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Abstract— Given a control affine system and a domain S
which is a smooth manifold with boundary, we present results
on explicit construction of a viability controller and viable
kernel of S . Under a standard invariance condition on the
viability domain, it is shown that there is a viability controller
that takes a particularly simple form: it is a bang control. The
proposed theory is applied to the problem of collision avoidance
control of two vehicles.

I. INTRODUCTION

In this paper we study the problem of least restrictive
collision avoidance control of two unicycles. A collision
avoidance controller is said to be least restrictive if it has
the following property: if starting at some initial condition
there is a collision using the least restrictive controller, then
there is a collision using any other measurable control. Our
goal is to obtain an explicit analytical characterization of this
controller. In order to do so, we apply viability theory in a
somewhat new setting.

The theoretical question that arises may be placed in the
following context. Given a control system, a subset of the
state space is said to be controlled invariant or viable if
for all initial conditions in the set, the trajectories of the
system remain inside the set by proper choice of control.
Controlled invariance has been developed primarily in two
contexts. One context is geometric system theory where the
invariant set is the zero level set of a smooth function, the
control system is typically affine in the control, and there are
no constraints on the control values [20], [13]. The second
more general context is that of viability theory [2]. Here the
invariant set need not be a manifold, the system is described
by differential inclusions, and the control typically takes
values in a convex set. A comparison of the two contexts
can be found in [3].

In the present paper, guided by the desire to characterize
a least restrictive collision avoidance controller, we consider
a control affine system and an invariant set which is a
smooth manifold with boundary. The control takes values in a
convex set. We propose conditions under which the viability
controller is a bang controller; that is, it takes only a single
constant control value. A characterization of the viability
kernel is given. Recent, relevant work both on theory and
numerical approaches to finding viability kernels are [5], [4],
[10], [11], [14], [16], [17]. However, the specific class of
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viability problem treated here has not yet been investigated.
In the second half of the paper the theory is applied to the
problem of collision avoidance control for two unicycles. The
presented theory is also applicable to general nonholonomic
systems, with the main increase in complexity compared
to unicycles arising in the computations of the minimum
distance between two nonholonomic systems as a function
of the bang control value.

Collision avoidance has been studied by many researchers
and there are numerous approaches available. See, for in-
stance, [7], [15], [12], [18], [19] for several recent ap-
proaches. Of particular relevance are the results of Ikeda and
Kay [12] and Melikyan, Hovakimyan, and Ikeda [15]. The
latter reference shows that an alternate approach to solving
the least restrictive collision avoidance problem is to use
dynamic programming. This approach leads to the solution
of a Hamilton-Jacobi-Bellman equation, and it is proposed
to use the method of singular characteristics to solve for
the value function. Instead we obtain an explicit solution
using direct arguments from viability theory. The theoretical
connections between the dynamic programming formulation
and the viability theory formulation is an interesting area of
further investigation.

II. MOTIVATING PROBLEM

Suppose we have two vehicles modelled as unicycles. The
vehicles are assumed to travel with unit speed and they each
have a minimum turning radius of one. For each vehicle
i = 1,2 the kinematic model is

ẋi = cosθi

ẏi = sinθi

θ̇i = ui ,

where (xi,yi) ∈ R
2 is the position in the plane, θi ∈ R is

the vehicle’s orientation, and the control input ui ∈ R is the
angular velocity. The turning radius requirement dictates the
control must satisfy |ui| ≤ 1. We say that the two vehicles
collide at time t if the distance between them at t is strictly
less than a prespecified positive number c. We define the
domain Sc to be the region of the state space where there is
no collision. That is,

Sc = {(x1,y1,θ1,x2,y2,θ2) |
√

(x2 − x1)2 +(y2− y1)2 ≥ c} .

It is assumed that the two vehicles are autonomous, unwill-
ing to form long term plans with each other, but in the
face of imminent collision, they execute controllers which



harmoniously achieve collision avoidance. We consider the
following problem.

Problem 1: Given two vehicles modelled as unicycles,
find a controller uv with the following property: if starting
from an initial condition and using uv the two vehicles
collide, then using any other measurable control input the
vehicles also collide.

