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Abstract— We study the reach control problem (RCP) for
a single input affine system with a simplicial state space. We
extend previous results by exploring arbitrary triangulat ions
of the state space; particularly allowing the set of possible
equilibria to intersect the interior of simplices. In the studied
setting, it is shown that closed-loop equilibria, nevertheless, only
arise on the boundary of simplices. This allows to define a notion
of reach controllability which quantifies the effect of the control
input on boundary equilibria. Using reach controllability we
obtain necessary and sufficient conditions for solvabilityof RCP
by affine feedback.

I. I NTRODUCTION

This paper studies thereach control problem(RCP) on
simplices. The problem is for an affine system defined on
a simplexS to reach a prespecified facet of the simplex in
finite time without first leaving the simplex. The problem has
been studied over a series of papers [3], [4], [5], [7], [2] due
to its fundamental nature among reachability problems. The
reader is referred to [1], [2], [3], [4], [5], [6], [7] for further
motivations, including how the problem arises in reachability
problems for hybrid systems. In [2] we studied RCP under
the assumption that the state space was triangulated so
that O, the set of possible equilibria of the affine system,
intersected withS was either the empty set or a face of
S. In this paper we assumeO intersects the interior of
S, and we study only single input systems. Remarkably
it emerges that if an equilibrium appears using an affine
feedback to solve RCP, then the equilibrium is, nevertheless,
on the boundary ofS. Using this fact, we propose a notion
of reach controllability for determining if RCP is solvable
by affine feedback. Simply put, an affine system is reach
controllable on a simplex if each equilibrium can be “pushed
off” the simplex boundary by an admissible affine feedback.
Because the feedback is affine, the equilibrium is affected by
the control input only through the control value applied at a
vertex among those vertices whose convex hull contains the
equilibrium. In sum, reach controllability measures the extent
to which the control input can affect the dynamics on faces
of the simplex. Using reach controllability, we obtain new
necessary and sufficient conditions for solvability of RCP in
the current setting.

Notation. Let S ⊂ R
n be a set. The closure isS, and

the interior isS◦. The relative interior is denoted ri(S), the
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relative boundary ofS, denoted rb(S) is S \ ri(S), and∂S
is the boundary ofS. The symbolU represents a control
class such as open-loop controls, continuous state feedback,
affine feedback, etc. The notation0 denotes the subset of
R

n containing only the zero vector. The notation1 stands
for a vector with appropriate dimension whose entries are
one. Notation co{v1, v2, . . .} denotes the convex hull of a
set of pointsvi ∈ R

n. The notation ord(M) denotes the
order of the square matrixM .

II. BACKGROUND

We consider an n-dimensional simplex S :=
co{v0, v1, . . . , vn} with vertex setV := {v0, v1, . . . , vn}
and facetsF0, . . . ,Fn (the facet is indexed by the vertex
it does not contain). Without loss of generality (w.l.o.g.)
we assume thatv0 = 0. Let hi, i = 0, . . . , n be the unit
normal vector to each facetFi pointing outside of the
simplex. LetF0 be the target set inS. Define the index sets
I := {1, . . . , n} andIi := I \ {i} (noteI0 = I).

Consider the affine control system defined onS:

ẋ = Ax+Bu+ a , x ∈ S , (1)

whereA ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) =

m = 1. Let φu(t, x0) denote the trajectory of (1) under a
control u(t) starting fromx0 ∈ S and evaluated at timet.
We are interested in studying reachability of the targetF0

from S.
Problem 1 (Reach Control Problem (RCP)):Consider

system (1) defined onS. Find a feedbacku(x) such that:
for everyx0 ∈ S there existT ≥ 0 andγ > 0 such that

(i) φu(t, x0) ∈ S for all t ∈ [0, T ],
(ii) φu(T, x0) ∈ F0, and
(iii) φu(t, x0) /∈ S for all t ∈ (T, T + γ).

RCP says that trajectories of (1) starting from initial condi-
tions in S exit S through the targetF0 in finite time, while
not first leavingS.

Definition 1: A point x0 ∈ S can reachF0 with con-
straint inS with control classU, denoted byx0

S
−→ F0, if

there exists a controlu of classU such that properties (i)-
(iii) of Problem 1 hold. We writeS

S
−→ F0 by control class

U if for every x0 ∈ S, x0
S

−→ F0 with control of classU.
Define the closed, convex cones

Ci :=
{

y ∈ R
n : hj · y ≤ 0, j ∈ Ii

}

, i ∈ {0, . . . , n} .

Also define cone(S) := C0. Note that cone(S) is the tangent
cone toS at v0.

