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Abstract— We study the reach control problem (RCP) for
a single input affine system with a simplicial state space. We
extend previous results by exploring arbitrary triangulations
of the state space; particularly allowing the set of possita
equilibria to intersect the interior of simplices. In the studied
setting, it is shown that closed-loop equilibria, neverthkess, only
arise on the boundary of simplices. This allows to define a niin
of reach controllability which quantifies the effect of the @ntrol
input on boundary equilibria. Using reach controllability we
obtain necessary and sufficient conditions for solvabilityof RCP
by affine feedback.

I. INTRODUCTION

This paper studies theeach control problem(RCP) on

simplices. The problem is for an affine system defined oﬁo{d“(}’ U1, -
a simplexS to reach a prespecified facet of the simplex irf" acets/o, . .
finite time without first leaving the simplex. The problem ha

been studied over a series of papers [3], [4], [5], [7], [2&du L .
papers [3], [4], 8], [7], [2¢ T ormal vector to each facefF; pointing outside of the

to its fundamental nature among reachability problems.
reader is referred to [1], [2], [3], [4], [5], [6], [7] for fuher
motivations, including how the problem arises in reachigbil

problems for hybrid systems. In [2] we studied RCP under
the assumption that the state space was triangulated so

relative boundary ofS, denoted rbS) is S \ ri(S), anddS

is the boundary ofS. The symbolU represents a control
class such as open-loop controls, continuous state fekdbac
affine feedback, etc. The notatidh denotes the subset of
R™ containing only the zero vector. The notatidrnstands

for a vector with appropriate dimension whose entries are
one. Notation cuvq,v9,...} denotes the convex hull of a
set of pointsy; € R™. The notation orli/) denotes the
order of the square matriX/.

II. BACKGROUND

We consider an n-dimensional simplex S

., Upt With vertex setV := {wg,v,..

-, Un}
., Fn (the facet is indexed by the vertex

dt does not contain). Without loss of generality (w.l.o.g.)

we assume thaty = 0. Let h;, i = 0,...,n be the unit

simplex. LetF, be the target set i¢. Define the index sets
I:={1,...,n}andl; := I\ {i} (notely = I).

Consider the affine control system defined&n
t=Ax+ Bu+a, reS,

1)

that O, the set of possible equilibria of the affine system, . y
intersected withS was either the empty set or a face ofwhere A € R"*", a € R", B € R"*™, and rankB) =

S. In this paper we assumé intersects the interior of

m = 1. Let ¢, (¢, z¢) denote the trajectory of (1) under a

S, and we study only single input systems. Remarkablgontrol u(t) starting fromz, € S and evaluated at time
it emerges that if an equilibrium appears using an affiné/e are interested in studying reachability of the target
feedback to solve RCP, then the equilibrium is, nevertiselegom S.

on the boundary of. Using this fact, we propose a notion

Problem 1 (Reach Control Problem (RCP)onsider

of reach controllabilityfor determining if RCP is solvable System (1) defined o&. Find a feedback:(z) such that:
by affine feedback. Simply put, an affine system is reaclpr everyzo € S there existI’ > 0 and~ > 0 such that
controllable on a simplex if each equilibrium can be “pushed (i) ¢, (¢,z0) € S for all ¢ € [0, 77,

off” the simplex boundary by an admissible affine feedback. (i) ¢, (T, zo) € Fo, and

Because the feedback is affine, the equilibrium is affected b(iii) ¢, (¢,z¢) ¢ S for all ¢ € (T, T + ).

the control input only through the control value applied at &CP says that trajectories of (1) starting from initial cend
vertex among those vertices whose convex hull contains thiens in S exit S through the targef, in finite time, while

equilibrium. In sum, reach controllability measures theeak

not first leavingS.

to which the control input can affect the dynamics on faces Definition 1: A point z; € S can reachF, with con-

of the simplex. Using reach controllability, we obtain newstraint inS with control classU, denoted byz, Sy Fo, if
necessary and sufficient conditions for solvability of R@P ithere exists a contral of classU such that properties (i)-

the current setting.
Notation. Let S ¢ R" be a set. The closure §, and
the interior isS°. The relative interior is denoted(§), the
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(iii) of Problem 1 hold. We writeS S, Fo by control class

U if for every zg € S, xg 5, Fo with control of classU.
Define the closed, convex cones

Ci={yeR" : hj-y<0,j€l },ic{0,...,n}.

