6], [7]- In Section IV preliminary technical results areegented to
support Section V where important properties of the set ehdpop
equilibria are exposed; particularly, that such equitibonly appear
on the boundans. In Section VI we introduce the notion of reach
controllability and the main theoretical result on new reseey and
sufficient conditions for solvability of RCP for single-inpsystems
is presented.

Notation. Let S € R™ be a set. The closure &, and the interior
is §°. The relative interior is denoted(&), the relative boundary of
S, denoted rbS) is S\ ri(S), and 4S is the boundary ofS. The
notation0 denotes the subset &" containing only the zero vector.
Notation cqvi,vs, ...} denotes the convex hull of a set of points
v; € R™.

Il. PROBLEM STATEMENT

Consider ann-dimensional simplexS := co{vo,...,v,}, the
convex hull of n + 1 affinely independent points ifR"™. Let its
vertex set beV := {vo,...,v,} and its facetsFo,...,F,. The
facet will be indexed by the vertex it does not contain. Withimss
of generality (w.l.0.g.) we assume that= 0. Leth;, j € {0,...,n}
e the unit normal vector to each facg} pointing outside of the
simplex. FacetF, is called theexit facet Let I := {1,...,n} and
defineI(x) to be the minimal index set amor@, . .., n} such that
x €co{v; | i€ I(x)}. Forz € S define the closed, convex cone

Clx)y:={yeR" | hj-y<0, jelI\I(z) }.
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Fig. 1. (a) Notation for the reach control problem. (b) Congenes and Fig- 2. (a)Os satisfies Assumption 1. (s violates Assumption 1.
the invariance conditions in a 2D example.

this endeavor, we first seek necessary conditions for sitityaby

Figure 1(a) illustrates the notation for a 2D simplex, anguFé 1(b) continuous state feedback. One such necessary conditoviled
illustrates the cone€(z) for several representative pointsdh We Dy Proposition 3.1 in [7], where it is shown that solvabiliof

consider the affine control system éh the invariance conditions is necessary for solvability cZFR by
‘ continuous state feedback. The goal of this section is teigeoa
&= Ar+ Bu+ta, r€eS, (1)  second necessary condition. The result is presented fgltesimput

whereA € R™", ¢ € R", B € R"*™, and rankB) = m = 1. Let systems only, as the multi-input result is still unknown té&that the
B = Im(B), the i,mage of3. Define® — {2 cR"| Az4ac B}, Presented resultrequires no assumption on the placemeg oiith
E:={2€R" |Az+a =0} Os := SNO, andEs := 'eSPect os. , , , ,
SNE. One can show that eithé? = 0 or O is an affine space with 1 he set0s = SN O, the intersection of a simplex and an affine
m < dim(O) < n. Notice that€ is the set of open-loop equilibria SPace. 1S @ polyhedron. Suppose tHat, ..., 0.1} is its vertex
(whenu = 0); whereasAz + Bu + a for z € O can vanish for an €t thus,Os = cofor,...,on41}. Let log := {1,...,k + 1}.

appropriate choice af, s0© is the set of possible equilibrium points SiMilarly, SUppos&s = cofei, ..., éxy+1} is @ polytope with vertex
of the system. Lets, (¢, z) denote the trajectory of (1) starting atSeti€t: -+ éxo+1}, and letleg := {1,..., ko +1}. Define the cone
xo under control inputz. We are interested in studying reachability condOs) = ﬂ Clo:).

of the exit facetF, from S.
Problem 1 (Reach Control Problem (RCP)onsider system (1)

defined onS. Find a feedback(z) such that: for each, € S there Consider Figure 2(a). Hexg(vo) is depicted as the shaded cone with
existT > 0 and§ > 0 such that apex atg. The sel0s = co{o1, 02, 03} is not only a polyhedron, but

(i) dult, o) € S for all t € [0,T], g'(soo )aﬂsg?me);. Itis P'Efrcfrom tThﬁ ﬁg“rf thatltc‘i’@@) o ¢ (lol) g cp
(i) 6u(T,0) € Fo, and 2) N 03) is preciselyC(vg). The next result says to so ve

by continuous state feedback there must be a non-zero viectsr
(i) Pu(t,z0) ¢ Sforallte (T,T+9). that lies in conéOs).
RCP says that trajectories of (1) starting from initial citiods in Theorem 1:SupposeOs # 0. If S s, Fo by continuous state
S exit S through the exit facetFy in finite time, while not first feedback, ther8 N condOs) # 0.
leaving S. In particular, a trajectory initialized aty € S may reach
Fo, remain inS and exit 7o at some time later as illustrated in
Figure 1(a). In the sequel we use the shorthand notatiof Fo to
denote that conditions (i)-(iii) of Problem 1 hold under sooontrol
law.