Definition 2: We say the invariance conditions are solv-
able if there existu0, . . . , un ∈ R

m such thatAvi+a+Bui ∈



Ci for i = 0, . . . , n. Equivalently,

hj · (Avi + a+Bui) ≤ 0 , i ∈ {0, . . . , n}, j ∈ Ii . (2)
The inequalities (2) are calledinvariance conditions. These
Nagumo-like conditions guarantee that trajectories cannot
exit through the restricted facetsF1, . . . ,Fn and are used
to construct affine feedbacks [4]. For general state feed-
backs (particularly those not satisfying convexity), stronger
conditions are needed to ensure that trajectories do not exit
restricted facets. To that end, forx ∈ S, defineJ(x) = {j ∈
I | x ∈ Fj}. Define the closed, convex cone

C(x) :=
{
y ∈ R

n : hj · y ≤ 0, j ∈ J(x)
}
.

Definition 3: We say a state feedbacku(x) satisfies the
invariance conditions ifAx + Bu(x) + a ∈ C(x). Equiva-
lently, for all x ∈ S andj ∈ J(x),

hj · (Ax+Bu(x) + a) ≤ 0 . (3)
Given x ∈ S, let I(x) be the minimal index set such that
x ∈ co{vi | i ∈ I(x)}. A form of (3) we will often employ
is as follows. Supposex ∈ co{vi | i ∈ I(x)}. Using the
properties of the simplex [2], one can show this impliesx ∈
Fj , for j ∈ I \ I(x). Then (3) becomes

hj · (Ax+Bu(x) + a) ≤ 0 , j ∈ I \ I(x) .

For Problem 1 the following necessary and sufficient condi-
tions have been established for the case of affine feedback.

Theorem 4:[5], [7] Given the system (1) and an affine
feedbacku(x) = Kx + g, whereK ∈ R

m×n, g ∈ R
m,

and u0 = u(v0), . . . , un = u(vn), the closed-loop system
satisfiesS

S
−→ F0 if and only if (a) the invariance conditions

(2) hold, and (b) there is no equilibrium inS.
Let B = Im(B), the image ofB. Define the set ofpossible
equilibrium points

O := { x ∈ R
n : Ax+ a ∈ B} .

One can show that eitherO = ∅ or O is an affine space with
m ≤ dim(O) ≤ n. Notice that the vector fieldAx+Bu+ a
on O can vanish for an appropriate choice ofu, so O is
the set of all possible equilibrium points of the system. Also
define the set ofopen-loop equilibrium points

E := { x ∈ R
n : Ax+ a = 0} .

Define OS := S ∩ O and ES := S ∩ E . Clearly E ⊂ O
and ES ⊂ OS . The following result was proved in [2] for
the case when the state space is triangulated so thatOS is
a κ-dimensional face ofS. Here we generalize to arbitrary
triangulations.

Theorem 5:If the invariance conditions (2) are solvable
andB ∩ cone(S) 6= 0, thenS

S
−→ F0 by affine feedback.

III. N ECESSARYCONDITIONS

The goal of this paper is to obtain new necessary and suf-
ficient conditions for solvability of RCP by affine feedback;
unlike the conditions of Theorem 4, we seek conditions that
lead to a synthesis of the controller. We begin with necessary

conditions for solvability. Suppose

OS = co{o1, . . . , oκ+1}

and defineIOS
:= {1, . . . , κ+ 1}. Also define

cone(OS) :=
⋂

i∈IOS

C(oi) .

This cone consists of all vectors that simultaneously satisfy
all invariance conditions at all verticesoi, i ∈ IOS

. In
the following two results, no assumption is made on the
placement ofOS with respect toS.

Lemma 6 ([4]): If S
S

−→ F0 by a continuous state feed-
backu(x), thenu(x) satisfies the invariance conditions (3).

Theorem 7:SupposeOS 6= ∅. If S
S

−→ F0 by continuous
state feedbacku(x), thenB ∩ cone(OS) 6= 0.

IV. PRELIMINARIES

In this section we present preliminary technical results that
will enable us to characterize (in Section V) useful geometric
properties ofOS and ES . We begin by posing the main
assumptions for the rest of the paper. In [2] we assumed
that if OS 6= ∅, then OS is a κ-dimensional face ofS,
where 0 ≤ κ ≤ n. More generally, if the intersection is
arbitrary, thenOS is a convex polytope. In the present paper
we assumeOS is a simplex that intersects the interior ofS.
Finally, we restrictOS so that it does not touchF0. The
latter is an extra restriction on the geometry that must be
addressed in future work.

Assumption 8:

(A1) OS = co{o1, . . . , oκ+1}, a κ-dimensional simplex
with m ≤ κ < n.

(A2) If ES 6= ∅, then ES = co{ǫ1, . . . , ǫκ0+1}, a κ0-
dimensional simplex with0 ≤ κ0 ≤ κ.

