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Reach Controllability of Single Input Affine Systems on
a Simplex

Elham Semsar-Kazerooni and Mireille E. Broucke

Abstract—We study the reach control problem (RCP) for a single input
affine system with a simplicial state space. We extend previous results by
exploring arbitrary triangulations of the state space; particularly allowing
the set of possible equilibria to intersect the interior of simplices. In the
studied setting, it is shown that closed-loop equilibria, nevertheless, only
arise on the boundary of simplices. This allows to define a notion of
reach controllability which quantifies the effect of the control input on
boundary equilibria. Using reach controllability we obtain necessary and
sufficient conditions for solvability of RCP by affine feedback.

I. I NTRODUCTION

This paper studies thereach control problem(RCP) on simplices.
The problem is for trajectories of an affine system defined on a
simplex S to exit a prespecified exit facet in finite time without
first leaving the simplex. The problem has been studied over a
series of papers [3], [7], [8], [13] due to its fundamental nature
among reachability problems. The reader is referred to [2],[3], [7],
[8], [12], [13] for further motivations, including how the problem
arises in reachability problems for hybrid systems. Formulating
the reach control problem on a simplex is well-founded sincethe
simplex is a canonical object for partitioning space, and itappears in
many disciplines ranging from algebraic topology to computational
geometry. Since any convex polytope can be triangulated into a set of
simplices, solution methods for RCP on a simplex can be extended
to polytopes [10].

In [3] RCP was studied under the assumption that the state space
was triangulated so thatO, the set of possible equilibria of the affine
system, intersected withS was either the empty set or a face of
S . In this paper we assumeO intersects the interior ofS , and we
study only single input systems. Remarkably it emerges thatif an
equilibrium appears using an affine feedback to solve RCP, then the
equilibrium is, nevertheless, on the boundary ofS . Using this finding,
we propose a notion ofreach controllabilityfor determining if RCP
is solvable by affine feedback. Simply put, an affine system isreach
controllable on a simplex if each equilibrium can be “pushedoff”
the simplex boundary by an admissible affine feedback. Because the
feedback is affine, the equilibrium is affected by the control input only
through the control values applied at vertices of the face containing
the equilibrium. In this sense, reach controllability measures the
extent to which the control input can affect the dynamics on faces of
the simplex. Since the simplex is a canonical geometric object, this
gives rise to an intrinsic notion related to how the control system
is actuated; hence, the monicker “reach controllability”.Finally,
using reach controllability, we obtain new necessary and sufficient
conditions for solvability of RCP in the current setting.

The contributions of the paper relative to the literature are as
follows. First, we relax the requirement that the state space is
triangulated with respect to the setO, departing from our earlier
investigations [3]. This requirement had originally been placed for
two reasons. First, the choice of triangulation of the statespace is
under the discretion of the designer, so in principle there is no loss
to impose a triangulation that makes the synthesis problem easier.
Second, using this triangulation, unequivocal results on the role of
affine feedbacks are possible - affine feedbacks and continuous state
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feedbacks are equivalent with respect to solvability of RCP[3].
By allowing for more general triangulations as in this paper, we
provide more flexibility to the designer. At the same time, difficulties
immediately assert themselves because it is no longer knownif affine
feedbacks remain the central object of study for solving RCP. The
first and a significant contribution of the paper is the surprising
discovery that despite arbitrary triangulations (not enforcing O to
lie on the boundary ofS), closed-loop equilibria still only appear
on the boundary ofS when using admissible affine feedbacks. The
second contribution of the paper is the introduction of a newnotion
of reach controllability that captures precisely how theseboundary
equilibria are affected by the input. The third contribution is new
necessary and sufficient conditions for solvability of RCP by affine
feedback. These conditions improve those in the literature[8], [13]
which are stated as properties to be verified for a given candidate
controller.

Recent results on RCP include [4], [5], [1], [10], [9], [6]. Because
of the choice of triangulation of [3], so-called reach control indices
[4] emerged as important structural information about the control
system allowing to completely resolve what class of feedbacks to
use for RCP [5]. An alternate class of feedbacks was proposedin
[1]. The construction of the indices relies on certainM -matrices.
Unfortunately, when we go to the more general triangulationused
in this paper, this structure disappears. Section IV provides the
mathematical machinery that was formerly provided byM -matrices.
Second, [10] studies RCP on polytopes in the spirit of [7]. Because
of the generality of polytopes, the results are primarily numerical
methods to compute feedbacks. When restricted to simplices, they
recover the results of [3], [7], [13]. Hence, [10] does not provide
new information for the present problem. In conclusion, [4], [5], [1],
[10] provide no avenue for solving the problem studied here.Finally,
a preliminary version of this paper appeared in [14].

The paper is organized as follows. In Section II we define the
reach control problem. In Section III a new necessary condition
for single-input systems for solvability of RCP by continuous state
feedback is presented, adding to the known necessary conditions
[6], [7]. In Section IV preliminary technical results are presented to
support Section V where important properties of the set of open-loop
equilibria are exposed; particularly, that such equilibria only appear
on the boundaryS . In Section VI we introduce the notion of reach
controllability and the main theoretical result on new necessary and
sufficient conditions for solvability of RCP for single-input systems
is presented.

Notation. Let S ⊂ R
n be a set. The closure isS, and the interior

is S◦. The relative interior is denoted ri(S), the relative boundary of
S , denoted rb(S) is S \ ri(S), and ∂S is the boundary ofS . The
notation0 denotes the subset ofRn containing only the zero vector.
Notation co{v1, v2, . . .} denotes the convex hull of a set of points
vi ∈ R

n.