To solve RCP we require conditions that disallow trajee®rio
exit from the facets?;, i € I. We say thenvariance conditions are
solvableif there existuo, ..., u, € R™ such that,

iEIOS

Proof: Suppose by way of contradiction ththcondOs) = 0.

Sinces -5 Fo, by Proposition 3.1 of [7], one can find a continuous
state feedback(x) such thaty(z) := Az+Bu(z)+a € C(x), Vz €
S. Let Os = cofo1,...,0k41}. If k=0, thenBNcongOs) =0
implies that3NC(01) = 0. Thus,o; is an equilibrium of the closed-
loop system. Instead suppose> 0 and w..0.9.0 # b1 := Ao1 +
Bu(o1) +a € BN C(o1). Then the assumptio N condOs) =
0 implies there existsk € {2,...,x + 1} such thatb, ¢ C(ok).
Av; + Bu; +a € C(v;), i € {0,...,n}. (2) Consider the segmentio,. Sinceoior, C O, y(z) € B for z €
) - ] ] o o10%. Thus there exists a continuous functionR™ — R such that
The inequalities (2) are calleidvariance conditionsand they guar- y(z) = e(x)bs for z € aror, with ¢(01) > 0 ande(ox) < 0. By the

antee that trajectories that exit only do so throughFo, and they |hiermediate Value Theorem, there exists € aro; C S such that

are used to construct affine feedbacks [7]. Consider Figpg. 1 ¢(z*) = 0. Thus, the closed-loop system has an equilibriungira

The cone<C(v;) are depicted as the shaded cones attached at each, . . s
. . . . .. contradiction toS — Fo. [ |

vertex (of course their apex is @f. The invariance conditions (2) are

depicted in the figure, where velocity vectays:= Av; + Bu; + a

are shown lying inside their respective cor&3;).

IV. PRELIMINARY TECHNICAL RESULTS

In this section we present preliminary technical resulist thill
enable us to characterize (in Section V) useful geometiapgties
I1l. NECESSARYCONDITIONS FORSOLVABILITY BY of Os and£s. We begin by posing our main assumptions.

CONTINUOUS STATE FEEDBACK Assumption 1:The system (1) satisfies:
The goal of this paper is to obtain new necessary and suffici§Al) Os = cofo1,...,0.+1}, ak-dimensional simplex withn <
conditions for solvability of RCP by affine feedback; unlikiee K< n.
conditions given in Theorem 8 of [13] (or Theorem 4.16 of [8])(A2) If £s # 0, thenEs = cofei, ..., exy+1}, @ Ko-dimensional
we seek conditions that lead to synthesis of the controlieraid in simplex with0 < ko < k.



(A3) OsNS° #0. Using (3) and (4) we can relate geometric propertie®©gf and s
(Ad) Osn Fo=0. to the feasibility of certain algebraic constraints. Théoiwing are
the main results of this section.

Proposition 1: Suppose Assumptions (Al), (A3), and (A4) hold.
Then the following cannot hold:

Remark 1:If Os = 0, then the solution of RCP is completely
understood [8], [13]. Here we only focus on the case wékenz ().
In [3] we assumed that Ds # (), thenOs is ax-dimensional face of
S, where0 < x < n. More generally, if the intersection is arbitrary,h;-Av; = 0, hj-a =0,h;-B =0,k € log,i € I(ox),j € I\I(ox).
then Os is a convex polytope. In the present paper we ass@rae (5)
is a simplex that intersects the interior 8f Also, we restrictOs so Proof: By Assumptions (A1), (A3), and (A4), Lemma 2 applies
that it does not touclFy. The motivation for these restrictions is towith P = Os. Thus, w.l.o.g. the vertices of can be ordered
posit a generic situation distinct from the one studied ih Brst, according to exclusive members dff(ox)}, k¥ € Iog. That