In the next two sections we develop a theoretical frame-
work to address this problem. In Section V we return to
solving the motivating problem.

III. THEORETICAL PROBLEM FORMULATION

Consider a system

ẋ = f (x)+g(x)u , (1)

where f ∈ R
n and g ∈ R

n×m are Lipschitz and the input
space is a compact, convex polyhedron U ⊂ R

m. A control
u : [0,∞) → U is a measurable function in t which takes
values in U . The set of q vertices of U is denoted as

V = {v1
, . . . ,vq} .

Let φ(t,x0) be the unique solution of (1) starting at x0 and
using control u. Also, let s : R

n →R be a smooth submersion,
i.e. the gradient ∇s is non-vanishing everywhere in R

n.1

Suppose we are given c ∈ R. The domain to be rendered
invariant is

Sc = {x ∈ R
n | s(x) ≥ c} .

We make the following assumption on s.
Assumption 1: The function s has the property that for all

x ∈ R
n, ṡ(x), the Lie derivative of s along solutions of (1),

is not a function of u. That is, Lgs(x) = 0.
This relative degree-like assumption implies that the Lie
derivative of s is ṡ = L f s and it allows us to define the set
of states where s is decreasing, namely,

W = { x ∈ R
n | L f s(x) < 0 } .

Definition 1 (Aubin, p. 121 [2]): A subset Sc is said to be
a viability domain if for each x0 ∈ Sc, there exists a control
u(t) such that the solution of (1) starting at x0 with control
u stays in Sc for all t ≥ 0. If Sc is not a viability domain,
then there exists a largest closed (possibly empty) viability
domain S ∗

c contained in Sc, which is called the viability
kernel of Sc. A control uv which renders S ∗

c viable is called
a viability controller.

Our viability problem can be stated as follows.
Problem 2: Given a control affine system (1) and the set

Sc which is a manifold with boundary, find uv, a viability
controller, and S ∗

c , the viability kernel.
We place a restriction on the type of viability controller

that we consider. It is that the viability controller achieves
viability in a finite time, rather than asymptotically. This is
stated more precisely as follows.

Assumption 2: For each x0 ∈ S∗
c ∩W and using uv, there

exists t < ∞ such that s(φ(t ,x0)) ≥ c and ṡ(φ(t,x0)) ≥ 0.

1The condition may be relaxed to say that on a relevant subset of R
n

every point is a regular point of s.

Let ¬W denote R
n \W . Essentially the assumption says

that starting in the set S ∗
c ∩ W , the viability controller uv

drives the system to Sc ∩ ¬W in finite time. A viability
controlller satisfying Assumption 2 is said to be a finite
time viability controller. Finite time viability controllers are
desirable from an applications viewpoint, and thus are the
only ones considered in this paper.

IV. VIABILITY CONTROLLER

Consider x0 ∈ R
n and for each i = 1, . . . ,q, define φi(t,x0)

to be the solution of the autonomous system

ẋ = f (x)+g(x)vi
, vi ∈V (2)

starting from x(0) = x0 and evaluated at time t. We define
the following variables:

si(t,x0) := s(φi(t,x0)), i = 1, . . . ,q .

For x0 ∈ W , let t i(x0) be the first time when φi(t,x0)
reaches the boundary of W ; that is when dsi

dt (t,x0) = 0. For
x0 ∈ ¬W , set t i(x0) = 0. (We will write t i(x0) as t i where
the dependence on x0 is clear.) Since initially for x0 ∈ W ,
dsi
dt (t,x0)

∣

∣

∣

t=0
< 0, t i is the time when si(·,x0) (and therefore

s) reaches a local minimum along the trajectory starting at
x0 when restricted to the time interval [0, t i]. For x0 ∈ R

n, we
define si(x0) to be the value of si at t i, i.e.,

si(x0) := si(ti,x0) . (3)

We observe that by definition si is constant when evaluated
along the trajectory φi(t,x0) over the interval [0, t i].