II. PROBLEM STATEMENT

Consider ann-dimensional simplexS := co{v0, . . . , vn}, the
convex hull of n + 1 affinely independent points inRn. Let its
vertex set beV := {v0, . . . , vn} and its facetsF0, . . . ,Fn. The
facet will be indexed by the vertex it does not contain. Without loss
of generality (w.l.o.g.) we assume thatv0 = 0. Lethj , j ∈ {0, . . . , n}
be the unit normal vector to each facetFj pointing outside of the
simplex. FacetF0 is called theexit facet. Let I := {1, . . . , n} and
defineI(x) to be the minimal index set among{0, . . . , n} such that
x ∈ co{vi | i ∈ I(x)}. For x ∈ S define the closed, convex cone

C(x) :=
{
y ∈ R

n | hj · y ≤ 0, j ∈ I \ I(x)
}
.
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Fig. 1. (a) Notation for the reach control problem. (b) Convex cones and
the invariance conditions in a 2D example.

Figure 1(a) illustrates the notation for a 2D simplex, and Figure 1(b)
illustrates the conesC(x) for several representative points inS . We
consider the affine control system onS :

ẋ = Ax+Bu+ a , x ∈ S , (1)

whereA ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) = m = 1. Let

B = Im(B), the image ofB. DefineO := { x ∈ R
n | Ax+a ∈ B},

E := { x ∈ R
n | Ax + a = 0}, OS := S ∩ O, and ES :=

S ∩ E . One can show that eitherO = ∅ or O is an affine space with
m ≤ dim(O) ≤ n. Notice thatE is the set of open-loop equilibria
(whenu = 0); whereasAx+ Bu+ a for x ∈ O can vanish for an
appropriate choice ofu, soO is the set of possible equilibrium points
of the system. Letφu(t, x0) denote the trajectory of (1) starting at
x0 under control inputu. We are interested in studying reachability
of the exit facetF0 from S .

Problem 1 (Reach Control Problem (RCP)):Consider system (1)
defined onS . Find a feedbacku(x) such that: for eachx0 ∈ S there
exist T ≥ 0 andδ > 0 such that

(i) φu(t, x0) ∈ S for all t ∈ [0, T ],
(ii) φu(T, x0) ∈ F0, and

(iii) φu(t, x0) /∈ S for all t ∈ (T, T + δ).

RCP says that trajectories of (1) starting from initial conditions in
S exit S through the exit facetF0 in finite time, while not first
leavingS . In particular, a trajectory initialized atx0 ∈ S may reach
F0, remain inS and exit F0 at some time later as illustrated in
Figure 1(a). In the sequel we use the shorthand notationS

S
−→ F0 to

denote that conditions (i)-(iii) of Problem 1 hold under some control
law.

To solve RCP we require conditions that disallow trajectories to
exit from the facetsFi, i ∈ I . We say theinvariance conditions are
solvableif there existu0, . . . , un ∈ R

m such that,

Avi +Bui + a ∈ C(vi) , i ∈ {0, . . . , n} . (2)

The inequalities (2) are calledinvariance conditions, and they guar-
antee that trajectories that exitS only do so throughF0, and they
are used to construct affine feedbacks [7]. Consider Figure 1(b).
The conesC(vi) are depicted as the shaded cones attached at each
vertex (of course their apex is at0). The invariance conditions (2) are
depicted in the figure, where velocity vectorsyi := Avi +Bui + a
are shown lying inside their respective conesC(vi).

III. N ECESSARYCONDITIONS FORSOLVABILITY BY

CONTINUOUS STATE FEEDBACK

The goal of this paper is to obtain new necessary and sufficient
conditions for solvability of RCP by affine feedback; unlikethe
conditions given in Theorem 8 of [13] (or Theorem 4.16 of [8]),
we seek conditions that lead to synthesis of the controller.To aid in
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Fig. 2. (a)OS satisfies Assumption 1. (b)OS violates Assumption 1.

this endeavor, we first seek necessary conditions for solvability by
continuous state feedback. One such necessary condition isprovided
by Proposition 3.1 in [7], where it is shown that solvabilityof
the invariance conditions is necessary for solvability of RCP by
continuous state feedback. The goal of this section is to provide a
second necessary condition. The result is presented for single-input
systems only, as the multi-input result is still unknown. Note that the
presented result requires no assumption on the placement ofOS with
respect toS .

The setOS = S ∩ O, the intersection of a simplex and an affine
space, is a polyhedron. Suppose that{o1, . . . , oκ+1} is its vertex
set; thus,OS = co{o1, . . . , oκ+1}. Let IOS

:= {1, . . . , κ + 1}.
Similarly, supposeES = co{ǫ1, . . . , ǫκ0+1} is a polytope with vertex
set{ǫ1, . . . , ǫκ0+1}, and letIES

:= {1, . . . , κ0+1}. Define the cone

cone(OS) :=
⋂

i∈IOS

C(oi) .

Consider Figure 2(a). HereC(v0) is depicted as the shaded cone with
apex atv0. The setOS = co{o1, o2, o3} is not only a polyhedron, but
also a simplex. It is clear from the figure that cone(OS) = C(o1) ∩
C(o2)∩ C(o3) is preciselyC(v0). The next result says to solve RCP
by continuous state feedback there must be a non-zero vectorin B
that lies in cone(OS).

Theorem 1:SupposeOS 6= ∅. If S
S

−→ F0 by continuous state
feedback, thenB ∩ cone(OS) 6= 0.