(A3) is clearly generic. Second, genericallyt, B) is controllable. s, the indices{0,...,n} are ordered ag0,mo,...,mo + 1o —
Then dim(O) = 1, so (A1) and (A2) are satisfied. Thus, if wel,my,...,m1 +71 —1,...,Mut1,...,Mut1 + rer1 — 1}. Here
restrict to single-input systems, then Assumption (A1pYAnclude {0, mo,...,mo + 7o — 1} are the indices appearing in more than
the generic case. Finally, (A4) is a simplifying assumptéod is the one index set/(ox), k € Iog. Indices {my,...,my + rp — 1}

only notable loss of generality. However, it is importaninte that only appear in/(ox). By Lemma 2,r, > 1, k € Io,. Arguing
how O intersectsS is determined by the choice of triangulation. Ifby contradiction, (5) impliesh; - B = 0, hj - a = 0, for all
the designer chooses to disregard (A4), then either a tnidlearor j € I\ I(o1)U---UT\ I(0.+1). Applying the new index ordering
style of synthesis must be used [8], [13] or other triangofet must we havel \ I(01)U---UI\1(0x41) = I\ [I(01)N---NI(0k41)] D

be adopted [3]. {mh coeomr 1 — 1o Mgy, Mgl F Tl — 1}. We
Example 1:Assumption 1 is illustrated in Figure 2(a). We observeonclude that foj = ma,...,mi+7r1—1,... ,mey1, ..., Mer1+

that Os = co{o01, 02,03} is a simplex intersecting the interior of rx+1 — 1,

S, but it does not intersect the fac&,. Therefore (A1) and (A3) hj - (Bu” +a)=0. (6)

hold. Also€s = co{o1, 02} is a simplex so (A2) holds. Figure 2(b) Now consider any: € ©. Combining (3), (5), and (6), and invoking

illustrates a situation when Assumption 1 fails. In thiseed®s = ¢, = 0, we have

co{o1, 02, 03,04} is a polytope, not a simplex. Moreover, it intersects ,,

Fo along the segmeniios. Thus, both (A1) and (A4) fail. < Zaf =1 (7a)

The following basic properties o®s and s are derived from =0
the fact that they are formed as intersections of affine spaod a S af(hy - Avy) + hy - (Bu® +a) = 0,5 = mg mo + 1o — 1
i J T J —YsJ = [} -

simplex. =
Lemma 1:1f dim(Os) > 1, then r{Os) C dS. If dim(Es) > 1, (7b)
then r(&s) C rb(Os) C IS. st '
When conditions (A3)-(A4) hold for a simple®s insides, certain _Z: @ilhy - Avi) = 0,5 =ma,...,mi 4 —1 (7c)
restrictions on the index set§o;) arise. The next result identifies o
those restrictions for a general simpl&xC S. :
Lemma 2:Let P = co{wi,...,wp+1} be ap-dimensional sim-  m, . +r. 11
plex with vertex se{ws, ..., wp+1}. SupposeP C S, rb(P) C S, > af(hj - Avi) = 0,5 = Myg1,...,Mut1 +Trp1 — 1.
PNS® # 0, andP N Fy = 0. Then each index sef(wy), ——
k € {1,...,p + 1}, has a nonzero exclusive member. That is, (7d)
there existsiy, € I(ws), i # 0, such thati, ¢ I(w;) for all  por 1 = Ocovhi + 1, let My = [y oy sr—1]"
je{l ., p+ 13\ {k} [Avm, ... AUm, +r.—1]. Then in matrix form, (7a)-(7d) become
Proof: First note that the exclusive member bfw;) cannot
be zero becaus® N F, = () implies 0 € I(w;) for all j € Lowwe 1
{1,...,p +1}. If p = 0 we are done. Instead suppose Ww.l.o.g. Mo » ... = *
I(w) C UPA3I(w)). SinceP N S° # O, U2 I(wy) = {0,...,n}.  Ma" = M, =01,
Thus, U¥*11(w;) = {0,...,n}. Define P’ = co{uws, ..., wps1}. - :
Since P is a simplex,P’ is a (p — 1)-dimensional facet ofP M1 0
so P’ C rb(P). However, U¥X)I(w;) = {0,...,n} implies
P’ N 8° # 0. This contradicts that P) C 4S. m Wwhere M € ROTDUx("+D and empty entries are zero. Lét €
We now turn to an algebraic characterization of pointscn {1,---,% + 1} and considerM;. Suppose rank/y) = rx. Then
Letz = 3" afv, whereY,af = 1. Since{vo,...,v,} are foralaz € O, an, = - = ap4r1 = 0. In particular,
affinely independentiy™ := (ag, ..., a%) are the unique barycentric Os C €0{vo, ..., Vmy—1, Vmy4ry; -, vn} C S, a contradiction.
coordinates ofr. If z € O then there exists;” € R™ such that We conclude rankMy) < ry for k = 1,...,x + 1. Consequently
Az + Bu® + a = 0. This yields we can findg',..., 8" € Ker(M) c R™*" such thatg§ = 0
fork=1,...,k+1and{3",...,3""'} are linearly independent.
Az +Bu®+a=0 <= h; (Av+Bu” +a)=0,j €1 Define ¢* := S0 (BF + af)v; for k = 1,...,k + 1. Observe
LN . ] that ¢* ¢ O because(8* + o”) is a solution of (8). Now we
A Zo‘i (hj - Avi) +hj - (Bu® +a) = 0,5 € 1. () claim {z,¢',..., &'} are affinely independent. (Proof of claim:
=0 Define ff,, = (BY,...,B5), V = [v1---v,] € R™™ and T :=
Similarly, for z € £ we haveu® = 0, so we get BBt e R™ D Then[(¢! —z)--- (&°F! —z)] = V.
n Since rankV') = n and rankI') = x + 1, rankVT') = xk + 1.) We
Az +a=0 < Z ai(hj - Avi)+h;-a=0,5€I. (4) concludedim(O) > x, a contradiction. [ |