(A3) OS ∩ S◦ 6= ∅.
(A4) OS ∩ F0 = ∅.

The following basic properties ofOS andES derive from
the fact that they are formed as intersections of affine spaces
and a simplex.

Lemma 9:Suppose Assumptions (A1)-(A3) hold. If
dim(OS) ≥ 1, then rb(OS) ⊂ ∂S. If dim(ES) ≥ 1, then
rb(ES) ⊂ rb(OS) ⊂ ∂S.

Recall the index setIOS
:= {1, . . . , κ + 1} and define

the index setIES
:= {1, . . . , κ0 + 1}. First we examine an

implication of the fact thatOS ∩ S◦ 6= ∅ on the index sets
I(ok) andI(ǫk).

Lemma 10:Suppose Assumptions (A1), (A3), and (A4)
hold. Then each setI(ok), k ∈ IOS

, has a nonzero exclusive
member. That is, there existsek ∈ I(ok), ek 6= 0 and ek 6∈
I(oj), for all j 6= k.

Lemma 11:Suppose Assumptions (A2)-(A4) hold. Then
eitherES ∩S◦ = ∅ or each setI(ǫk), k ∈ IES

, has a nonzero
exclusive member. That is, there existsek ∈ I(ǫk), ek 6= 0
andek 6∈ I(ǫj), for all j 6= k.

Suppose Assumptions (A1), (A3), and (A4) hold, and
suppose we reorder indices{0, . . . , n} so that indices that



belong to more than one setI(ok), k ∈ IOS
, are listed first.

These are the shared indices
⋃

1≤i,j≤κ+1, i6=j

I(oi) ∩ I(oj) . (4)

In light of (A4), assume w.l.o.g. this list begins with index0.
Next, we list indices that correspond to exclusive members
of I(o1), . . . , I(oκ+1), respectively, and in this order. By
Lemma 10 the exclusive member lists are non-empty. Also
by (A3), all elements of{0, . . . , n} are included in the new
ordering since∪κ+1

j=1 I(oj) = {0, . . . , n}. In the sequel we
call this an ordering according to exclusive members of
{I(ok)}.

We now turn to an algebraic characterization of points in
ES . Define the matrices

H := [h1 . . . hn] , Y := [Av1 . . . Avn]

and
Γ := HTY , γ := HTa . (5)

SupposeES 6= ∅. Assume thatx ∈ ES andx =
∑n

i=0 βivi
for some βi ∈ [0, 1],

∑
i βi = 1. By the properties of

the simplex (Lemma 4.4, [2]), one can show thatH is
nonsingular. Hence, we have

Ax+ a = 0 ⇐⇒ HT (Ax+ a) = 0

⇐⇒
n∑

i=1

βiH
TAvi +HTa = 0

⇐⇒ Γβ + γ = 0 (6)

where β = (β1, . . . , βn). Note that the derivation uses
the fact thatv0 = 0. In the sequel, points inES will be
characterized using (6). Using (6) we can relate geometric
properties ofES andOS to certain restrictions on the form
of matricesΓ andγ. There are several distinct cases.

Lemma 12:Supposedim(ES) = κ0 with κ0 ≥ 0 and
assume thatES ∩ S◦ 6= ∅. Then,Γ and γ cannot have the
form

Γ =




Γ11 Γ12 . . . Γ1(p+2)

0 Γ22 0 0

0 0
. . . 0

0 0 0 Γ(p+2)(p+2)


 , γ =




γ1
0
...
0


 .

(7)
wherep ≥ κ0 and ord(Γii) ≥ 1, i = 2, . . . , p+ 2. Vectorγ
is partitioned corresponding to the partition ofΓ.

Lemma 12 gives the the algebraic consequences of the
statementES ∩ S◦ 6= ∅. The next result gives the analogous
algebraic consequences whenES is empty or is a face of
OS .

Lemma 13:Suppose Assumption 8 holds. In addition,
suppose that eitherES = ∅ or ES = co{o1, . . . , oκ0+1} with
0 ≤ κ0 ≤ κ. Then the following cannot hold simultaneously:

hj ·Avi = 0 , hj · a = 0 , (8)

wherei ∈ I(ok), j ∈ I \ I(ok), andk ∈ IOS
.

Proof: [Proof of Lemma 13] Suppose by way of contra-
diction that constraints (8) hold simultaneously. First suppose

ES = co{o1, . . . , oκ0+1} with 0 ≤ κ0 ≤ κ. Let x ∈ ES and
x =

∑n

i=0 βivi for someβi ∈ [0, 1],
∑

i βi = 1. Using (5),
(6), and (8), and ordering indices by exclusive members of
{I(ok)}, we obtain

Γ11β1 + . . .+ Γ1(κ+2)β(κ+2) + γ̂1 = 0,
Γ22β2 = 0,

...
Γ(κ+2)(κ+2)β(κ+2) = 0 .