Proof: Suppose by way of contradiction thatB∩cone(OS) = 0.
SinceS

S
−→ F0, by Proposition 3.1 of [7], one can find a continuous

state feedbacku(x) such thaty(x) := Ax+Bu(x)+a ∈ C(x), ∀x ∈
S . Let OS = co{o1, . . . , oκ+1}. If κ = 0, thenB ∩ cone(OS) = 0

implies thatB∩C(o1) = 0. Thus,o1 is an equilibrium of the closed-
loop system. Instead supposeκ > 0 and w.l.o.g.0 6= b1 := Ao1 +
Bu(o1) + a ∈ B ∩ C(o1). Then the assumptionB ∩ cone(OS) =
0 implies there existsk ∈ {2, . . . , κ + 1} such thatb1 6∈ C(ok).
Consider the segmento1ok. Sinceo1ok ⊂ O, y(x) ∈ B for x ∈
o1ok. Thus there exists a continuous functionc : Rn → R such that
y(x) = c(x)b1 for x ∈ o1ok, with c(o1) > 0 andc(ok) ≤ 0. By the
Intermediate Value Theorem, there existsx∗ ∈ o1ok ⊂ S such that
c(x∗) = 0. Thus, the closed-loop system has an equilibrium inS , a
contradiction toS

S
−→ F0.

IV. PRELIMINARY TECHNICAL RESULTS

In this section we present preliminary technical results that will
enable us to characterize (in Section V) useful geometric properties
of OS andES . We begin by posing our main assumptions.

Assumption 1:The system (1) satisfies:
(A1) OS = co{o1, . . . , oκ+1}, a κ-dimensional simplex withm ≤

κ < n.
(A2) If ES 6= ∅, then ES = co{ǫ1, . . . , ǫκ0+1}, a κ0-dimensional

simplex with0 ≤ κ0 ≤ κ.
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(A3) OS ∩ S◦ 6= ∅.
(A4) OS ∩ F0 = ∅.

Remark 1: If OS = ∅, then the solution of RCP is completely
understood [8], [13]. Here we only focus on the case whenOS 6= ∅.
In [3] we assumed that ifOS 6= ∅, thenOS is aκ-dimensional face of
S , where0 ≤ κ ≤ n. More generally, if the intersection is arbitrary,
thenOS is a convex polytope. In the present paper we assumeOS

is a simplex that intersects the interior ofS . Also, we restrictOS so
that it does not touchF0. The motivation for these restrictions is to
posit a generic situation distinct from the one studied in [3]. First,
(A3) is clearly generic. Second, generically(A,B) is controllable.
Then dim(O) = 1, so (A1) and (A2) are satisfied. Thus, if we
restrict to single-input systems, then Assumption (A1)-(A3) include
the generic case. Finally, (A4) is a simplifying assumptionand is the
only notable loss of generality. However, it is important tonote that
how O intersectsS is determined by the choice of triangulation. If
the designer chooses to disregard (A4), then either a trial and error
style of synthesis must be used [8], [13] or other triangulations must
be adopted [3].

Example 1:Assumption 1 is illustrated in Figure 2(a). We observe
that OS = co{o1, o2, o3} is a simplex intersecting the interior of
S , but it does not intersect the facetF0. Therefore (A1) and (A3)
hold. AlsoES = co{o1, o2} is a simplex so (A2) holds. Figure 2(b)
illustrates a situation when Assumption 1 fails. In this case OS =
co{o1, o2, o3, o4} is a polytope, not a simplex. Moreover, it intersects
F0 along the segmento1o4. Thus, both (A1) and (A4) fail. ⊳

The following basic properties ofOS and ES are derived from
the fact that they are formed as intersections of affine spaces and a
simplex.

Lemma 1: If dim(OS) ≥ 1, then rb(OS) ⊂ ∂S . If dim(ES) ≥ 1,
then rb(ES) ⊂ rb(OS) ⊂ ∂S .

When conditions (A3)-(A4) hold for a simplexOS insideS , certain
restrictions on the index setsI(oi) arise. The next result identifies
those restrictions for a general simplexP ⊂ S .

Lemma 2:Let P = co{w1, . . . , wp+1} be ap-dimensional sim-
plex with vertex set{w1, . . . , wp+1}. SupposeP ⊂ S , rb(P) ⊂ ∂S ,
P ∩ S◦ 6= ∅, and P ∩ F0 = ∅. Then each index setI(wk),
k ∈ {1, . . . , p + 1}, has a nonzero exclusive member. That is,
there existsik ∈ I(wk), ik 6= 0, such thatik 6∈ I(wj) for all
j ∈ {1, . . . , p+ 1} \ {k}.

Proof: First note that the exclusive member ofI(wk) cannot
be zero becauseP ∩ F0 = ∅ implies 0 ∈ I(wj) for all j ∈
{1, . . . , p + 1}. If p = 0 we are done. Instead suppose w.l.o.g.
I(w1) ⊂ ∪p+1

j=2I(wj). SinceP ∩S◦ 6= ∅, ∪p+1
j=1I(wj) = {0, . . . , n}.

Thus,∪p+1
j=2I(wj) = {0, . . . , n}. DefineP ′ = co{w2, . . . , wp+1}.

Since P is a simplex,P ′ is a (p − 1)-dimensional facet ofP
so P ′ ⊂ rb(P). However, ∪p+1

j=2I(wj) = {0, . . . , n} implies
P ′ ∩ S◦ 6= ∅. This contradicts that rb(P) ⊂ ∂S .