Also define congS) := Cy. Note that congS) is the tangent
cone toS at vg.

Definition 2: We say the invariance conditions are solv-
able if there existi, . .., u,, € R™ such thatdv;+a+Bu; €



C,; for i =0,...,n. Equivalently, conditions for solvability. Suppose

hj-(A’Ui-i-a-l—Bui)SO,iE{O,...7n},j€Ii. (2) 03200{01,...70K+1}
The inequalities (2) are calleidvariance conditionsThese
Nagumo-like conditions guarantee that trajectories cann
exit through the restricted faceis, ..., F,, and are used condOs) := ﬂ Clo;).
to construct affine feedbacks [4]. For general state feed-
backs (particularly those not satisfying convexity), styer . . . .
conditic()%s are neileded to ensure tfgat%rajectorie?dognm eI is cone consists of all vectors that simultaneously Satis

restricted facets. To that end, fore S, defineJ(z) = {j € ?hl |?Vﬁrlancetcond|tlorl1ts at all vertlc?si, e I(és' In th
T |« e F,}. Define the closed, convex cone e following two results, no assumption is made on the

placement of0s with respect taS.

8nd definelo, := {1,...,x + 1}. Also define

i€log

Clx):={yeR" : hj-y<0, jeJ(z) }. Lemma 6 ([4]): If S —>» F, by a continuous state feed-
Definition 3: We say a state feedbaakz) satisfies the backu(z), thenu(x) satisfies the invgriance conditions (3).
invariance conditions ifdz + Bu(z) + a € C(z). Equiva- ~ Theorem 7:Suppos&s # (. If S — F, by continuous
lently, for all z € S andj € J(x), state feedback(x), thenB N condOs) # 0.
hj - (Az + Bu(z) + a) < 0. ©) IV. PRELIMINARIES
Givenz € S, let I(x) be the minimal index set such that
z e cofv; | i€ I(x)}. Aform of (3) we will often employ In this section we present preliminary technical resulés th

is as follows. Suppose € co{v; | i € I(z)}. Using the will enable us to characterize (in Section V) useful geometr
properties of the simplex [2], one can show this implies ~ properties ofOs and £s. We begin by posing the main
F;, forj € T\ I(z). Then (3) becomes assumptions for the rest of the paper. In [2] we assumed
, that if Os # 0, then Og is a k-dimensional face ofS,
hj - (Az + Bu(z) +a) <0, je I\ I(z). where0 < x < n. More generally, if the intersection is
For Problem 1 the following necessary and sufficient cond@rbitrary, thenOs is a convex polytope. In the present paper
tions have been established for the case of affine feedback® assum&s is a simplex that intersects the interior §f

Theorem 4:[5], [7] Given the system (1) and an affine Finally, we restrictOs so that it does not touclF,. The
feedbacku(z) = Kz + g, where K € R™%", g € R™ latter is an extra restriction on the geometry that must be

addressed in future work.

andug = u(vg),...,u, = u(v,), the closed-loop syste i
satisfiesS —» Fo if and only if () the invariance conditions Assumption 8:
(2) hold, and (b) there is no equilibrium i8. (Al) Os = cofoy,...,0441}, @ r-dimensional simplex
Let B = Im(B), the image ofB. Define the set opossible with m <k <n.
equilibrium points (A2) If &s # 0, thenEs = cofer,...,€x041}, @ Ko~
dimensional simplex witl) < kg < k.
O={zeR" : Az +acB}. (A3) OsNS° 0.
One can show that eith& = ) or O is an affine space with (A4) Os 0 }—_0 = 0. ] ) )
m < dim(O) < n. Notice that the vector fieldlz + Bu+a The following basic properties ads and s derive from

on O can vanish for an appropriate choice ©f so O is the fact that they are formed as intersections of affine space
the set of all possible equilibrium points of the system.cAls @1d a simplex.