(9)

Here γ̂1 := γ1. Also βi, i = 2, . . . , κ+ 2 correspond to the
exclusive members ofI(o1), . . . , I(oκ+1), respectively, and
β1 corresponds to the indices in (4). Note that by Lemma 10,
dim(βi) ≥ 1 i = 2, . . . , κ + 2. Suppose that ord(Γii) = pi
i = 2, . . . , κ+2. From the second equation of (9), we deduce
that if rank(Γ22) = p2, thenβ2 = 0 for all x ∈ ES . This
means that no exclusive members ofI(o1) appear inI(x),
for any x ∈ ES . In particular, from Lemma 10,o1 6∈ ES , a
contradiction. Thus, rank(Γ22) < p2. Similarly rank(Γii) <
pi, i = 2, . . . , κ0 + 2. This means that (9) provides at most
n − (κ0 + 1) independent constraints to defineES . Hence,
dim(ES) ≥ κ0 + 1, a contradiction.

Second, supposeES = ∅. For eachk ∈ IOS
, Aok + a :=

λkB andλk 6= 0 sinceES = ∅. Using (8), for eachk ∈ IOS
,

hj · (Aok + a) = hj ·
(

∑

i∈I(ok)

α
k
i (Avi + a)

)

= 0 , j ∈ I \ I(ok)

where
∑

i∈I(ok)
αk
i = 1 and αk

i > 0 for i ∈ I(ok).
Combining with (8), this gives

hj · Avi = 0 , hj · a = 0 , hj · B = 0 , (10)

where i ∈ I(ok), j ∈ I \ I(ok), and k ∈ IOS
. Now

supposex ∈ OS andx =
∑n

i=0 βivi for someβi ∈ [0, 1],∑
i βi = 1. Let u(x) be any affine feedback that satisfies

Ax + a + Bu(x) = 0. The same reasoning that yields (6)
gives a formula

Γβ + γ +HTBu(x) = 0 , (11)

where β = (β1, . . . , βn). Using (5), (11), and (10), and
ordering indices by exclusive members of{I(ok)}, we obtain
(9) with γ̂1 := γ + HTB

∑n

i=1 βiu(vi). Note that we use
the fact thatu(x) is affine. Suppose that ord(Γii) = pi, i =
2, . . . , κ+2. From the second equation of (9), we deduce that
if rank(Γ22) = p2, thenβ2 = 0 for all x ∈ OS , sox ∈ ∂S.
This contradicts Assumption (A3). Thus, rank(Γ22) < p2.
Similarly rank(Γii) < pi, i = 2, . . . , κ+ 2. This means that
(9) provides at mostn− (κ+ 1) independent constraints to
defineOS . Hence,dim(OS) ≥ κ+ 1, a contradiction.

V. PROPERTIES OFEQUILIBRIUM SET

In this section we exploit the algebraic properties discov-
ered in the previous section, and particularly we examine
their geometric consequences. The most important result is
that equilibria cannot appear in the interior ofS when the
necessary conditions for solvability of RCP are satisfied. First
we present a technical lemma that links the appearance of
an equilibrium with algebraic constraints of the type studied
in the previous section.



Lemma 14:Suppose thatAvi+a ∈ Ci for i ∈ {0, . . . , n}.
Suppose there existsx ∈ OS and j ∈ I \ I(x) such that
0 ∈ I(x) andhj · (Ax+ a) = 0. Then

hj ·Avi = 0 , hj · a = 0 , i ∈ I(x) .
Proof: Let x ∈ OS as above and supposex =∑

i∈I(x) αivi, where
∑

i∈I(x) αi = 1 and αi > 0. By
assumption, there existsj ∈ I \ I(x)

hj · (Ax + a) = hj ·
∑

i∈I(x)

αi(Avi + a) = 0 .

Also by assumption,hj · (Avi + a) ≤ 0, i ∈ I(x). Since
αi > 0 it follows

hj · (Avi + a) = 0 , i ∈ I(x) . (12)

Since0 ∈ I(x) andv0 = 0 we obtainhj ·Avi = 0, hj ·a = 0,
i ∈ I(x).

The previous algebraic results lead to a remarkable prop-
erty on the placement of equilibria inS: under the as-
sumption that the necessary conditions of Lemma 6 and
Theorem 7 hold, open-loop equilibria can only appear on
the boundary ofS.

Theorem 15:Suppose that Assumption 8 holds. Also sup-
poseAvi+a ∈ Ci for i ∈ {0, . . . , n} andB∩cone(OS) 6= 0.
If ES 6= ∅, thenES ⊂ rb(OS) ⊂ ∂S.