We now turn to an algebraic characterization of points inO.
Let x =

∑n

i=0 α
x
i vi, where

∑
i
αx
i = 1. Since{v0, . . . , vn} are

affinely independent,αx := (αx
0 , . . . , α

x
n) are the unique barycentric

coordinates ofx. If x ∈ O then there existsux ∈ R
m such that

Ax+Bux + a = 0. This yields

Ax+Bux + a = 0 ⇐⇒ hj · (Ax+Bux + a) = 0 , j ∈ I

⇐⇒
n∑

i=0

αx
i (hj ·Avi) + hj · (Bux + a) = 0 , j ∈ I . (3)

Similarly, for x ∈ E we haveux = 0, so we get

Ax+ a = 0 ⇐⇒
n∑

i=0

αx
i (hj ·Avi) + hj · a = 0 , j ∈ I . (4)

Using (3) and (4) we can relate geometric properties ofOS andES

to the feasibility of certain algebraic constraints. The following are
the main results of this section.

Proposition 1: Suppose Assumptions (A1), (A3), and (A4) hold.
Then the following cannot hold:

hj ·Avi = 0 , hj ·a = 0 , hj ·B = 0 , k ∈ IOS
, i ∈ I(ok), j ∈ I\I(ok) .

(5)
Proof: By Assumptions (A1), (A3), and (A4), Lemma 2 applies

with P = OS . Thus, w.l.o.g. the vertices ofS can be ordered
according to exclusive members of{I(ok)}, k ∈ IOS

. That
is, the indices{0, . . . , n} are ordered as{0, m0, . . . ,m0 + r0 −
1,m1, . . . ,m1 + r1 − 1, . . . ,mκ+1, . . . , mκ+1 + rκ+1 − 1}. Here
{0, m0, . . . , m0 + r0 − 1} are the indices appearing in more than
one index setI(ok), k ∈ IOS

. Indices {mk, . . . ,mk + rk − 1}
only appear inI(ok). By Lemma 2,rk ≥ 1, k ∈ IOS

. Arguing
by contradiction, (5) implieshj · B = 0, hj · a = 0, for all
j ∈ I \ I(o1) ∪ · · · ∪ I \ I(oκ+1). Applying the new index ordering
we haveI \I(o1)∪· · ·∪I \I(oκ+1) = I \

[
I(o1)∩· · ·∩I(oκ+1)

]
⊃

{m1, . . . ,m1 + r1 − 1, . . . ,mκ+1, . . . ,mκ+1 + rκ+1 − 1}. We
conclude that forj = m1, . . . ,m1+r1−1, . . . ,mκ+1, . . . ,mκ+1+
rκ+1 − 1,

hj · (Bux + a) = 0 . (6)

Now consider anyx ∈ O. Combining (3), (5), and (6), and invoking
v0 = 0, we have

n∑

i=0

αx
i = 1 (7a)

n∑

i=1

αx
i (hj · Avi) + hj · (Bux + a) = 0 , j = m0, . . . , m0 + r0 − 1

(7b)
m1+r1−1∑

i=m1

αx
i (hj ·Avi) = 0 , j = m1, . . . , m1 + r1 − 1 (7c)

...
mκ+1+rκ+1−1∑

i=mκ+1

αx
i (hj ·Avi) = 0 , j = mκ+1, . . . ,mκ+1 + rκ+1 − 1 .

(7d)

For k = 0, . . . , κ + 1, let Mk = [hmk
· · · hmk+rk−1]

T

[Avmk
. . . Avmk+rk−1]. Then in matrix form, (7a)-(7d) become

Mαx :=





1 ⋆ ⋆ . . . ⋆
M0 ⋆ . . . ⋆

M1

. . .
Mκ+1




αx =





1
⋆
0
...
0




, (8)

where M ∈ R
(n+1)×(n+1) and empty entries are zero. Letk ∈

{1, . . . , κ + 1} and considerMk. Suppose rank(Mk) = rk. Then
for all x ∈ O, αx

mk
= · · · = αx

mk+rk−1 = 0. In particular,
OS ⊂ co{v0, . . . , vmk−1, vmk+rk , . . . , vn} ⊂ ∂S , a contradiction.
We conclude rank(Mk) < rk for k = 1, . . . , κ + 1. Consequently
we can findβ1, . . . , βκ+1 ∈ Ker(M) ⊂ R

n+1 such thatβk
0 = 0

for k = 1, . . . , κ+ 1 and{β1, . . . , βκ+1} are linearly independent.
Define ξk :=

∑n

i=0(β
k
i + αx

i )vi for k = 1, . . . , κ + 1. Observe
that ξk ∈ O because(βk + αx) is a solution of (8). Now we
claim {x, ξ1, . . . , ξκ+1} are affinely independent. (Proof of claim:
Define βk

1,n = (βk
1 , . . . , β

k
n), V := [v1 · · · vn] ∈ R

n×n and Γ :=
[β1

1,n · · ·βκ+1
1,n ] ∈ R

n×(κ+1). Then [(ξ1 − x) · · · (ξκ+1 − x)] = V Γ.
Since rank(V ) = n and rank(Γ) = κ+ 1, rank(V Γ) = κ+ 1.) We
concludedim(O) > κ, a contradiction.

Proposition 2: Suppose Assumptions (A1)-(A4) hold.
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(a) If ES ∩ S◦ 6= ∅ and dim(E) = 0, then the following cannot
hold:

(∃k ∈ IOS
) hj ·Avi = 0 , hj ·a = 0 , i ∈ I(ok), j ∈ I\I(ok) .

(9)
(b) If ES ∩ S◦ 6= ∅ and dim(E) = κ0 > 0, then the following

cannot hold:

hj ·Avi = 0 , hj · a = 0 , k ∈ IES
, i ∈ I(ǫk), j ∈ I \ I(ǫk) .