We require the following.
Assumption 3: Each t i(·) is a continuous function of the

initial condition x0 ∈ R
n, and t i(x0) < ∞ for all x0 ∈ R

n and
i = 1, . . . ,q. Moreover, si(·) is a continuously differentiable
function on W .

Continuity of t i can be guaranteed by imposing transver-
sality of the flow φi(t,x0) with ∂W . See [6] for similar
arguments in the context of proving continuity of a minimum
time function over a finite horizon. Once we have that t i

is continuous and using Lipschitz continuity of the vector
fields, it is a standard argument to show that si is continuous.
The differentiability assumption is introduced to be able
to compute gradients of si in W , and, in general, is too
restrictive; however, it can be removed using tools of non-
smooth analysis [2], [8]. We retain the assumption since it
holds in our main application.

For each vi ∈ V and each x0 ∈ W , there is a finite time
t i when the trajectory reaches the boundary of W . The first
step of our design is to specify a control which acts in the
region Sc ∩¬W .

Assumption 4: There exists a controller up : [0,∞) → U
such that if x0 ∈ Sc ∩¬W , then using up, ṡ(φ(t,x0)) > 0 for
all t > 0.

Remark 1: A viability controller need only act on the
boundary of its viability kernel. In ¬W , we will see the
viability kernel is simply Sc, so up is only used in ∂Sc∩¬W .
However, the system naturally remains viable in Sc ∩¬W ,



since L f s(x) > 0 along ∂Sc in ¬W . Hence, any control will,
in fact, do in this region. The control up is selected primarily
to be able to conveniently refer to a single controller in
Sc ∩¬W in the later theoretical development, and therefore
presents no loss of generality.

Next we turn to the more challenging task of finding a
viability controller for the region Sc∩W . We propose a bang
controller (a controller that uses only one constant control
value for each initial condition), denoted u∗, that we claim
is the viability controller in the region Sc ∩W . The overall
viability controller is then uv, equal to up or u∗, depending
on the initial condition. Associated with uv is a viability
kernel S ∗

c of Sc. Using uv, if the state is initialized in S ∗
c

then it remains in S ∗
c ⊆ Sc for all time. The controller uv is

active only on the boundary of S ∗
c . In the interior of S ∗

c other
controllers may be used. We say that the controller uv is least
restrictive in the sense that if viability is violated starting at
some initial condition using uv, then it is violated with any
other measurable control.

We give a characterization of u∗. For x ∈ Sc ∩W , define
the set of indices

I∗(x) = argmaxi∈{1,...,q}{ si(x) } . (4)

Notice that the cardinality of this set may vary with x. Define
the function µ∗ : Sc ∩W →V by

µ∗(x) := v j
, j ∈ I∗(x) . (5)

Finally, for each initial condition x0 ∈ Sc ∩W we define

u∗(t,x0) := µ∗(x0) , t ∈ [0, t(x0)] , (6)

where t(x0) := t j(x0) if µ∗(x0) = v j. This controller will
henceforth be called the “bang controller”. First, notice it
is an open-loop control. Intuitively, this choice of controller
maximizes the first local minimum value of s on an interval
[0, t], by using only a single control value in V . The controller
u∗ terminates at the time t when, by construction, ṡ = 0;
that is, u∗ terminates and up is initiated when the trajectory
exits the set W . (The controller up guarantees that the
local minimum of s on the interval [0, t] is in fact a global
mimimum on the interval [0,∞).)

Next we introduce the viability kernel. First, we define

s∗(x) =

{

maxi∈{1,...,q}{ si(x) } x ∈ W
s(x) x ∈ ¬W .

It is a straightforward exercise to show that s∗ is a continuous
function. Define the set

D∗
c = {x ∈ R

n | s∗(x) < c} . (7)

We claim the viability kernel is

S∗
c := ¬D∗

c . (8)

It is evident from this definition and the continuity of s∗ that
S∗

c is closed. We can further interpret S ∗
c as follows:

S∗
c = (Sc ∩¬W )∪ (¬D∗

c ∩W ) .