Proof: Suppose by way of contradiction there isx ∈ S◦

such thatAx+ a = 0. By Lemma 9,x ∈ ri(OS).
First, supposedim(ES) = 0 and let b ∈ B ∩ cone(OS).

Sincedim(OS) ≥ 1, w.l.o.g., at least one pair of vertices of
OS , say(o1, o2), satisfyAo1 + a = η1b andAo2 + a = η2b
with η1 < 0 andη2 > 0. Sinceb ∈ C(o1),

hj · b ≤ 0 , j ∈ I \ I(o1) .

By assumption

hj · (Ao1 + a) = hj · (η1b) ≤ 0 , j ∈ I \ I(o1) .

Sinceη1 < 0, the previous two inequalities implyhj · b = 0,
j ∈ I \ I(o1). Equivalently we get

hj · (Ao1 + a) = 0 , j ∈ I \ I(o1) .

Then by Lemma 14 we get

hj · Avi = 0 , hj · a = 0 , i ∈ I(o1) , j ∈ I \ I(o1) . (13)

Suppose w.l.o.g.I(o1) = {0, 1, . . . , q} for some1 ≤ q ≤
n−1 (note that0 ∈ I(o1) by (A4); q < n sincedim(OS) ≥
1 by (A3); and q ≥ 1, otherwiseo1 = v0 and x ∈ S◦

together implyOS ∩F0 6= ∅, a contradiction to (A4)). Now
write (13) using (5). This yields (7) with two diagonal blocks
A11 ∈ R

q×q andA22 ∈ R
(n−q)×(n−q). Thus,p = 0 in (7).

This contradicts Lemma 12.
Second, supposedim(ES) = κ0 with κ0 > 0. Then

hj · (Aǫk + a) = 0 , j ∈ I \ I(ǫk) , k ∈ IES
,

whereI \ I(ǫk) 6= ∅ by Lemma 9. By Lemma 14 we have

hj ·Avi = 0 , hj ·a = 0 , i ∈ I(ǫk) , j ∈ I\I(ǫk) , k ∈ IES
.

(14)

Suppose we order{0, . . . , n} according to exclusive mem-
bers of{I(ǫj)}. Now write (14) using (5). This yields (7)
with p = κ0 and ord(Γii) ≥ 1, i = 2, . . . , κ0 + 2. This
contradicts Lemma 12.

Remark 16:Theorem 15 extends to the case when an
affine feedbacku = Kx+g is applied to the system (1). For
then we obtain the closed-loop systemẋ = (A+BK)x+a+
Bg = Ãx+ ã, and the analysis can be repeated for the sets
Õ and Ẽ . We conclude that using any affine feedback that
solves the invariance conditions and under Assumption 8,
closed-loop equilibria can only appear on the boundary of
S.

Corollary 17: Suppose that Assumption 8 holds. Also
supposeAvi+a ∈ Ci for i ∈ {0, . . . , n} andB∩cone(OS) 6=
0. Thendim(E) ≤ dim(O) − 1.

In Theorem 15 we showed that the set of equilibriaES lies
in the relative boundary ofOS . In the following we show
further thatES is indeed a face ofOS .

Theorem 18:Suppose that Assumption 8 holds. Also sup-
poseAvi+a ∈ Ci for i ∈ {0, . . . , n} andB∩cone(OS) 6= 0.
If ES 6= ∅, thenES = co{o1, . . . , oκ0+1}, a κ0-dimensional
face ofOS , where0 ≤ κ0 < κ.

Proof: SupposeES 6= ∅ but is not a face ofOS . By
Theorem 15,ES ⊂ rb(OS). Hence,ES can be expressed as

ES = co{ǫ1, . . . , ǫκ0+1} ⊂ co{o1, . . . , op}

where2 ≤ p < κ + 1. Define Î(ES) := {1, . . . , p} as the
minimal index set such that for allx ∈ ES , x ∈ co{oi | i ∈
Î(ES)}. SinceES is on a face but not an entire face ofOS

and since the faces ofOS are simplices, at least one of the
vertices ofES , say ǫ1, is not a vertex ofOS . Hence, there
exist2 ≤ q ≤ p andαi ∈ (0, 1) with

∑q

i=1 αi = 1 such that
ǫ1 =

∑q

i=1 αioi. Let y(oi) := Aoi + a = λiB with λi ∈ R,
i ∈ IOS

. Then,

y(ǫ1) = 0 =

q∑

i=1

αiy(oi) =

(∑

i

αiλi

)
B .