(10)

Proof: (a) W.l.o.g. supposek = 1 andI(o1) = {0, 1, . . . , q} for
some1 ≤ q ≤ n − 1. The form of this index set is dictated by the
following facts: (a1)0 ∈ I(o1) by (A4); (a2) q < n because (A3)
implies dim(OS) ≥ 1, so Lemma 1 giveso1 ∈ ∂S ; (a3) q ≥ 1,
otherwiseo1 = v0 andES ∩ S◦ 6= ∅ together implyOS ∩ F0 6= ∅,
a contradiction to (A4). Then (9) becomes:

hj ·Avi = 0 , hj ·a = 0 , i ∈ {0, . . . , q}, j ∈ {q+1, . . . , n} . (11)

Consider anyx ∈ E . Combining (4) with (11) and invokingv0 = 0,
we have

n∑

i=0

αx
i = 1 (12a)

n∑

i=1

αx
i (hj ·Avi) + hj · a = 0 , j = 1, . . . , q (12b)

n∑

i=q+1

αx
i (hj ·Avi) = 0 , j = q + 1, . . . , n . (12c)

Let M1 := [h1 · · ·hq]
T [Av1 . . . Avq] and Mq+1 :=

[hq+1 · · ·hn]
T [Avq+1 . . . Avn]. Then (12a)-(12c) become

Mαx :=




1 ⋆ ⋆
0 M1 ⋆
0 0 Mq+1



αx =




1
⋆
0



 ,

whereM ∈ R
(n+1)×(n+1). By the same argument as in the proof of

Proposition 1 we deduce that rank(Mq+1) < n−q, rank(M) < n+1,
anddim(E) ≥ 1, a contradiction.

(b) By assumptionES ∩ S◦ 6= ∅ and by (A4),ES ∩ F0 = ∅. By
(A2), ES is a simplex. Therefore Lemma 2 applies withP = ES .
Suppose w.l.o.g. the vertices ofS are ordered according to exclusive
members of{I(ǫk)}, k ∈ IES

, as per Lemma 2. That is, the
indices are ordered as{0,m0, . . . ,m0 + r0 − 1,m1, . . . ,m1 + r1 −
1, . . . ,mκ0+1, . . . ,mκ0+1 + rκ0+1 − 1}. Here {0, m0, . . . , m0 +
r0 − 1} are the indices appearing in more than one index setI(ǫk),
k ∈ IES

. Indices{mk, . . . ,mk + rk − 1} only appear inI(ǫk). By
Lemma 2,rk ≥ 1, k ∈ IES

. From (10) we knowhj · a = 0 for all
j ∈ I \ I(ǫ1)∪ · · · ∪ I \ I(ǫκ0+1). Applying the new index ordering
we haveI\I(ǫ1)∪· · ·∪I\I(ǫκ0+1) = I\

[
I(ǫ1)∩· · ·∩I(ǫκ0+1)

]
⊃

{m1, . . . ,m1+r1−1, . . . ,mκ0+1, . . . ,mκ0+1+rκ0+1−1}. We con-
clude that forj = m1, . . . ,m1 + r1 − 1, . . . ,mκ0+1, . . . ,mκ0+1 +
rκ0+1 − 1,

hj · a = 0 . (13)

Consider anyx ∈ E . Combining (4), (10), and (13), and invoking
v0 = 0, we obtain (8) withux = 0. By the same argument as in the
proof of Proposition 1, we deduce that rank(M) < n+ 1− κ0 and
dim(E) > κ0, a contradiction.

V. PROPERTIES OFEQUILIBRIUM SET

In this section we exploit the algebraic properties discovered in
the previous section, and particularly we examine their geometric
consequences. The most important result is that equilibriacannot
appear in the interior ofS when the necessary conditions for

solvability of RCP by continuous state feedback (in Assumption 2)
are satisfied.

Assumption 2:The system (1) satisfies:

(A5) Avi + a ∈ C(vi), i ∈ {0, . . . , n}.
(A6) B ∩ cone(OS) 6= 0.

First we present a technical lemma that links the appearanceof
an equilibrium with algebraic constraints of the type studied in the
previous section.

Lemma 3 ([14]): Suppose (A5) holds. Suppose there existsx ∈
OS and j ∈ I \ I(x) such that0 ∈ I(x) and hj · (Ax + a) = 0.
Then

hj ·Avi = 0 , hj · a = 0 , i ∈ I(x) .

The previous algebraic results lead to a remarkable property on the
placement of equilibria inS : under the assumption that the necessary
conditions of Proposition 3.1 of [7] and Theorem 1 hold, open-loop
equilibria can only appear on the boundary ofS .

Theorem 2:Suppose Assumptions 1 and 2 hold. IfES 6= ∅, then
ES ⊂ rb(OS) ⊂ ∂S .

Proof: Suppose by way of contradiction there isx ∈ S◦ such
thatAx+a = 0. By (A3),OS∩S

◦ 6= ∅, sodim(OS) = dim(O) ≥ 1
.Then by Lemma 1, rb(OS) ⊂ ∂S . Therefore,x ∈ ri(OS).

First, supposedim(E) = 0 and let0 6= b ∈ B ∩ cone(OS). Since
dim(O) ≥ 1, E = {x}, and x 6= oi, i ∈ IOS

, w.l.o.g. at least
one pair of vertices ofOS , say(o1, o2), satisfyAo1 + a = η1b and
Ao2+a = η2b with η1 < 0 andη2 > 0. Sinceb ∈ C(o1), hj ·b ≤ 0,
j ∈ I \ I(o1). By (A5) and convexityAo1 + a ∈ C(o1). Thus,
hj · (Ao1 + a) = hj · (η1b) ≤ 0, j ∈ I \ I(o1). Sinceη1 < 0, the
previous two inequalities implyhj ·b = 0, j ∈ I\I(o1). Equivalently
we gethj · (Ao1 + a) = 0, j ∈ I \ I(o1). Then by Lemma 3 we
get hj · Avi = 0, hj · a = 0 for i ∈ I(o1), j ∈ I \ I(o1). By
Proposition 2(a), we reach a contradiction.