It is obviously true for x ∈ W that S ∗
c ∩W = ¬D∗

c ∩W . For
x ∈ ¬W , we know s∗(x) = s(x), so S ∗

c ∩¬W = Sc ∩¬W .

Thus, the interpretation of S ∗
c is as follows. In the region

¬W where L f s ≥ 0, the viability kernel is simply Sc. In
particular, on the boundary of Sc, the control up may be
used to ensure viability, as already discussed. In the region
W where L f s < 0, we claim the viability kernel is ¬D∗

c ,
and on the boundary of D∗

c the bang control u∗ is used. To
summarize, uv : R

n →U consists of two parts corresponding
to the two regions of S ∗

c , and it acts only on the boundary
of S∗

c . Precisely,

uv(t,x0) =

{

u∗(t,x0) x0 ∈ ∂D∗
c ∩W

up(t) x0 ∈ ∂Sc ∩¬W .

A. Main Results

In this section we prove our main theoretical results. We
say that a control u(t) is bang-bang if it is piecewise constant
and it takes values in V , for all t ≥ 0. Let a k-switch controller
be a bang-bang control that allows k switches in its value.
In particular, u∗ is a 0-switch controller.

In Lemma 1 we give a condition under which u∗ is least
restrictive with respect to 1-switch controls. The main idea is
the following. We consider the set D∗

c ∩Sc which comprises
the initial conditions x0 for which u∗ cannot maintain the
system in Sc, since s∗(x0) < c, but some other control u(t)
may be able to. To maintain viability the control u(t) must
be able to steer the system to ¬W without first entering
¬Sc (recall we only consider viability controls that reach
¬W in finite time). By imposing an appropriate invariance
condition on the vector fields (2) on ∂S ∗

c ∩W , it is shown
that no such 1-switch control u(t) exists. In particular, the
invariance condition guarantees that trajectories starting in
D∗

c ∩Sc cannot exit directly to S ∗
c , but instead first reach ¬Sc.

Lemma 2 uses an induction argument to extend this result
to bang-bang controls. Finally, in Theorem 1 we prove u∗ is
least restrictive in W with respect to measurable controls.

Lemma 1: Given c ∈ R, suppose that for all x ∈ ∂S ∗
c ∩W

and for all i 6∈ I∗(x) and j ∈ I∗(x), we have that

∇s j(x) · ( f (x)+g(x)vi) < 0 . (9)

Then the bang controller u∗ for S∗
c ∩W is least restrictive

with respect to 1-switch controllers.
Proof: We argue by contradiction. Suppose there exists

an initial condition x0 ∈ W and a control u(t) such that
viability is violated with u∗(t,x0) and not with u. Let x(t) be
the solution of (1) using control u. Viability is only violated
with u∗ if x0 ∈ D∗

c but to preserve viability using u it must
be that x0 ∈ D∗

c ∩ Sc. Denote u as u1u2, the concatentation
of control u1 ∈ V followed by u2 ∈ V . Suppose the control
switches value at time 0 < t2 < ∞. Since a 1-switch controller
becomes a 0-switch controller at the switching time, it must
be that x(t2) ∈ ¬(D∗

c ∩ Sc). Hence, there exists t1 ≤ t2, the
first time that x(t1) ∈ ∂(D∗

c ∩Sc). If x(t1) ∈ D∗
c ∩∂Sc (where

we must have ṡ ≥ 0 for u to be a viable control), then
one can apply the control up from x(t1), which means that
the 0-switch controller u1 is a viable control starting from
x0 ∈ D∗

c ∩Sc, a contradiction. It must be that x(t1)∈ ∂D∗
c ∩Sc.

Since s∗(x(t)) is a continuous function of t, t1 > 0. We
cannot have i ∈ I∗(x(t1)), where i corresponds to u1 = vi;



otherwise we could continue with u1, a 0-switch controller, to
maintain viability starting from x0 ∈ D∗

c ∩Sc. Instead, it must
be that i 6∈ I∗(x(t1)). Let j ∈ I∗(x(t1)). Let {tk}, tk ∈ [0, t1)
be an increasing sequence of times such that tk → t1. Since
x(tk) ∈ D∗

c ∩Sc, s j(x(tk)) ≤ s∗(x(tk)) < c. Then we have

ṡ j(x(t
1)) = lim

k→∞

(

s j(x(t1))− s j(x(tk))
)

t1 − tk
= lim

k→∞

c− s j(x(tk))

t1 − tk
≥ 0 .