define the set obpen-loop equilibrium points Lemma 9:Suppose Assumptions (A1)-(A3) hold. If
dim(Os) > 1, then rtiOs) C 9S. If dim(Es) > 1, then
E={zeR" : Az+a=0}. rb(Es) C rb(Os) C 8S.
Define Os := SN O and&s := SNE. Clearly & ¢ © R_ecall the index sefp, = {1,...,_/1 + 1} and (_jefine
and£s ¢ Os. The following result was proved in [2] for the index setleg := {1,..., ko + 1}. First we examine an

the case when the state space is triangulated soQkais implication of the fact thaths N S° # () on the index sets

a k-dimensional face of. Here we generalize to arbitrary I(ox) and I(e). _

triangulations. Lemma 10:Suppose Assumptions (Al), (A3), and (A4)
Theorem 5:If the invariance conditions (2) are solvableh0ld. Then each selt(o;), k € lo,, has a nonzero exclusive

and BN condS) # 0, thenS -+ F, by affine feedback. member. That is, there existg € I(ox), ex # 0 ande;, ¢
I(0)), for all j # k.

Lemma 11:Suppose Assumptions (A2)-(A4) hold. Then
eithersNS° = () or each sef (e ), k € I¢,, has a nonzero
The goal of this paper is to obtain new necessary and sugxclusive member. That is, there exisis € I(ex),ex # 0
ficient conditions for solvability of RCP by affine feedback;andes & I(¢;), for all j # k.
unlike the conditions of Theorem 4, we seek conditions that Suppose Assumptions (Al), (A3), and (A4) hold, and
lead to a synthesis of the controller. We begin with necgssasuppose we reorder indic€$),...,n} so that indices that

IIl. NECESSARYCONDITIONS



belong to more than one séfoy), k € I, are listed first.
These are the shared indices

U I(0;) N I(0j).

1<6,j<rmtl, it

(4)

In light of (A4), assume w.l.0.g. this list begins with indéx

Next, we list indices that correspond to exclusive members

of I(o1),...,1(0ok41), respectively, and in this order. By

Lemma 10 the exclusive member lists are non-empty. Also

by (A3), all elements of0,...,n} are included in the new
ordering smceu““]( i) = {0,...,n}. In the sequel we
call this an orderlng according to exclusive members
{I(or)}.

We now turn to an algebraic characterization of points i
&s. Define the matrices

H: [hl . hn], A’Un]

Z[A’Ul

and

I'.=HTYy, v:=HTa. (5)

Supposefs # 0. Assume thatr € Es andz = Y., Biv;
for somep; € [0,1], > .3; = 1. By the properties of
the simplex (Lemma 4.4, [2]), one can show thdt is
nonsingular. Hence, we have

Ar4+a=0 < H'(Az+a)=0

= Y BiH"Avi+ H'a=0
1=1
— I'B+v=0 (6)
where 3 = (B1,...,05,). Note that the derivation uses

the fact thatvy = 0. In the sequel, points i€s will be

characterized using (6). Using (6) we can relate geometri

properties offs and Ogs to certain restrictions on the form
of matricesI" and~. There are several distinct cases.

Lemma 12:Supposedim(Es) = ko with ko > 0 and
assume thats N S° # (. Then,T' and~ cannot have the
form

i T oo Ty "

0 To O 0

I'= Y = .
0 0 . 0 :

00 0 Tepiop+z 0

)
wherep > ko and ordT;;) > 1, i = 2,...,p+ 2. Vectory
is partitioned corresponding to the partition Iof

Lemma 12 gives the the algebraic consequences of thefineOs. Hence,dim(Os) > « + 1, a contradiction.

co{o1,...,04,+1} With 0 < kg < k. Letz € s and
Z?: Bv; for somep; 0,1], 3, B; = 1. Using (5),
and 28) and ordering indices by exclusive members of
( )}, we obtain

I'11B81 +

?
{1

s Do) Bty + 51 =0,
T2282 =0,
: 9)
Cer2y(vr2)Brt2) = 0.