Second, supposedim(E) = κ0 with κ0 > 0. Thenhj ·(Aǫk+a) =
hj · 0 = 0 for k ∈ IES

, j ∈ I . By Lemma 3 we gethj · Avi =
0, hj · a = 0 for k ∈ IES

, i ∈ I(ǫk), and j ∈ I \ I(ǫk). By
Proposition 2(b) this is a contradiction.

In Theorem 2 we showed that the set of equilibriaES lies in the
relative boundary ofOS . In the following we show further thatES

is indeed a face ofOS .
Theorem 3:Suppose Assumptions 1 and 2 hold. IfES 6= ∅, then

ES = co{o1, . . . , oκ0+1}, a κ0-dimensional face ofOS , where0 ≤
κ0 < κ.

Proof: SupposeES 6= ∅ but it is not a face ofOS . By
Theorem 2,ES ⊂ rb(OS). Hence w.l.o.g.ES = co{ǫ1, . . . , ǫκ0+1} ⊂
co{o1, . . . , op}, where2 ≤ p < κ+ 1 and ÎES

:= {1, . . . , p} is the
minimal index set such that for allx ∈ ES , x ∈ co{oi | i ∈ ÎES

}.
Since ES is on a face but not an entire face ofOS and since
the faces ofOS are simplices, at least one of the vertices ofES ,
say ǫ1, is not a vertex ofOS . Hence, there exist2 ≤ q ≤ p
and αi ∈ (0, 1) with

∑q

i=1 αi = 1 such thatǫ1 =
∑q

i=1 αioi.
Let y(oi) := Aoi + a = λiB with λi ∈ R, i ∈ IOS

. Then,

0 =
∑q

i=1 αiy(oi) =

(∑
i
αiλi

)
B. Thus

∑q

i=1 αiλi = 0. Since

αi > 0, either λi = 0 for all i ∈ {1, . . . , q}, or there exists at
least one pair of vertices ofOS , say(o1, o2), such thatλ1 < 0 and
λ2 > 0. For the first case, co{o1, . . . , oq} ⊂ ES . This meansǫ1, a
vertex ofES , is expressible as a convex combination of points inES ,
a contradiction. For the second case, we haveλ1 < 0 andλ2 > 0.
If λp+1 = 0, then op+1 ∈ ES , and p + 1 ∈ ÎES

, a contradiction.
Therefore, assume w.l.o.g. thatλp+1 > 0. Then by convexity there
existsx ∈ co{o1, op+1} such thatAx+ a = 0. Hence,p+1 ∈ ÎES

,
a contradiction.
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Fig. 3. Reach controllability in two 2D examples.

VI. REACH CONTROLLABILITY

In this section we define the notion of reach controllability. This
notion describes the condition when a velocity vector0 6= b ∈
B ∩ cone(OS) can be injected into the system at vertices ofS that
contribute to the generation of equilibria onOS .

Definition 1: Suppose Assumption 2 holds and0 6= b ∈ B ∩
cone(OS). We say the triple(A,B, a) is reach controllableif either
ES = ∅; or ES = co{o1, . . . , oκ0+1} with 0 ≤ κ0 < κ, and
for eachk ∈ IES

, there existsi ∈ I(ok) and ui > 0 such that
Avi + bui + a ∈ C(vi).

The question of the choice of vector inB ∩ cone(OS) to use is
settled by the following result.

Lemma 4:Suppose Assumptions (A1) and (A3)-(A6) hold. If0 6=
b ∈ B ∩ cone(OS), then−b 6∈ B ∩ cone(OS).

Proof: Suppose not. Then for allk ∈ IOS
and j ∈ I \ I(ok),

hj ·b ≤ 0 andhj ·(−b) ≤ 0. This implieshj ·b = hj ·(Aok+a) = 0
for all k ∈ IOS

, j ∈ I \I(ok). By Lemma 3 we obtainhj ·Avi = 0,
hj ·a = 0, hj ·B = 0 for all k ∈ IOS

, i ∈ I(ok), andj ∈ I \ I(ok).
By Proposition 1 this is a contradiction.

Example 2:We illustrate the concept of reach controllability with
a 2D example. However, it must be noted that a true example can
only be exhibited in dimension 4 and higher, since in dimensions 2
and 3, no system is not reach controllable while also satisfying the
two necessary conditions, Proposition 3.1 of [7] and Theorem 1. This
aspect will be further explored elsewhere. Here we illustrate a case
when a 2D example simultaneously fails reach controllability and
Theorem 1. Consider Figure 3(a). The velocity vectorsyi = Avi+a
at vi, i = 0, 2 produce an equilibriumx̄. Adding a positiveb
component toy0 or y2 results in a violation of the invariance
conditions. The only option is to add−b to y0 or y2. This in turn
results in velocity vectors at̄x ando1 as depicted by dashed arrows.
Clearly, the zero vector is in the convex hull of these two vectors so
there will be an equilibrium inS along segmento1x̄. Therefore, RCP
is not solvable. Notice in this example an equilibrium can appear in
the interior ofS , apparently violating Theorem 2. This is because
B ∩ cone(OS) = 0, so Theorem 2 actually does not apply. On the
other hand, Figure 3(b) shows an example where the system is reach
controllable. Hereb ∈ B ∩ C(v0) and so it can be added to bothy0
andy2. This results in new velocity vectors atx̄ ando1 depicted as
dashed arrows. Clearly, the equilibrium is pushed out of theconvex
hull of these two points - it now lies below the simplex. ⊳

In the next result we relate reach controllability to the existence of
a coordinate transformation that decomposes the dynamics into those
that contribute to open-loop equilibria and quotient dynamics. It is
noted that a geometric characterization of reach controllability has
not yet been obtained, but the following result gives a first evidence
that one may exist.