Thus
∑q

i=1 αiλi = 0. Sinceαi > 0, eitherλi = 0 for all
i ∈ {1, . . . , q}, or there exists at least one pair of vertices
of OS , say (o1, o2), such thatλ1 < 0 and λ2 > 0. For
the first case, definêOS = co{o1, . . . , oq}. ThenÔS ⊂ ES .
This meansǫ1, a vertex ofES , is expressible as a convex
combination of points inES , a contradiction. For the second
case, we haveλ1 < 0 andλ2 > 0. If λp+1 = 0, thenop+1 ∈
ES , andp + 1 ∈ Î(ES), a contradiction. Therefore, assume
w.l.o.g. thatλp+1 > 0. Then there existsx ∈ co{o1, op+1}
s.t.Ax+ a = 0. Hence,p+ 1 ∈ Î(ES), a contradiction.

VI. REACH CONTROLLABILITY

In this section we define the notion of reach controllability.
Simply put, this notion describes the condition when a
velocity vector0 6= b ∈ B ∩ cone(OS) can be injected into
the system at vertices ofS that contribute to the generation
of equilibria onOS . For the rest of the paper and without
loss of generality we make the following assumption.



Assumption 19:If the invariance conditions (2) are solv-
able, then they hold for (1) withu = 0.
This assumption is made to avoid complexity of the notations
only. Indeed, by Lemma 6, solvability of the invariance
conditions is a necessary condition for solvability of RCP
by continuous state feedback. To achieve Assumption 19 one
applies an affine feedback transformationu = Kx+ g + w
such that(A+BK)vi+(Bg+ a) ∈ Ci for i = 0, . . . , n and
w is the new exogenous input. In this manner, there is no
loss of generality in assuming that the invariance conditions
already hold for the presented system (1) withu = 0.

Definition 20: SupposeB ∩ cone(OS) 6= 0. We say the
triple (A,B, a) is reach controllableif either ES = ∅; or
ES = co{o1, . . . , oκ0+1} with 0 ≤ κ0 < κ, and for each
k ∈ IES

, there existsi ∈ I(ok) andui > 0 such thatAvi +
Bui + a ∈ Ci.

We now explain reach controllability in informal terms.
Consider the open-loop systeṁx = Ax+a whose equilibria
are given byES . By Theorem 15 we know these equilibria
lie on a face ofS. In this situation, RCP is solvable if we
are able to “push” the equilibria off the face ofS by help of
an affine feedback. Thus, for any single equilibriumx̄, one
necessary condition, as we will later show, is to be able to
inject a non-zero velocity componentb ∈ B ∩ cone(OS) in
at least one of the vertices ofS whose convex hull contains
x; that is, one of the verticesvi with i ∈ I(x). At the
same time, the injection of thisb component should not
induce a violation of the invariance conditions atvi. By
convexity of affine feedbacks, ab component will appear
in the velocity vector atx. This in turn has the effect to
eliminate the equilibrium atx. Of course, other equilibria
may appear. The restriction that one must useb ∈ B ∩ OS

is a consequence of Lemma 21 below, and this guarantees
that no further equilibria appear as a result of applying the
newly made feedback to the open-loop system. In sum, the
notion of reach controllability captures that there existsan
affine feedback that “pushes” all equilibria of the open-loop
system offS while also preserving the invariance conditions.

We now present two properties of reach controllability.
First, we show that reach controllability is intrinsic in the
sense that it is not affected by affine feedback transformations
that preserve the invariance conditions. Second, we relate
reach controllability to the existence of a coordinate transfor-
mation that decomposes the dynamics to those that contribute
to open-loop equilibria and quotient dynamics. First, we need
two technical results that provide insight on the allowable
velocity vectors at vertices ofOS .

Lemma 21:Suppose that Assumption 8 holds. Also sup-
poseAvi + a ∈ Ci for i ∈ {0, . . . , n}. If ∃ 0 6= b ∈
B ∩ cone(OS), then for eachk ∈ IOS

,

Aok + a = λkb ,

whereλk ≥ 0.
Proof: By Theorem 18, if ES 6= ∅, then ES =

co{o1, . . . , oκ0+1}. Then the result is obviously true for
vertices ofOS also inES becauseAok +a = 0 for k ∈ IES

.
Second, consider vertices ofOS that are not vertices ofES

(including the case whenES = ∅). For these the coefficients
λk, k ∈ IOS

\ IES
must all have the same sign; otherwise,

by convexity there isx ∈ co{ok | k ∈ IOS
\ IES

} such that
Ax + a = 0, which impliesx ∈ ES , a contradiction. Now
if each λk > 0 for k ∈ IOS

\ IES
, we are done. Suppose

insteadλk < 0 for k ∈ IOS
\ IES

. By assumption

hj · b ≤ 0 , j ∈ I \ I(ok), k ∈ IOS
.

Also

hj ·(Aok+a) = hj ·(λkb) ≤ 0 , j ∈ I\I(ok), k ∈ IOS
\IES

.