Herewl :=v1. Also 3;, i =2,...,k+ 2 correspond to the
exclusive members of (o1), .. -,I(0H+1), respectively, and

ofl corresponds to the indices in (4). Note that by Lemma 10,

1m

(Bi) >1i=2,...,k+ 2. Suppose that ofd';;) = p;

L E+2 From the second equation of (9), we deduce
rz]hat if ran

KT22) = po, thenB2 = 0 for all x € Es. This
means that no exclusive membersigb,) appear inl(z),
for any x € &s. In particular, from Lemma 10y, ¢ &g, a
contradiction. Thus, rarfKs2) < po. Similarly rankT;;) <
pi, 1 =2,..., ko + 2. This means that (9) provides at most
n — (ko + 1) independent constraints to defifg. Hence,
dim(&s) > ko + 1, a contradiction.

Second, supposé&s = ). For eachk € Ip,, Ao, +a :=
A B and)\k # 0 since&s = (). Using (8), for eaclk € I@S,

hj-(Aok+a)=h;-( > ai(Avi+a))=0,j€I\I(o)
i€1(og)

= landa® > 0 fori € I(og).
this gives

-a:O,hj-Bzo,

where 3./,
Combining W|t?1 (8)

hj : A’Ui =0 y hj (10)

wherei: € I(ox), 7 € I\ I(og), and k € Ips. Now
supposer € Os andz = Y., Biv; for somep; € [0,1],
,Bi = 1. Let u(x) be any affine feedback that satisfies
x + a + Bu(x) = 0. The same reasoning that yields (6)
gives a formula

I'8+~+H"Bu(z) =0, (11)

where 3 = (f4,...,8,). Using (5), (11), and (10), and
ordering indices by exclusive members{df o)}, we obtain

(9) with 41 :== v+ HTBY"" | B;u(v;). Note that we use
the fact thatu(x) is affine. Suppose that aiid;;) = p;, i =
2,...,k+2. From the second equation of (9), we deduce that
if rank(T'22) = pa, thenB2 = 0 for all z € Og, sox € IS.
This contradicts Assumption (A3). Thus, rdiks) < po.
Similarly rankT;;) < p;, i = 2,...,k + 2. This means that
(9) provides at most — (x + 1) independent constraints to

[ |

statemen€s N S° # ). The next result gives the analogous

algebraic consequences whég is empty or is a face of
Os.

Lemma 13:Suppose Assumption 8 holds.
suppose that eithefs = () or £s = co{o1,...,0,,4+1} With
0 < ko < k. Then the following cannot hold simultaneously:

hj'Al)i:O, hj'CLZO, (8)

wherei € I(oy), j € I\ I(ox), andk € Iog.
Proof: [Proof of Lemma 13] Suppose by way of contra-

diction that constraints (8) hold simultaneously. Firgijsose

In addition,

V. PROPERTIES OFEQUILIBRIUM SET

In this section we exploit the algebraic properties discov-
ered in the previous section, and particularly we examine
their geometric consequences. The most important result is
that equilibria cannot appear in the interior 8fwhen the
necessary conditions for solvability of RCP are satisfiécst F
we present a technical lemma that links the appearance of
an equilibrium with algebraic constraints of the type studi
in the previous section.



Lemma 14:Suppose thatlv; +a € C; fori € {0,...,n}. Suppose we ordef0,...,n} according to exclusive mem-
Suppose there exists € Os andj € I\ I(x) such that bers of{I(e;)}. Now write (14) using (5). This yields (7)
0 € I(z) andh; - (Az +a) = 0. Then with p = ko and ordl';;) > 1,4 = 2,...,Kk9 + 2. This
, contradicts Lemma 12. [ |
hj - Avi =0, hj-a=0, i€ [(z). Remark 16:Theorem 15 extends to the case when an
Proof: Let z € Os as above and suppose = ) . .
5 cuvs, where . 0; — 1 anda; > 0. By affine feedba_clu =Kzx+glis apphed'to the system (1). For
aszéeulr(r%tion there exisjr;see[(?\ I(x) then we obtain the closed-loop systém- (A+BK)z+a+
' Bg = Az + a, and the analysis can be repeated for the sets
hj - (Az +a) = hj - Z ai(Av; +a) =0. O and €. We conclude that using any affine feedback that
icl(z) solves the invariance conditions and under Assumption 8,