i=0 Proposition 2: Suppose Assumptions (Al)-(A4) hold.



(@) If EsNS° # 0 anddim(E) = 0, then the following cannot solvability of RCP by continuous state feedback (in Asstuiam®)

hold:

(E”CEIOS) hj-Avi =0,hj-a =0, iEI(Ok),jEI\I(Ok).
)
(b) If EsNS° # O anddim(E) = ko > 0, then the following

cannot hold:

hj-Avi=0,h;-a=0, kJGIgS,iEI(Ek),jEI\I(Ek).

(10

Proof: (a) W.l.o.g. supposé = 1 andI(o1) ={0,1,...,q} for

somel < g < n — 1. The form of this index set is dictated by the

following facts: (al)0 € I(01) by (Ad); (a2) ¢ < n because (A3)
implies dim(Os) > 1, so Lemma 1 gives: € 9S; (@3) ¢ > 1,
otherwiseo; = vo and s N S° # () together implyOs N Fo # 0,
a contradiction to (A4). Then (9) becomes:

hj'AUi:07hj'a:07 7Q}7j€{Q+17“‘7n}‘ (11)

Consider any: € £. Combining (4) with (11) and invokingo, = 0,
we have

i €A0,...

Zag = 1 (12a)
=0
Saf(h;-Avi)+hja = 0, j=1,....4 (12b)
=1
> af(hj-Av) = 0, j=gq+1,...,n. (12c)
i=q+1
Let My = [h1---hg]T [An Av,] and My =

[hgt1---ha]T [Avgsr ... Av,]. Then (12a)-(12c) become

1 * * 1
Ma”* = | 0 M «* of =1 % |,
0 0 Mg 0

whereM ¢ R+ > (n+1) By the same argument as in the proof thj

Proposition 1 we deduce that rddd, 1) < n—g, rank M) < n+1,
anddim(€&) > 1, a contradiction.

(b) By assumptior€s N S° # () and by (A4),Es N Fo = (. By
(A2), Es is a simplex. Therefore Lemma 2 applies with= Es.