Sinceλk < 0, the previous two inequalities imply

hj · b = hj · (Aok + a) = 0 , j ∈ I \ I(ok), k ∈ IOS
\ IES

.
(15)

Also hj · (Aok + a) = 0, j ∈ I \ I(ok), k ∈ IES
. Then by

Lemma 14,

hj ·Avi = 0 , hj ·a = 0 , i ∈ I(ok) , j ∈ I\I(ok) , k ∈ IOS
.

(16)
By Lemma 13, this is a contradiction.

Corollary 22: Suppose that Assumption 8 holds. Also
supposeAvi + a ∈ Ci for i ∈ {0, . . . , n}. If ∃ 0 6= b ∈
B ∩ cone(OS), then for allx ∈ O, Ax+ a = λ(x)b, where
λ(x) ≥ 0.

Theorem 23:Suppose that Assumptions 8 and 19 hold
and ∃0 6= b ∈ B ∩ cone(OS). Then, reach controllability
is invariant under affine feedback transformations which
preserve the invariance conditions.

Now we explore the second property of reach control-
lability: that it suggests a decomposition of the dynamics
into those contributing to open-loop equilibria and quotient
dynamics. It is noted that a complete geometric characteri-
zation of reach controllability has not yet been obtained, but
the following result gives a first evidence that one may exist.

Lemma 24:SupposeAvi + a ∈ Ci for i ∈ {0, . . . , n}.
Also suppose there existsx ∈ ES such that x ∈
co{v0, . . . , vq}. Then there exists a coordinate transformation
z = T−1x such that the transformed system has the form

ż =

[
A1 ⋆
0 A2

]
z +

[
a1
0

]
+

[
b1
b2

]
u , (17)

whereA1 ∈ R
q×q, a1 ∈ R

q, b1 ∈ R
q, A2 ∈ R

(n−q)×(n−q),
andb2 ∈ R

n−q for q > 0.

VII. M AIN RESULT

The following result provides constructive necessary and
sufficient conditions for solvability of RCP in the studied
setting.

Theorem 25:Consider the system (1) and suppose As-
sumption 8 and 19 hold. We haveS

S
−→ F0 by affine

feedback if and only if

(i) The invariance conditions (2) are solvable.
(ii) B ∩ cone(OS) 6= 0.
(iii) (A,B, a) is reach controllable.

To prove the theorem we first require a technical lemma
on the selection ofb ∈ B ∩ cone(OS).



Lemma 26:Suppose that Assumption 8 holds. Also sup-
poseAvi + a ∈ Ci for i ∈ {0, . . . , n}. If ∃ 0 6= b ∈
B ∩ cone(OS), then−b 6∈ B ∩ cone(OS).

Proof: Suppose not. Then for allk ∈ IOS

hj · b ≤ 0 , j ∈ I \ I(ok)

hj · (−b) ≤ 0 , j ∈ I \ I(ok) .

This implieshj · b = hj · (Aok + a) = 0, j ∈ I \ I(ok),
k ∈ IOS

. By Lemma 14,

hj ·Avi = 0 , hj · a = 0 , i ∈ I(ok) , j ∈ I \ I(ok) , k ∈ IOS
.

By Lemma 13 this is a contradiction.
Proof: [Proof of Theorem 25] (=⇒) Since the invari-

ance conditions are solvable, by Assumption 19, they are
solvable usingu = 0. Now if ES = ∅, by Theorem 4,
S

S
−→ F0 by affine feedbacku(x) = 0. Alternatively, if

ES 6= ∅, then by Theorem 18,ES = co{o1, . . . , oκ0+1} with
0 ≤ κ0 < κ. Following Lemma 26, w.l.o.g. we can take
B = b ∈ B ∩ cone(OS). By reach controllability, for each
k ∈ IES

, there existik ∈ I(ok) anduik > 0 such that

Avik +Buik + a ∈ Cik . (18)

Selectik ∈ I(ok) anduik > 0 as above. Setui = 0 for the
remaining vertices ofS. Form the associated affine feedback
u(x) = Kx+ g and lety(x) := Ax+Bu(x) + a. Consider
any x ∈ ES . There existξk > 0 with

∑
k ξk = 1 such that

x =
∑

k ξkok. Also for eachok, there existαjk > 0 with∑
jk∈I(ok)

αjk = 1 such thatok =
∑

jk∈I(ok)
αjkvjk . By

construction, for eachk ∈ IES
there existsik ∈ I(ok) such

that u(vik) > 0 and the remaining controls are zero. Then
by convexity

y(x) =
∑

k

ξk(Bu(ok)) =
∑

k

∑

jk∈I(ok)