closed-loop equilibria can only appear on the boundary of
Also by assumptionfy; - (Av; +a) < 0, i € I(z). Since g ped y app y

a; > 0 it follows Corollary 17: Suppose that Assumption 8 holds. Also

hj-(Avi+a) =0, icl(x). (12) supposedv;+a € C; fori € {0,...,n} andBNcongOs) #
) . 0. Thendim(&) < dim(O) — 1.
Since0 & I(x) andvy = 0 we obtainh; - Av; = 0, hj-a = 0, In Theorem 15 we showed that the set of equilitstiglies

i€ I(x). _ ) in the relative boundary 0®s. In the following we show
The previous algebraic results lead to a remarkable prop; iy ar that&s is indeed a face 00

erty on the placement of equilibria i5: under the as- T
sumption that the necessary conditions of Lemma 6 arﬁdo

Theorem 7 hold, open-loop equilibria can only appear o Es £ 0, thenEs — cOfor, .. ., 0y 11}, @ o-dimensional

the boundary ofS.
< .
Theorem 15:Suppose that Assumption 8 holds. Also sup-face F?:o(?)?’ Vézifgs&ﬁo;:@libut is not a face o0s. By

posedv;+a € C; fori € {0,...,n} andBncondOs) # 0.
If s # 0, thenEs C rb(Os) C S. Theorem 15£s C rb(Os). Hence,Es can be expressed as

Proof: Suppose by way of contradiction thereris S° Es =cofer, ... €11} C CO{O1,...,0p}
such thatAT + a = 0. By Lemma 9,7 € ri(Os). .
First, supposelim(Es) = 0 and leth € B cond®s). Where2 <p < x + 1. Define [(Es) := {1,...,p} as the

Sincedim(Os) > 1, w.l.o.g., at least one pair of vertices of Minimal index set such that for all € &, = € cofo; | i €
Os, say (o1, 00), satisfy Ao, +a = ;b and Aoy + a = 7b 1(55)}. Since&s is on a face put not an entire face 6fs
with 77 < 0 andny > 0. Sinceb € C(o1), and since the faces @s are simplices, at least one of the

vertices of€s, sayey, is not a vertex of0s. Hence, there
hj-b<0, jel\I(or). exist2 < ¢ < p anda; € (0,1) with >°7_, «; = 1 such that
€ = 23:1 ;0;. Lety(o;) :== Ao; +a = \;B with \; € R,
i€ Ipg. Then,

heorem 18:Suppose that Assumption 8 holds. Also sup-
seAv;,+a € C; fori € {0,...,n} andBncon€Os) # 0.

By assumption
hj - (Ao +a) =hj-(mb) <0, jelI\I(or).

q
Sincen, < 0, the previous two inequalities imply; -b = 0, yla)=0= Z aiy(0i) = (Z a“\i)B‘
j € I\ I(o1). Equivalently we get =t !
Thus> 7 ; a;A; = 0. Sincea; > 0, either \; = 0 for all

hj-(Aoi+a) =0, jelI\I(o). 1 € {1,...,q}, or there exists at least one pair of vertices
Then by Lemma 14 we get of Os, say (01,02),/s\uch that\; < 0 and A > 0. For

. ' the first case, defin®s = co{o1,...,04}. Then@ Cé&s.
hj-Avi =0,h;-a=0, i€l(o1),j€I\I(o1). (13) This means;, a vertex ofs, is expressible as a convex
Suppose w.l.0.gI(o1) {0,1,...,q} for somel < ¢ < combination of points irfs, a contradiction. For the second

n—1 (note thatd € I(o1) by (Ad); ¢ < n sincedim(Og) > Case, we havé, <0andA; > 0.1f Apyy =0, thenopy, €
1 by (A3); andg > 1, otherwiseo; = 1o andz € S° Es, andp + 1 € I(Es), a contradiction. Therefore, assume

together implyOs N Fy # 0, a contradiction to (A4)). Now W--0.9. thatA,,; > 0. Then there exists: € cofor, 0p41}
write (13) using (5). This yields (7) with two diagonal black S:t- Az +a = 0. Hence,p + 1 € I(Es), a contradiction. m
Ay € R9*? and Agy € R=DX(n=9) Thus,p = 0 in (7).