This contradicts the assumption (9) that ṡ j(x(t1)) < 0. As a
result there does not exist a 1-switch controller that is less
restrictive than u∗.

Lemma 2: Given c ∈ R, suppose that for all x ∈ ∂S ∗
c ∩W

and for all i 6∈ I∗(x) and j ∈ I∗(x), condition (9) holds. Then
the bang controller u∗(t,x0) for S∗

c ∩W is least restrictive
with respect to bang-bang controls.

Proof: We argue by induction. By Lemma 1, u∗ is
least restrictive with respect to 1-switch controllers. Now
assume it is least restrictive with respect to 1 up to k − 1
switch controllers. We will show it is least restrictive with
respect to 1 to k switch controllers. By way of contradiction,
suppose there is a k-switch controller u that is less restrictive
than u∗. That is, there exists an initial condition x0 ∈ D∗

c
for which the k-switch controller maintains viability. This
means that x0 ∈ D∗

c ∩ Sc. Consider the point x1 where the
(k−1)th switch happens. It must be that x1 ∈ D∗

c ∩Sc since
the bang controller is least restrictive with respect to k −
2 switch controllers. Starting from x1 we have a 1-switch
controller to maintain viability. This contradicts that the bang
controller is the least restrictive controller with respect to 1-
switch controllers.

Finally, we must prove that u∗ is least restrictive with
respect to measurable controls. We require a general result
for control affine systems, called the Chattering Lemma,
on the reachability of states under measurable controls and
bang-bang controls.

Lemma 3 (Chattering Lemma [1]): Let x(t) be a solution
of (1) corresponding to some control u(t). There exists
a sequence {uk , k ∈ N} of piecewise constant bang-bang
controls, such that if

{

xk
}

is the corresponding family of
solutions to (1), then for each T > 0

sup
0≤t≤T

‖xk(t)− x(t)‖→ 0 , as k → ∞ . (10)

The following is our main theoretical result.
Theorem 1: Suppose that for all c ∈ R, x ∈ ∂S ∗

c ∩W , and
for all i 6∈ I∗(x) and j ∈ I∗(x), condition (9) holds. Then
the bang controller u∗ for S∗

c ∩W is least restrictive with
respect to measurable controls. Consequently u∗ is a viability
controller for S ∗

c ∩W and S ∗
c is the viability kernel.

Proof: Fix c ∈ R. Suppose there exists a measurable
control u(t) that is less restrictive than u∗, the bang controller
for S∗

c ∩W . This implies there exists x0 ∈ D∗
c ∩Sc and a time

t < ∞ such that if x(t) is the trajectory starting at x0 using
control u(t), then

1) s(x(t)) > c and ṡ(x(t)) < 0 for all t ∈ [0, t).
2) s(x(t)) =: c ≥ c and ṡ(x(t)) = 0.
3) After time t, w.l.o.g. set u(t) = up(t), as in Assump-

tion 4.

The first and second statements arise as follows. First, x0 ∈
D∗

c ∩ Sc implies that x0 ∈ W . Also, we cannot have x0 ∈
∂Sc ∩ W for then viability would be immediately violated
at x0. Instead, x0 ∈ int(Sc)∩W and t is the first time when
x(t) ∈ Sc ∩∂W .