Suppose w.l.0.g. the vertices &fare ordered according to exclusive
members of{I(ex)}, k € Ies, as per Lemma 2. That is, the

indices are ordered &9, mo,...,mo+r0o—1,m1,...,mi+ri —
1, Megt1se oo, Mrg+1 + Tro+1 — 1}. Here {0, mo, ..., Mo +
ro — 1} are the indices appearing in more than one indexl éet),
k € Ieg. Indices{my, ..., my + rr, — 1} only appear inl(e). By
Lemma 2,r, > 1, k € I¢5. From (10) we knowh; - a = 0 for all

jeI\I(er)U---UI\I(exy+1). Applying the new index ordering

we havel\I(e)U---UT\I(exg41) = I\ [I(1) N+ -NI(€ng+1)] D

{’ITL17 oymatri—1, ... s Mkg+1,- - - 7m,€0+1+r~0+1—1}.We con-
clude that forj = mu,...,m1+7r1 —1,..., Mug41, .-, Mrg+1 +
Tho+1 — 1,

hij-a=0. (13)

Consider anyx € £. Combining (4), (10), and (13), and invokingo g
vo = 0, we obtain (8) withu” = 0. By the same argument as in the

proof of Proposition 1, we deduce that rénk) < n + 1 — ko and
dim(&) > ko, a contradiction. [ |

V. PROPERTIES OFEQUILIBRIUM SET

In this section we exploit the algebraic properties discesein
the previous section, and particularly we examine theirngstac
consequences. The most important result is that equilitaianot

are satisfied.
Assumption 2:The system (1) satisfies:

(A5) Avi+a € C(vi), i€ {0,...,n}.
(A6) BNcongOs) # 0.

First we present a technical lemma that links the appearahce
an equilibrium with algebraic constraints of the type stadin the
previous section.

Lemma 3 ([14]): Suppose (A5) holds. Suppose there exists
Os andj € I\ I(x) such that0 € I(z) andh; - (Az + a) = 0.

h]‘ . A’Ui = O,

hj-a=0, i€l(z).

The previous algebraic results lead to a remarkable prpperthe
placement of equilibria i§: under the assumption that the necessary
conditions of Proposition 3.1 of [7] and Theorem 1 hold, ofmop
equilibria can only appear on the boundary&f

Theorem 2:Suppose Assumptions 1 and 2 hold £ # ), then
Es C1b(Os) C OS.

Proof: Suppose by way of contradiction therezise S° such
that AT+a = 0. By (A3), OsNS° # 0, sodim(Os) = dim(0) > 1
.Then by Lemma 1, t¥s) C 9S. Thereforez € ri(Os).

First, supposelim(€) = 0 and let0 # b € BN congOs). Since
dim(0) > 1, &€ = {T}, andT # o;, i € los, W.l0.g. at least
one pair of vertices 00s, say (o1, 02), satisfy Ao1 +a = n1b and
Aoz +a = n2b with n; < 0andnz > 0. Sinceb € C(o01), hj-b <0,
j € I\ I(o1). By (A5) and convexityAo, + a € C(o1). Thus,
hj . (A01 + a) = hj . (nlb) <0,5€el \ I(Ol). Sincem < 0, the
previous two inequalities impl§;-b = 0, j € I\ I(o1). Equivalently
we geth; - (Ao1 +a) =0, 5 € I\ I(o1). Then by Lemma 3 we
geth; - Av; = 0, hj -a = 0fori € I(o1), j € I\ I(o1). By
Proposition 2(a), we reach a contradiction.

Second, supposéim(E) = ko With kg > 0. Thenh;-(Aep+a) =
-0=0for k € Ie;, j € I. By Lemma 3 we get; - Av; =
0, hj-a =0fork € Ieg, i € I(er), andyj € I\ I(ex). By
Proposition 2(b) this is a contradiction. [ ]

In Theorem 2 we showed that the set of equilibfia lies in the
relative boundary of0s. In the following we show further thafs
is indeed a face 0Ds.

Theorem 3:Suppose Assumptions 1 and 2 hold £ # 0, then
Es =cofo1,...,0x,+1}, @ko-dimensional face 0Os, where0 <
Ko < K.

Proof: Supposefs # ( but it is not a face ofOs. By
Theorem 2&s C rb(Os). Hence w.l.o.gEs = cofer, ..., exy+1} C
cof{o1,...,0p}, Where2 < p < r+1 andfgs ={1,...,p} is the
minimal index set such that for alt € £s, z € co{o; | i € fgs}.
Since £€s is on a face but not an entire face 6!s and since
the faces ofOs are simplices, at least one of the vertices&gf,
say €1, is not a vertex ofOs. Hence, there exise < ¢ < p
and a; € (0,1) with 377 o = 1 such thatey = >°7 | aioi.
Let y(o;) == Ao; +a = B with \; € R, i € Iog. Then,