This contradicts Lemma 12. VI. REACH CONTROLLABILITY

Second, supposéim(&s) = ro With o > 0. Then In this section we define the notion of reach controllahility

hj-(Aex+a) =0, jeI\I(e), ke lsg, Simply put, this notion describes the condition when a

velocity vector0 # b € BN condOs) can be injected into

the system at vertices & that contribute to the generation

hj-Av; =0,hjra=0, iel(e),jeI\I(e), ke lg,. of equilibria onOgs. For the rest of the paper and without
(14) loss of generality we make the following assumption.

wherel \ I(e;) # 0 by Lemma 9. By Lemma 14 we have



Assumption 19:f the invariance conditions (2) are solv- (including the case whefis = ). For these the coefficients
able, then they hold for (1) withy = 0. Me, k € Iog \ Ics must all have the same sign; otherwise,
This assumption is made to avoid complexity of the notationisy convexity there isc € co{oy, | k € Io, \ Is,} such that
only. Indeed, by Lemma 6, solvability of the invarianceAx + a = 0, which impliesz € £s, a contradiction. Now
conditions is a necessary condition for solvability of RCRf each A\, > 0 for k € Ip, \ I¢;, we are done. Suppose
by continuous state feedback. To achieve Assumption 19 oimestead);, < 0 for k& € Ip, \ Ic5. By assumption
applies an affine feedback transformation= Kz + g + w
such that(A+ BK)v; + (Bg+a) € C; fori =0,...,n and
w is the new exogenous input. In this manner, there is nglso
loss of generality in assuming that the invariance conatio
already hold for the presented system (1) with= 0. hj-(Aog+a) = hj-(Akb) <0, j € I\I(ox), k € los\Ies-

Definition 20: SupposeB N congOs) # 0. We say the  gince ), < 0, the previous two inequalities imply
triple (A4, B,a) is reach controllableif either £s = 0; or
Es = €0{o1,..., 0041} With 0 < ko < k, and for each hj-b=h;-(Aox+a) =0, jeI\I(o), k € Ios \ Ies -
k € I¢,, there exists € (o) andu; > 0 such thatAw; + (15)
Bu; 4+ a € C;. Also h; - (Aog +a) =0, 5 € I\ I(ox), k € Ics. Then by
We now explain reach controllability in informal terms.Lemma 14,
Consider the open-loop systein= Az + a whose equilibria . _ . .
are given by€s. By Theorem 15 we know these equilibria j-Avi =0, hj-a=0,i€I(or), j € I\I(ox), k € I?fé)
lie on a fac“e ofS;’ In this s_i_tugtion, RCP is solvable if we By Lemma 13, this is a contradiction. =
are ak_JIe to "push” the equilibria off t_he face ﬁ_fl_oy_h_elp of Corollary 22: Suppose that Assumption 8 holds. Also
an affine feedbggk. Thus, for any single eqwhbnumone SUpposedv; +a € Ci for i € {0,....n}. If 30 £ b €
necessary condition, as we will later show, is to be a_lble t M condOs), then for allz € O, Az +a — ()b, where
inject a non-zero velocity componebte 5 N condOg) in A(x) > 0.