Let T = t + 1. We note that inft∈[0,∞) s(x(t)) =

mint∈[0,T ] s(x(t)) = c by the definition of up. Let {uk} be
a sequence of bang-bang controls defined on [0,∞) as in
the Chattering Lemma and {xk(t)} the associated trajectories
such that (10) holds. By continuity of s we have that
sup0≤t≤T ‖s(xk(t))− s(x(t))‖→ 0 as k → ∞. It follows that

min
t∈[0,T ]

s(xk(t)) → c , as k → ∞ , (11)

and since ṡ(x(t)) < 0 for t ∈ [0, t) and ṡ(x(t)) > 0 for t ∈
(t,∞), one can also show arginft∈[0,∞)s(x

k(t)) → t as k → ∞.
Therefore, there exists κ > 0 such that for all k > κ, there
exists tk ∈ [0,T ] such that

inf
t∈[0,∞)

s(xk(t)) = min
t∈[0,T ]

s(xk(t)) = s(xk(tk)) . (12)

Let c∗ := s∗(x0). We know c∗ < c since x0 ∈ D∗
c ∩Sc. By

Lemma 2, u∗ is less restrictive than any bang-bang control for
the domain Sc∗ . This means for all k > κ, mint∈[0,T ] s(xk(t))≤
c∗. From (11), it follows that c ≤ c∗ < c, a contradiction.

V. COLLISION AVOIDANCE

Suppose we have two unit-speed vehicles i = 1,2 modelled
as unicycles. We define V = {−1,1}× {−1,1}. Let r be
the distance between the vehicles, φ ∈ (−π,π] the heading
of the first vehicle that would take it directly towards the
second vehicle, and θ ∈ (−π,π] the difference between
the two vehicle’s headings, taking vehicle 1’s heading as
the reference. The two unicycle system in relative polar
coordinates, valid for r > 0, is

ṙ = cos(φ−θ)− cos(φ) (13)

φ̇ =
1
r

sin(θ−φ)+
1
r

sin(φ)−u1 (14)

θ̇ = u2−u1 . (15)

We use the notation ξ = (r,φ,θ) to refer to the state of the
system in relative coordinates. In terms of these coordinates
the viability domain is

Sc = {ξ ∈ R
3 | r ≥ c} .

It is clear from (13) that Assumption 1 holds, so we can
characterize the set W . From Equation (13) we have ṙ(t) = 0
when cos(φ−θ)−cos(φ) = 0. The roots are θ = 0 and θ = 2φ.
It follows that

W =
{

ξ | φ∈ [0,π),θ∈ (2φ,2π)
}

[

{

ξ | φ∈ [−π,0),θ∈ (0,2π+2φ)
}

.

Next, we must address Assumption 4. The following is easily
proved.

Lemma 4: If ξ ∈ ¬W at t = 0, then there exists a con-
troller up such that ṙ(t) > 0 for all t > 0.

Next we compute u∗ and s∗. The main step of the
computation is computing the si’s. The following convention



on subscripts is used. Subscript i = 1 when v1 := (u1,u2) =
(1,1); i = 2 when v2 := (u1,u2) = (1,−1); i = 3 when v3 :=
(u1,u2) = (−1,1); and i = 4 when v4 := (u1,u2) = (−1,−1).
Using this notation, si(ξ0) is the value of r at the first time
t i when ṙ(t i) = 0 starting from the initial condition ξ0 and
using the constant control vi ∈V .

Each vehicle follows one of two circles depending on
its own control input. A circle is identified with its center.
Circle o1 (o2) is the circle followed by vehicle 1 when
u1 = 1 (u1 =−1). Similarly, o3 (o4) is the circle followed by
vehicle 2 when u2 = −1 (u2 = 1). Let D1(t) be the length
of the line connecting o1 and o4; D2(t) is the length of the
line connecting o1 and o3; D3(t) is the length of the line
connecting o2 and o4; and D4(t) is the length of the line
connecting o2 and o3. Also define Di0 to be Di(t) at time
t = 0. Let mi, i = 1,2, be the position of ith vehicle. To obtain
the parameters Di we use the positions of the centers of the
circles: o1 = (0,1), o2 = (0,−1), o3 = (r cosφ+sinθ,r sinφ−
cosθ) and o4 = (r cosφ − sinθ,r sinφ + cosθ). It follows
immediately that

D2
1 = r2 −4r cos(φ−

θ
2
)sin(

θ
2
)+4sin2(

θ
2
) (16)

D2
2 = r2 −4r sin(φ−

θ
2
)cos(

θ
2
)+4cos2(

θ
2
) (17)