= i—1 aiy(oi) = Zz ai\; | B. ThUSZg:l a;Ni = 0. Since

a; > 0, either)\; = 0 for all « € {1,...,¢}, or there exists at
least one pair of vertices @s, say (o1, 02), such that\; < 0 and
A2 > 0. For the first case, do1,...,04} C Es. This means, a
vertex ofEs, is expressible as a convex combination of point§én
a contradiction. For the second case, we hayve< 0 and A2 > 0.
If Ap+1 = 0, thenop11 € Es, andp + 1 € fgs, a contradiction.
Therefore, assume w.l.o.g. thaj+1 > 0. Then by convexity there
existsz € cofo1, 0,41} such thatdz +a = 0. Hence,p+ 1 € Igg,

appear in the interior ofS when the necessary conditions fora contradiction. [ ]
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Fig. 3. Reach controllability in two 2D examples.

VI. REACH CONTROLLABILITY

In this section we define the notion of reach controllahilitis
notion describes the condition when a velocity vector£ b €
B ncongOs) can be injected into the system at verticesSothat
contribute to the generation of equilibria @hs.

Definition 1: Suppose Assumption 2 holds afid=# b € BN
congOs). We say the triplg§ A, B, a) is reach controllableif either
Es = 0; or Es co{o1,...,0k,+1} With 0 < ko < k, and
for eachk € Ig¢g, there existsi € I(o,) and u; > 0 such that
Av; +bu; +a € C(v;).

The question of the choice of vector 1N congOs) to use is
settled by the following result.

Lemma 4:Suppose Assumptions (A1) and (A3)-(A6) hold0lt~
b e BncongOs), then—b & BN congOs).

Proof: Suppose not. Then for akt € Iog andj € I\ I(ox),
h;j-b<0andh;-(—b) < 0. Thisimpliesh;-b = h;-(Aox+a) =0
forallk € Iog, j € I\I(ox). By Lemma 3 we obtair; - Av; = 0,
hj-a=0,h;-B=0foral k€ Iog, i€ I(or),andj € I\ I(og).
By Proposition 1 this is a contradiction.

[ |
Example 2:We illustrate the concept of reach controllability withk € los

a 2D example. However, it must be noted that a true example
only be exhibited in dimension 4 and higher, since in dimemsi2
and 3, no system is not reach controllable while also satigfthe
two necessary conditions, Proposition 3.1 of [7] and Theote This
aspect will be further explored elsewhere. Here we illustia case
when a 2D example simultaneously fails reach controlligbiéind
Theorem 1. Consider Figure 3(a). The velocity vectarss Av; +a
at v;, i = 0,2 produce an equilibriumz. Adding a positived

component toyp or y» results in a violation of the invariance

conditions. The only option is to addb to yo or y2. This in turn

results in velocity vectors at ando, as depicted by dashed arrows.

Clearly, the zero vector is in the convex hull of these twoterrso
there will be an equilibrium ir§ along segment; . Therefore, RCP
is not solvable. Notice in this example an equilibrium capesgy in

the interior of S, apparently violating Theorem 2. This is becausé.%k + Bu(or)
BNcondOs) = 0, so Theorem 2 actually does not apply. On th
other hand, Figure 3(b) shows an example where the systesad$ r

controllable. Hereh € BN C(vo) and so it can be added to boib
andy,. This results in new velocity vectors atand o, depicted as
dashed arrows. Clearly, the equilibrium is pushed out ofcinevex
hull of these two points - it now lies below the simplex. <

In the next result we relate reach controllability to theséamce of
a coordinate transformation that decomposes the dynamtizghose
that contribute to open-loop equilibria and quotient dyiw@mlt is
noted that a geometric characterization of reach conbititia has
not yet been obtained, but the following result gives a fivéence
that one may exist.