EF Itehastt pne of th? ¥Ert|cest_6Twhos_tehcqnve>; rlu” Z(t)n:ﬁms The_orem 23:Suppose that Assumptions 8 and 19 hold
7; that is, one of the vertices; with i € I(z). € and30 # b € BncondOgs). Then, reach controllability

fnazjmuietlg]i}/'icflgfiol:%?nt%l (i)rfwtarl]rliﬁa nC:emgg:gigtoﬁgoutldBnOt is invariant under affine feedback transformations which
at by preserve the invariance conditions.

convexity of affine feedbacks, & component will appear Now we explore the second property of reach control-

n the velocity vep_tor_ at. This in tum has the effe_gt _to lability: that it suggests a decomposition of the dynamics
eliminate the equilibrium af. Of course, other equilibria . SO S .
into those contributing to open-loop equilibria and quatie

may appear. The restriction that one must bE.B N Os deynamics. It is noted that a complete geometric characteri-
is a consequence of Lemma 21 below, and this guarante

that no further equilibria appear as a result of applying thza'\‘:tlon of reach controllability has not yet been obtained, b

fhe following result gives a first evidence that one may exist
newly made feedback to the open-loop system. In sum, theLemma 24:Supposedu, +a € C, for i € {0,...,n}.

notion of reach controllability captures that there exisis Also suppose there exists € E£s such thatz e

affine feedback that “pushes” all equilibria of the openpoo . . .
) : . . . cofvo, ..., v4}. Then there exists a coordinate transformation
system offS while also preserving the invariance conditions. 21
. ..~z =T~z such that the transformed system has the form
We now present two properties of reach controllability.
First, we show that reach controllability is intrinsic ineth . Ay % U R by Y (17)
sense that it is not affected by affine feedback transfomati 10 Ay 0 ba ’
that preserve the invariance conditions. Second, we relat
’ axq q q (n=gq)x(n—q)
reach controllability to the existence of a coordinate sfan Wi]delr)eAlRean for a“ EOR b€ RY A; €R ’
mation that decomposes the dynamics to those that corarib@'?2 € 7>

to open-loop equilibria and quotient dynamics. First, weche VII. M AIN RESULT

two technical results that provide insight on the allowable . . .
The following result provides constructive necessary and

velocity vectors at vertices dDs. - ” . . .
Lemma 21:Suppose that Assumption 8 holds. Also Sup_suff|C|ent conditions for solvability of RCP in the studied

‘ . , setting.
%Or?ifr:}égg()l ;eizfg?re;cfk éO,I(.D..,n}. f307#0b¢ Theorem 25:Consider the system (1) and suppose As-
’ S

sumption 8 and 19 hold. We haw& =5, Fo by affine

hi-b<0, jeI\I(op), k€ Ios.

Aoy, +a = \b, feedback if and only if
where )\, > 0. (i) The invariance conditions (2) are solvable.
Proof: By Theorem 18, if€s # 0, then&s = (i) BncondOs) # 0.
co{01,...,0m41}. Then the result is obviously true for (iil) (A,B,a) is reach controllable.
vertices ofOs also in&s becausedoy, +a = 0 for k € I¢,. To prove the theorem we first require a technical lemma

Second, consider vertices 6fs that are not vertices ofs 0N the selection ob € B N con€Os).



Lemma 26:Suppose that Assumption 8 holds. Also supSince u(og,) = Ziel(%) a;u(v;) for somea; € (0,1),
pose Av; + a € C; fori € {0,...,n}. If 30 # b € we obtainu(oy,) < 0. Thus, Aoy, + Bu(og,) + a = &b
BncondOs), then—b ¢ BN condOs). with &, < 0. It follows that Aoy, 4+ Bu(oy) + a = &b with

Proof: Suppose not. Then for all € I, &k < 0forall k € 1o, (for otherwise by convexity there is
x € co{o | k € Ing} such thatAz + Bu(z) +a = 0, a

hib < 0, jelI\Ilor) contradiction. Becauséoy, + Bu(oy) + a € C(o;), we get
hj-(=b) < 0, jel\I(ok). —b € condOs), a contradiction with Lemma 26. ]
This impliesh; - b = h; - (Aox +a) = 0, j € I\ I(og), We present an example of Theorem 25 where reach
k € Ios. By Lemma 14, controllability fails.

Example 27:Consider a simplexS = co{vg,...,v4},

hy - Avi=0,hj-a=0,i € I(o),5 € I\ I(ox),k € los - wherev, = 0 andv; = e;, the ith Euclidean coordinate.