Lemma 5:SupposeAvi + a ∈ C(vi) for i ∈ {0, . . . , n}. Also
suppose there existsx ∈ ES with I(x) = {0, . . . , q} for some1 ≤

q < n. Then there exists a coordinate transformationz = T−1x that
transforms system (1) into

ż =

[
A1 ⋆
0 A2

]
z +

[
a1

0

]
+

[
b1
b2

]
u , (14)

whereA1 ∈ R
q×q, a1 ∈ R

q, b1 ∈ R
q, A2 ∈ R

(n−q)×(n−q), and
b2 ∈ R

n−q .
Proof: Sincex ∈ ES , Ax + a = 0. Thushj · (Ax + a) = 0,

j ∈ I \ I(x). By Lemma 3 we have

hj ·Avi = 0 , hj · a = 0 , i = 1, . . . , q, j = q + 1, . . . , n . (15)

Now consider the coordinate transformationz = T−1x, whereT =
[v1 · · · vn]. Note thatT is nonsingular because the vertices ofS are
affinely independent andv0 = 0. The transformed vertices areei =
T−1vi for i = 0, . . . , n (where ei is the ith Euclidean coordinate
vector ande0 = 0). Also, the transformed unit normal vectors are
−ej =

TT hj

‖TT hj‖
, j ∈ I . By a standard argument, (15) implies that

the transformed system is (14).
The following result provides constructive necessary and sufficient

conditions for solvability of RCP by affine feedback in the studied
setting.

Theorem 4:Consider the system (1). Suppose Assumptions 1 and
2 hold andbκ+1 := Aoκ+1+a ∈ B∩cone(OS). We haveS

S
−→ F0

by affine feedback if and only if(A,B, a) is reach controllable.
Proof: (⇐=) By (A5), the invariance conditions (2) hold with

u = 0. If ES = ∅, by Theorem 8 of [13] (or Theorem 4.16 of [8]),
S

S
−→ F0 by affine feedbacku(x) = 0. Instead, ifES 6= ∅, then

by Theorem 3,ES = co{o1, . . . , oκ0+1} with 0 ≤ κ0 < κ. Let
bκ+1 := Aoκ+1+a 6= 0. We begin by showing that for allk ∈ IOS

,
Aok + a = λkbκ+1 with λk ≥ 0. The result is obviously true for
vertices ofOS in ES sinceAok + a = 0, k ∈ IES

. Second, consider
vertices ofOS not in ES . For these vertices the coefficientsλk,
k ∈ IOS

\ IES
, must all have the same sign; otherwise, by convexity

there isx ∈ co{ok | k ∈ IOS
\ IES

} such thatAx+ a = 0, which
impliesx ∈ ES , a contradiction. Since by assumptionλκ+1 = 1, we
get λk > 0, k ∈ IOS

\ IES
.

Since by assumptionbκ+1 ∈ B ∩ cone(OS), we can takeb =
bκ+1 in the definition of reach controllability. W.l.o.g. letB = b.
By reach controllability, for eachk ∈ IES

, there existik ∈ I(ok)
and uik > 0 such thatAvik + Buik + a ∈ C(vik). Selectik ∈
I(ok) anduik > 0 as above. Setui = 0 for the remaining vertices
of S . Using the method of [7], form the associated affine feedback
u(x) = Kx + g and lety(x) := Ax + Bu(x) + a. For k ∈ IOS

,
considerok =

∑
i∈I(ok)

αok
i vi with αok

i > 0. Fork ∈ IES
, u(ok) =∑

i∈I(ok)
αok
i ui > 0 sinceuik > 0 and ik ∈ I(ok). For k ∈ IOS

\
IES

, u(ok) ≥ 0. We obtain that fork ∈ IES
, y(ok) = Aok +

Bu(ok)+a = u(ok)b, with u(ok) > 0. Fork ∈ IOS
\IES

, y(ok) =
Aok + Bu(ok) + a = (λk + u(ok))b, with λk + u(ok) > 0. By
convexity forx ∈ OS , y(x) = λ(x)b with λ(x) > 0. Thus,ES = ∅

for the closed-loop system. By Theorem 8 of [13],S
S

−→ F0 by
affine feedbacku(x).

(=⇒) SupposeS
S

−→ F0 by affine feedbacku(x) = Kx +
g. If ES = ∅ (for the open-loop system), then(A,B, a) is reach
controllable. Alternatively, ifES 6= ∅, then by Theorem 3,ES =
co{o1, . . . , oκ0+1} where0 ≤ κ0 < κ. W.l.o.g. supposeB = b ∈
B ∩ cone(OS). Suppose(A,B, a) is not reach controllable. Then
there existsk ∈ IES

such that for alli ∈ I(ok), Avi+Bu(vi)+a ∈
C(vi) impliesu(vi) ≤ 0. Sinceu(ok) =

∑
i∈I(ok)

αok
i u(vi), α

ok
i >

0, we obtainu(ok) ≤ 0. Either u(ok) = 0, so Aok + Bu(ok) +

a = 0, which contradictsS
S

−→ F0. Alternatively, u(ok) < 0 so
A+Bu(ok)+a = λkb with λk < 0. This meansAoi+Bu(oi)+a =
λib with λi < 0 for all i ∈ IOS

(for otherwise by convexity there
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is x ∈ OS such thatAx + Bu(x) + a = 0, a contradiction). We
conclude−b ∈ B ∩ cone(OS), a contradiction to Lemma 4.