Lemma 5:SupposeAv; + a € C(v;) for i € {0,...,n}. Also
suppose there exists € £s with I(z) = {0, ..., ¢} for somel <

q < n. Then there exists a coordinate transformatioa 7~ 'z that

transforms system (1) into
. A1 * + + bl
z= Ay z by u,

0
where A; € R?%9, q; € R?, by € RY, Ay € R DX(n=a) gnd
by e R" 79,
Proof: SinceZ € £s, AT + a = 0. Thush; - (AT + a) = 0,
j €I\ I(z). By Lemma 3 we have

ai

‘ (14)

hj-Av; =0, hj-a=0,i=1,...,q, j=q+1,...,n. (15)

Now consider the coordinate transformation= 7'z, whereT =
[v1 --- vy]. Note thatT is nonsingular because the verticesSoére
affinely independent and, = 0. The transformed vertices arg =
T 'y for i = 0,...,n (Wheree; is the ith Euclidean coordinate

vector andTeo = 0). Also, the transformed unit normal vectors are
T h;

—€ = TITh] ,
the transformed system is (14). [ ]

The following result provides constructive necessary arfficient

conditions for solvability of RCP by affine feedback in thedied

setting.

Theorem 4:Consider the system (1). Suppose Assumptions 1 and

2 hold andb.+1 := Aok41+a € BNcongOs). We haveS = 5
by affine feedback if and only ifA, B, a) is reach controllable.
Proof: (<) By (A5), the invariance conditions (2) hold with
u=0. If & = 0, by Theorem 8 of [13] (or Theorem 4.16 of [8]),
S -%5 Fy by affine feedbacks(xz) = 0. Instead, if€s # 0, then
by Theorem 3.s = co{o1,...,0x,+1} With 0 < ko < k. Let
brt1 := Aowy1+a # 0. We begin by showing that for all € Iog,
Aok + a = Agbe+1 with A\ > 0. The result is obviously true for
vertices 0ofOs in Es since Ao, +a =0, k € I¢5. Second, consider
vertices of Os not in £s. For these vertices the coefficients,,

Jdhere isz € cofox | k € los \ Ies} such thatAz + a = 0, which
impliesz € Es, a contradiction. Since by assumptian; = 1, we
getAr >0, k € Iog \ Ies.

Since by assumption.+1 € BN congOs), we can takeb =
brk+1 in the definition of reach controllability. W.l.o.g. |eB = b.
By reach controllability, for eaclt € I¢g, there existi, € I(ox)
and u;, > 0 such thatAv;, + Bu;, +a € C(v;,). Selectiy, €
I(ox) andu;, > 0 as above. Set; = 0 for the remaining vertices

u(x) = Kz + g and lety(z) := Ax + Bu(x) + a. Fork € Iog,
considero,, = Ziel(%) ai*v; with a* > 0. Fork € Ieg, u(or) =
Dici(oy) Qi ui > 0 sinceu;, > 0 andiy € I(ok). Fork € log \
Ies, u(ox) > 0. We obtain that fork € Igg, y(ox) = Ao +
Bu(or)+a = u(or)b, with u(ox) > 0. Fork € Iog \ Ieg, y(or) =
+a = (Mg + u(og))b, with Ay + u(ox) > 0. By
gonvexity forz € Os, y(z) = A(2)b with A(z) > 0. Thus,Es = 0
for the closed-loop system. By Theorem 8 of [13],i> Fo by
affine feedbacku(x).

(=) SupposeS =5 5 by affine feedbacku(z) = Kz +
g. If £&s = 0 (for the open-loop system), thef¥, B, a) is reach
controllable. Alternatively, if€s # 0, then by Theorem 3£s =
co{o1,...,0k,+1} Where0 < ko < k. W.l.0.g. supposeB = b €
B N condOs). Suppose(A, B, a) is not reach controllable. Then
there exists: € Ig5 such that for alk € I(ox), Avi + Bu(vi)+a €
C(vi) impliesu(vi) < 0. Sinceu(or) =3 (o, afku(v), gk >
0, we obtainu(ox) < 0. Eitheru(ox) = 0, so Aoy + Bu(ox) +
a = 0, which contradictsS s, Fo. Alternatively, u(ox) < 0 so
A+ Bu(or)+a = Apb with A < 0. This meansdo; + Bu(o;)+a =
Aib with \; < 0 for all i € Iog (for otherwise by convexity there

j € I. By a standard argument, (15) implies that

\ I¢5, must all have the same sign; otherwise, by convexity

of S. Using the method of [7], form the associated affine feedback



is T € Os such thatAT + Bu(T) + a = 0, a contradiction). We
conclude—b € BN congOs), a contradiction to Lemma 4. ]

VII. EXAMPLES

We present two examples of Theorem 4. In the first examplmreaﬂ:.at Av; + Bu;

controllability fails while in the second example it holds.