D2
3 = r2 +4r sin(φ−

θ
2
)cos(

θ
2
)+4cos2(

θ
2
) (18)

D2
4 = r2 +4r cos(φ−

θ
2
)sin(

θ
2
)+4sin2(

θ
2
) . (19)

One can now analyze the geometry of the four circles and
determine the minimum distance between the two points m1

and m2 moving on their respective circles, as a function of
the initial condition and the Di’s. This is an elementary but
lengthy computation of geometry, so we only present the
final result. Let

σ−(ξ0) :=

∣

∣

∣

∣

2cos(
θ0

2
)− r0 sin(φ0 −

θ0

2
)

∣

∣

∣

∣

(20)

σ+(ξ0) :=

∣

∣

∣

∣

2cos(
θ0

2
)+ r0 sin(φ0 −

θ0

2
)

∣

∣

∣

∣

. (21)

Then given ξ0 ∈ W ∩Sc we have for i = 1,4,

s̄i(ξ0) =

∣

∣

∣

∣

Di0 −2|sin(
θ0

2
)|

∣

∣

∣

∣

. (22)

Also,

s̄2(ξ0) =

{

|r0 cos(φ0 −
θ0
2 )| σ−(ξ0) ≤ 2

√

D2
20 +4−4σ−(ξ0) σ−(ξ0) > 2 .

(23)
and

s̄3(ξ0) =

{

|r0 cos(φ0 −
θ0
2 )| σ+(ξ0) ≤ 2

√

D2
30 +4−4σ+(ξ0) σ+(ξ0) > 2 .

(24)
We must determine the largest among the s̄i’s in order to

obtain the viability kernel. Here we present only the final
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Fig. 1. The set S∗
c ∩W projected to the φ−θ plane when c = 1.

result. See [9] for the details of the computations. First we
have

ρ(ξ) := max{s1(ξ),s4(ξ)} = max{D1,D4}−2|sin(
θ
2
)|

=

√

r2 +4r

∣

∣

∣

∣

cos(φ−
θ
2
)sin(

θ
2
)

∣

∣

∣

∣

+4sin2(
θ
2
)−2

∣

∣

∣

∣

sin(
θ
2
)

∣

∣

∣

∣

.

Next, let

σ(ξ) := 2|cos(
θ
2
)|+ r|sin(φ−

θ
2
)| .

Note that σ(ξ) ≤ 2 if and only if σ+(ξ) ≤ 2 and σ−(ξ) ≤ 2.
Lemma 5: If σ(ξ0) ≤ 2 then max{ s̄1, s̄4} ≥ max{ s̄3, s̄2}.

If, in addition, ξ0 ∈ W , then the inequality is strict.
Let ρ′(ξ) be the maximum of the second two cases of (23)

and (24). Then we have ρ′(ξ) :=
√

r2 +4r

∣

∣

∣

∣

sin(φ−
θ
2
)cos(

θ
2
)

∣

∣

∣

∣

+4cos2(
θ
2
)+4−4σ(ξ).

With these results, we obtain the final form of s∗(ξ0)
and thus an analytical characterization of the set of initial
conditions ξ0 where max{si(ξ0)} = c. We have

s∗(ξ0) =

{

ρ(ξ0) , σ(ξ0) ≤ 2
max{ρ(ξ0),ρ′(ξ0)} , σ(ξ0) > 2

(25)

Having obtained a characterization of s∗, we turn to the
sets D∗

c and S∗
c . First, from (25) it is evident that surface ∂D∗

c
is formed by the c level sets of the functions ρ and ρ′. The
set D∗

c also has the following property, useful in representing
it graphically.

Lemma 6: Given a pair (φ,θ), there is a unique finite
value r such that (r,φ,θ) ∈ ∂D∗

c . Moreover, in spherical
coordinates D∗

c is star convex, i.e. for all α ∈ [0,1), if
(r,φ,θ) ∈ ∂D∗

c , then (αr,φ,θ) ∈ D∗
c .