VII. E XAMPLES

We present two examples of Theorem 4. In the first example reach
controllability fails while in the second example it holds.

Example 3:Consider a simplexS = co{v0, . . . , v4} ⊂ R
4, where

v0 = (0, 0, 0, 0) and for i ∈ I = {1, . . . , 4}, vi = ei, the ith
Euclidean basis vectors. Note thathi = −ei, i ∈ I . Consider the
following affine system

ẋ =





−1 0 1 0
−3 −6 −3 −2
0 0 −4 0
0 0 0 4



x+





−3
−5
8
4



u+





0
3
1
0



 (16)

Let b := (−3,−5, 8, 4). It can be verified that

O :=
{
x ∈ R

n | x1 = x2 = x4 +
1

4
, x3 = −2x4 +

1

4

}
.

Setting x4 = 0 in the defining equations forO, we get o1 :=(
1
4
, 1
4
, 1
4
, 0
)
. Setting x3 = 0, we get o2 :=

(
3
8
, 3
8
, 0, 1

8

)
. Thus,

OS = co{o1, o2}, where

o1 =
1

4
v0 +

1

4
v1 +

1

4
v2 +

1

4
v3 ∈ F4

o2 =
1

8
v0 +

3

8
v1 +

3

8
v2 +

1

8
v4 ∈ F3 .

Also we have thatAo1 + a = 0 andAo2 + a 6= 0, so ES = {o1}.
We observe thatdim(O) = 1, dim(E) = 0, OS ∩ F0 = ∅, and
OS ∩ S◦ 6= ∅. Becauseo1 ∈ F4 ando2 ∈ F3, we have

cone(OS) =
{
y ∈ R

n | h3 · y ≤ 0, h4 · y ≤ 0
}
.

Clearly b ∈ B ∩ cone(OS), so solvability of RCP by continuous
state feedback cannot be ruled out by Theorem 1. Also it can be
verified thatAvi + a ∈ C(vi), i ∈ {0, . . . , n}, so solvability of
RCP by continuous state feedback cannot be ruled out by Proposition
3.1 of [7]. Nevertheless, for the given simplexS and system (16),
RCP is not solvable by affine feedback. This is due to the fact that
(A,B, a) is not reach controllable according to Definition 1. Indeed
Avi + Bui + a ∈ C(vi) results inui = 0 for ∀ i ∈ I(o1) =
{0, 1, 2, 3}. ⊳

Example 4:Consider a simplexS = co{v0, . . . , v4} ⊂ R
4, where

v0 = (0, 0, 0, 0) and fori = 1, . . . , 4, vi = ei, theith Euclidean basis
vector. Consider the following affine system

ẋ =





−1 1 0 1
0 −1 1 1

−1 −1 −2 −1
0 0 0 1



x+





−1
0
1
2



u+





0
0
1
0



 (17)

Let b := (−1, 0, 1, 2). It can be verified that

O :=

{
x ∈ R

n | x1 =
1 + 5x4

4
, x2 =

1− x4

4
, x3 =

1− 5x4

4

}
.

Settingx4 = 0 in the defining equations forO, we get o1 :=(
1
4
, 1
4
, 1
4
, 0
)
. Settingx3 = 0, we geto2 :=

(
5
10
, 2
10
, 0, 2

10

)
. Thus,

OS = co{o1, o2}, where

o1 =
1

4
v0 +

1

4
v1 +

1

4
v2 +

1

4
v3 ∈ F4

o2 =
1

10
v0 +

5

10
v1 +

2

10
v2 +

2

10
v4 ∈ F3 .

Also we have thatAo1 + a = 0 andAo2 + a = 1
10
b 6= 0, soES =

{o1}. We observe thatdim(O) = 1, dim(E) = 0, OS ∩ F0 = ∅,

andOS ∩ S◦ 6= ∅. Becauseo1 ∈ F4 ando2 ∈ F3, we have

cone(OS) =
{
y ∈ R

n | h3 · y ≤ 0, h4 · y ≤ 0
}
.

Clearly b ∈ B ∩ cone(OS). Also, it can be verified thatAvi + a ∈
C(vi), i ∈ {0, . . . , n}. Now we show that(A,B, a) is reach
controllable. Indeed, fori = 1, 2 ∈ I(o1), we can findui > 0 such
that Avi + Bui + a ∈ C(vi). Based on the constructive procedure
given in the proof of Theorem 4, to removeo1 we can inject vector
b into the vector field atv1 or v2. One possibility is to selectu1 = 1
and u0 = u2 = u3 = u4 = 0. Using the method of [7], the
resulting affine feedback isu(x) = [1 0 0 0]x. It is easy to verify
that by usingu(x) = [1 0 0 0]x, no equilibrium appears inS . Since
Avi + Bui + a ∈ C(vi), i ∈ {0, . . . , n}, by Theorem 8 of [13],
S

S
−→ F0 usingu(x). ⊳

VIII. C ONCLUSION

The paper studies the reach control problem for single inputaffine
systems on simplices. We relaxed the assumption that the state
space is triangulated with respect to the affine setO, the set of
possible equilibria of the affine system. New necessary and sufficient
conditions for solvability of RCP are provided in terms of the notion
of reach controllability. As yet, a geometric characterization of reach
controllability has not been found; our future work will explore this
possibility.
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