Example 3:Consider a simple = co{wvo, ...,vs} C R*, where
vo = (0,0,0,0) and fori € I = {1,...,4}, v; = e;, theith
Euclidean basis vectors. Note that = —e;, ¢ € I. Consider the
following affine system

-1 0 1 0 -3 0
.| -3 -6 -3 -2 -5 3
T = 0 0 —4 0| + g | U + 1 (16)
0 0 0 4 4 0
Letb:= (—3,-5,8,4). It can be verified that
n 1 1
O = {xeR |x1:x2:x4+1,x3:—2x4+1}.
Setting x4 = 0 in the defining equations fo©, we get 01 =
(.1,2,0). Settingzs = 0, we getos := (2,2,0,1). Thus,

Os = co{o1, 02}, where

1 1 1 1
—vo + ~v1 + ~v2 + ~v3 € Fu

01

4 4 4 4
) lv —|—§v —|—§v —l—lv c F
2 glot guitguzt gua 3.

Also we have thatdo; +a = 0 and Aoz + a # 0, s0Es = {o1}.
We observe thatlim(Q) = 1, dim(€) = 0, Os N Fo = 0, and
Os NS° # (). Becausen; € F4 andos € F3, we have

congOs) ={ y €R" | h3-y <0, hy-y <0}.

Clearly b € B ncondOs), so solvability of RCP by continuous
state feedback cannot be ruled out by Theorem 1. Also it can
verified that Av; + a € C(vs), @ € {0,...,n}, so solvability of
RCP by continuous state feedback cannot be ruled out by Bitapo
3.1 of [7]. Nevertheless, for the given simplékand system (16),
RCP is not solvable by affine feedback. This is due to the faat t
(A, B,a) is not reach controllable according to Definition 1. Indee
Av; + Bu; + a € C(v;) results inu; = 0 for Vi € I(01)
{0,1,2,3}. <

Example 4:Consider a simple$ = co{vo,...,va} C R*, where
vo = (0,0,0,0) and fori = 1,...,4, v; = e;, theith Euclidean basis
vector. Consider the following affine system

-1 1 0 1 -1 0
.0 -1 11 0 0
E=1 _1 | _9 _3 T+ 1 u+ 1 17)
0 0 0 1 2 0
Letb:=(—1,0,1,2). It can be verified that
— n _ 1+ 524 o 1—x4 1 —5x4
0 = {:CG]R |21 = 1 %= ¥ = }

Settingm = 0 in the defining equations fo©, we geto; :=
1.0). Settingzs = 0, we getos := (3, 5.0, ). Thus,
CO{Ol,OQ} where

(i

H >J>|

1 1 1 1
~vo + ~v1 + ~v2 + —vs € Fa

o1 g Ty Ty Ty
o —iv+5v+3v+2ve}'
2 — 10 0 101 102 04 3.

Also we have thatdo; +a =0 and Aoz + a = 15b # 0, S0Es =
{o1}. We observe thatlim(O) = 1, dim(£) = 0, Os N Fo = 0,

andOs N S° # (). Becausen; € F4 andoz € F3, we have
congOs) ={ y€R" | hs-y <0, hs-y <0}.

Clearly b € BN congOs). Also, it can be verified thatlv; + a €
C(vi), @ € {0,...,n}. Now we show that(A, B,a) is reach
controllable. Indeed, foi = 1,2 € I(01), we can findu; > 0 such
+ a € C(v;). Based on the constructive procedure
given in the proof of Theorem 4, to remowe we can inject vector
b into the vector field at; or v2. One possibility is to seleai; = 1
and uo Uz = us Uy 0. Using the method of [7], the
resulting affine feedback ig(z) = [1 0 0 0]z. It is easy to verify
that by usingu(z) = [1 0 0 0]z, no equilibrium appears i§. Since
Av; + Bui +a € C(vi), © € {0,...,n}, by Theorem 8 of [13],
sEF using u(x). <

VIIl. CONCLUSION

The paper studies the reach control problem for single iaffiute
systems on simplices. We relaxed the assumption that the sta
space is triangulated with respect to the affine @etthe set of
possible equilibria of the affine system. New necessary affitient
conditions for solvability of RCP are provided in terms oé thotion
of reach controllability. As yet, a geometric characteia of reach
controllability has not been found; our future work will eéape this
possibility.
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