By Lemma 13 this is a contradiction. m Consider the following affine system

Proof: [Proof of Theorem 25]4=-) Since the invari- 1 0 1 0 _3 0
ance conditions are solvable, by Assumption 19, they are 3 _§ -3 _9 _5 3
solvable usingu = 0. Now if £&s = @, by Theorem 4, T = 0 0 -4 o |%TT g |4t |1
s -5 Fo by affine feedbacki(z) = 0. Alternatively, if 0O 0 0 4 4 0
Es # 0, then by Theorem 18&s = co{o1,...,0x,+1} With 19)

0 < ko < k. Following Lemma 26, w.l.o.g. we can takeletb:= (—3,—5,8,4). We make several observations. First,
B =b e BncondOs). By reach controllability, for each BnconeS = 0 becausé;-b = 3 > 0 andhs-(—b) =8 > 0,
k € I¢,, there existy, € I(ox) andw,;, > 0 such that so Theorem 5 cannot be applied. Second, it can be verified
that O .= { rER" | 21 =x0 =24 + i,:cg = —2x4 + i}
Avi + Bui, +a €G- (18) Settingz, = 0 in the defining equations fap, we geto; :=
Selectiy, € I(ox) andu;, > 0 as above. Set; = 0 for the (3,7.%.,0). Settingz; = 0, we geto, := (g, 2,0, 1). Thus,
remaining vertices of. Form the associated affine feedback)s = co{o1, 02} whereo; = ivo + im + ivz + 7u3 € Fy
u(z) = Kz + g and lety(z) := Az 4+ Bu(z) + a. Consider and oy = gvo + Sv1 + 2v2 + gvs € F3. Also we have
anyz € Es. There existt, > 0 with 3, & = 1 such that that Aoy +a = 0 and Aos +a # 0, s0&s = {o1}. We
x =Y, &or. Also for eachoy, there exista;, > 0 with  observe thatlim(Os) = 1, dim(&s) = 0, Os N Fo = 0,
jeel(on) Qi = 1 such thatoy = 35, 7, @, vj,- By andOs N S° # (. Becausen; € F, andoy € F3, we have
construction, for eaclt € I¢, there existsi, € I(o;) such CongOs) = {yeR"| hs Yy <0, hary < 0}- Clearly
that u(v;,) > 0 and the remaining controls are zero. Therb € BNcondOs), so solvability of RCP by continuous state
by convexity feedback cannot be ruled out by Theorem 7. Also it can be
verified that the invariance conditions (3) are satisfiedwhe
y(x) =Y &(Bulor) =Y > &Baju(vy) =eb, 4 =0, so solvability of RCP by continuous state feedback
k k- jrel(or) cannot be ruled out by Lemma 6. Nevertheless, for the given
wheree > 0. Thus,y(z) # 0 for all = € £s. Next consider SimplexS and system (19), RCP is not solvable by affine
Os\Es. We claimy(z) # 0 for all z € Os\Es. Suppose not. feedback. This is due to the fact that, B, a) is not reach
Then there iS5 = 3", ;) civi With o; > 0 and Y, a; = 1 controllable according to the Definition 20. Indedd; +a+
such thaty(z) = AZ + Bu(Z) + a = 0. That isAT + « = Bui € C; results inu; = 0 for Vi € I(01).
—Bu(T.) = =03 icim) aju; = —7b. Note thaty # 0, REFERENCES
otherwiser € &g, a contradiction. Alsoy cannot be negative , _ L
. . . [1] A. Bemporad and M. Morari. Control of systems integrgtitogic,
sincea; > 0 andu; > 0 by construction. Fma"y’ suppose dynamics, and constraintdutomatica vol. 35, pp. 407-428, March
~v > 0. Then there must bé € Ip, such thatdo; +a = 1999.
\.b with \; < 0. This contradicts Lemma 21. We conclude [2] M.E. Broucke. Reach control on simplices by continuotetes feed-
! ! ’ . ’ back.SIAM Journal on Control and Optimizationol. 48, issue 5, pp.
y(x) # 0 for all x € Os. Finally, by (18) and the fact that 3482-3500, February 2010.
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