This fact justifies a visualization of S ∗
c by projecting its

boundary colorcoded with the appropriate u∗ value to the set
W in the φ− θ plane. Figure 1 shows u∗ on the boundary
of S∗

c for c = 1 after projecting to W in the φ− θ plane.
There are four regions corresponding to the four choices of
control. The boundary curves are the points where certain of
the si’s are equal.



A. Verification of Condition (9)

The final step of the design is to verify that condition (9)
is satisfied. First, it can be verified that the gradients of si are
defined on ∂D∗

c [9]. Here we compute the gradient vectors
∇ρ and ∇ρ′ of the level surfaces ρ(ξ0) = c and ρ′(ξ0) = c,
and take the dot product of these gradient vectors with the
appropriate vector fields. These expressions are computed
symbolically using Maple. The notation ∇ρ and ∇ρ′ is used
as a shorthand for the gradients of the si’s and not to connote
these functions are themselves differentiable.

Let fi denote the vector field (13)-(15) with control vi. We
obtain that

∇ρ · f1 =

{

2r ṙ
c+2|sin( θ

2 )|
s4 > s1

0 s4 < s1

∇ρ · f4 =

{

2r ṙ
c+2|sin( θ

2 )|
s4 < s1

0 s4 > s1

Using the fact that ṙ < 0, we see that ∇ρ · f1 < 0 if s1 < s4 and
∇ρ · f4 < 0 if s4 < s1. This dot product is only used when
ρ(ξ) > ρ′(ξ) and in that case, if s1 > s4 then u∗ = v1 and
∇ρ · f1 = 0, as one would expect of the viability controller.
Similarly, if ρ(ξ) > ρ′(ξ) and s4 > s1 then u∗ = u4 and ∇ρ ·
f4 = 0. Hence, these results verify condition (9). Note we do
not need to verify (9) when s4 = s1 since then 1,4 ∈ I∗.

We also have

∇ρ′ · f2 = 2
ṙ

|sin(φ− θ
2 )|

(r|sin(φ−
θ
2
)|+2|cos(

θ
2
)|−2)

when s3 > s2 and ∇ρ′ · f2 = 0 when s3 < s2. Also

∇ρ′ · f3 = 2
ṙ

|sin(φ− θ
2 )|

(r|sin(φ−
θ
2
)|+2|cos(

θ
2
)|−2)

when s3 < s2 and ∇ρ′ · f3 = 0 when s3 > s2. These formulas
only apply when σ(ξ) > 2 since that is the only case when
ρ′ is used. Also, since ṙ < 0 we cannot have sin(φ− θ

2 ) = 0.
The first and third formulas are thus well defined and satisfy
(9), by using σ(ξ) > 2. Finally, the zero dot products appear
as discussed above, and also coincide with condition (9).

Finally, we are able to obtain some further information
about the remaining dot products. After some algebra,

∇ρ · ( f3 + f2) =
2rṙ

c+2|sin( θ
2 )|

∇ρ′ · ( f1 + f4) =
2ṙ(r|sin(φ− θ

2 )|+2|cos( θ
2 )|−2)

c
.

Both expressions are always negative as we have ṙ < 0.
Therefore, the first equation implies either ∇ρ · f3 is negative
or ∇ρ · f2 is negative. Similarly, the second equation implies
either ∇ρ′ · f1 is negative or ∇ρ′ · f4 is negative.

So far we have shown that at any point ξ ∈ ∂D∗
c ∩W ∩Sc,

at least three out of the four vector fields satisfy condition (9).
The remaining cases are complicated to verify analytically.
Therefore, we have verified those cases numerically using
Matlab for a range of values of c from 0.01 to 10,000. It
was found that the remaining dot products satisfy condition
(9).

VI. CONCLUSION

We have presented theory for explicit construction of
viability kernels and viability controllers for control affine
systems when the invariant domain is given as a smooth
manifold with boundary. The results are shown to apply to
the problem of least restrictive collision avoidance control
of two vehicles. Our future work involves improving the
proposed theory by casting it in the setting of nonsmooth
analysis and by relaxing the assumptions of Theorem 1.
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