ξkBαjku(vjk) =: ǫb ,

whereǫ > 0. Thus,y(x) 6= 0 for all x ∈ ES . Next consider
OS\ES . We claimy(x) 6= 0 for all x ∈ OS\ES . Suppose not.
Then there isx =

∑
i∈I(x) αivi with αi > 0 and

∑
i αi = 1

such thaty(x) = Ax + Bu(x) + a = 0. That isAx + a =
−Bu(x) = −b

∑
i∈I(x) αiui =: −γb. Note thatγ 6= 0,

otherwisex ∈ ES , a contradiction. Also,γ cannot be negative
sinceαi > 0 andui ≥ 0 by construction. Finally, suppose
γ > 0. Then there must bei ∈ IOS

such thatAoi + a =
λib with λi < 0. This contradicts Lemma 21. We conclude
y(x) 6= 0 for all x ∈ OS . Finally, by (18) and the fact that
ui = 0 for the remaining vertices, the invariance conditions
hold with u(x). By Theorem 4,S

S
−→ F0 usingu(x).

(⇐=) SupposeS
S

−→ F0 by affine feedbacku(x) =
Kx + g. By Theorem 7,B ∩ cone(OS) 6= 0. Also, by
Theorem 4,Avi +Bu(vi) + a ∈ Ci, i ∈ {0, . . . , n}. Hence,
by Assumption 19,u = 0 solves the invariance conditions. If
ES = ∅, then (A,B, a) is reach controllable. Alternatively,
if ES 6= ∅, then by Theorem 18ES = co{o1, . . . , oκ0+1}
where0 ≤ κ0 < κ. Following Lemma 26, w.l.o.g. we can
takeB = b ∈ B∩ cone(OS). Suppose(A,B, a) is not reach
controllable. Then there existsk0 ∈ IES

such that for all
i ∈ I(ok0

), Avi + Bu(vi) + a ∈ Ci implies u(vi) ≤ 0.

Since u(ok0
) =

∑
i∈I(ok0 )

αiu(vi) for someαi ∈ (0, 1),
we obtainu(ok0

) ≤ 0. Thus,Aok0
+ Bu(ok0

) + a = ξk0
b

with ξk0
< 0. It follows thatAok +Bu(ok) + a = ξkb with

ξk < 0 for all k ∈ IOS
(for otherwise by convexity there is

x ∈ co{ok | k ∈ IOS
} such thatAx + Bu(x) + a = 0, a

contradiction. BecauseAok + Bu(ok) + a ∈ C(ok), we get
−b ∈ cone(OS), a contradiction with Lemma 26.

We present an example of Theorem 25 where reach
controllability fails.

Example 27:Consider a simplexS = co{v0, . . . , v4},
where v0 = 0 and vi = ei, the ith Euclidean coordinate.
Consider the following affine system

ẋ =




−1 0 1 0
−3 −6 −3 −2
0 0 −4 0
0 0 0 4


x+




−3
−5
8
4


u+




0
3
1
0




(19)
Let b := (−3,−5, 8, 4). We make several observations. First,
B∩coneS = 0 becauseh1 ·b = 3 > 0 andh3 ·(−b) = 8 > 0,
so Theorem 5 cannot be applied. Second, it can be verified
thatO :=

{
x ∈ R

n | x1 = x2 = x4 +
1
4 , x3 = −2x4 +

1
4

}
.

Settingx4 = 0 in the defining equations forO, we geto1 :=(
1
4 ,

1
4 ,

1
4 , 0

)
. Settingx3 = 0, we geto2 :=

(
3
8 ,

3
8 , 0,

1
8

)
. Thus,

OS = co{o1, o2} whereo1 = 1
4v0 +

1
4v1 +

1
4v2 +

1
4v3 ∈ F4

and o2 = 1
8v0 + 3

8v1 + 3
8v2 + 1

8v4 ∈ F3. Also we have
that Ao1 + a = 0 and Ao2 + a 6= 0, so ES = {o1}. We
observe thatdim(OS) = 1, dim(ES) = 0, OS ∩ F0 = ∅,
andOS ∩ S◦ 6= ∅. Becauseo1 ∈ F4 ando2 ∈ F3, we have
cone(OS) =

{
y ∈ R

n | h3 · y ≤ 0, h4 · y ≤ 0
}

. Clearly
b ∈ B∩cone(OS), so solvability of RCP by continuous state
feedback cannot be ruled out by Theorem 7. Also it can be
verified that the invariance conditions (3) are satisfied when
u = 0, so solvability of RCP by continuous state feedback
cannot be ruled out by Lemma 6. Nevertheless, for the given
simplex S and system (19), RCP is not solvable by affine
feedback. This is due to the fact that(A,B, a) is not reach
controllable according to the Definition 20. IndeedAvi+a+
Bui ∈ Ci results inui = 0 for ∀ i ∈ I(o1).
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