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Abstract— This paper shows that visuomotor adaptation can
be cast as a disturbance rejection problem. We begin by
formalizing experimentally observed dynamic properties of
adaptation in terms of the transient response of a stable linear
system, and we discuss implications on the validity of classes
of models. Next, we solve the visuomotor adaptation problem
by invoking adaptive internal models. A theoretical result on
stability is obtained using averaging theory. Simulations applied
to a visuomotor rotation experiment with fast arm reaches show
that the dynamic properties of adaptation are recovered using
the model.

I. INTRODUCTION

Sensorimotor adaptation is an error-driven process of

movement modification characterized, firstly, by a specific

repeated pattern of muscle activation with changes only

in certain variables (e.g. endpoint position); second, the

change occurs gradually over repetitive trials; and third, once

adapted, subjects are unable to retrieve the prior behaviour

except by re-adapting with the same gradual process [15].

Motor adaptation is termed short-term when it occurs over

minutes or hours, contrasting with long-term adaptation that

takes place over days or weeks [18]. Visuomotor adaptation

is elicited by a visual error closely following the execution

of a movement, e.g. saccades with an intersaccadic step of

the target [11]; and the visuomotor rotation experiment with

fast arm reaches [13], [20].

Error-driven LTI state models have proven to be resilient

to capture many aspects of motor adaptation [21], [6], [14],

[12]. Such models generally utilize abstract states with no

physical meaning. Meanwhile, neuroscientists have posited

that the physiological underpinning of adaptation is that the

brain builds a forward model [10], typically an observer or

Kalman filter, of either the plant [16], [24]; the error [22];

or the disturbance [12], [2]. Remarkably, the internal model

principle [7] is not explicitly present in this discourse.

The goal of this paper is to show that visuomotor adapta-

tion can be cast as a problem of disturbance rejection. In so

doing, and unlike prior models, we take explicit account of

the internal model principle. While our model is intended

to be applicable in a variety of sensorimotor adaptation

tasks, here we focus on short-term adaptation in the saccadic

system and the visuomotor rotation experiment, both of

which involve constant disturbances.

II. DYNAMIC PROPERTIES OF ADAPTATION

We begin by formalizing the dynamic properties of adap-

tation. We make three simplifying assumptions. First, we
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focus on motor adaptation tasks involving a single output.

That is, we restrict our attention to one degree of freedom

of movement; for instance, horizontal movement of the eye,

hand angle relative to a reference angle in a horizontal plane,

forward (coronal) inclination of the body relative to a vertical

reference, the horizontal angle of a dart thrown by a subject,

and so forth. Second, we assume the model is linear time-

invariant, as such models have promise to explain motor

adaptation [21]. Third, we focus on constant disturbances, as

currently there is a dearth of experiments with non-constant

disturbances [5].

Motor adaptation experiments proceed in sequences of

blocks of trials of specific types. A baseline block (B) of

trials familiarizes the subject with the experimental aparatus

under unperturbed (normal) conditions. A learning block (L)

of trials occurs after a baseline block when a perturbation

or disturbance is introduced. A washout block (W) follows

a learning block when the perturbation is removed. An

unlearning block (U) follows a learning block when the

perturbation changes in sign but not magnitute relative to the

learning block. A relearning block (R) is a second learning

block with the same perturbation. A downscaling block (D)

is a second learning block in which the perturbation is set

to a fraction of its value in the first learning block.

Consider the discrete time system

ξ(k + 1) = Aξ(k) + Ew(k) (1a)

y(k) = Cξ(k) +Dw(k) , (1b)

where ξ(k) ∈ Rn is the state, w(k) ∈ Rq is a disturbance,

and y(k) ∈ R is the scalar measurement or output. Suppose

that the unforced system (when w(k) ≡ 0) is asymptotically

stable, i.e. σ(A) ⊂ C1, the open unit disk in the complex

plane. In all definitions below, let d0 ∈ R
q and y0 ∈ R be

constants and let k0 ≥ 0 be an integer. We assume that the

disturbance is a constant vector w(k) ≡ d0. Since the system

is stable, we can define yss to be the steady-state value of y

when w(k) ≡ d0. Also −yss is the steady state value of y

when w(k) ≡ −d0.

Savings is a behavior in which learning is sped up in

the second learning block relative to the first one. Two

experiments in which savings can be exhibited are BLUR

or BLWR.

Definition 1 (Savings): Suppose we have discrete times

k3 ≥ k2 > k1 > k0 such that: w(k) = d0 for k ∈
[k0, k1) ∪ [k2,∞), and y(k3) = y(k0) = y0. Let Tr0 and

Tr3 be the rise times starting at k0 and k3, respectively. We

say (1a) - (1b) exhibits savings if Tr0 > Tr3. Additionally,

if w(k) = −d0 for k ∈ [k1, k2), then we say (1a) - (1b)



exhibits savings with counter perturbation (CP). If w(k) = 0
for k ∈ [k1, k2), then we say (1a) - (1b) exhibits savings with

washout (WO). ⊳

Remark 2: The rise time is the number of trials for y(k)
to reach 90% of its steady-state value. However, it need not

be the case that y(k) has already reached 90% of its steady-

state value yss at discrete time k1 when the first learning

block ends. The rise time is computed by extending forward

in time the solution curve of the relevant block of trials. ⊳

Reduced savings is a behavior in which savings is reduced

by inserting a washout block of trials after the unlearning

block. After the washout block, relearning does not proceed

as rapidly as in the savings experiment. Reduced savings

may be exhibited in a BLUWR experiment.

Definition 3 (Reduced Savings): Suppose we have a du-

ration Two > 0 and times k2 > kwo+Two > kwo > k1 > k0
such that: w(k) = d0 for k ∈ [k0, k1) ∪ [kwo + Two,∞),
w(k) = −d0 for k ∈ [k1, kwo), w(k) = 0 for k ∈
[kwo, kwo + Two), and y(k2) = y(k0) = y0. Let Tr0 and

Tr2 be the rise times starting at k0 and k2, respectively. We

say (1a) - (1b) exhibits reduced savings if Tr0 ≥ Tr2 and

limTwo→∞ Tr2 = Tr0. ⊳

Anterograde interference is a behavior in which a previ-

ously learned task reduces the rate of subsequent learning of

a different (and usually opposite) task. Anterograde interfer-

ence may be exhibited in a BLU experiment.

Definition 4 (Anterograde Interference): Suppose there

exist discrete times k2 > k1 > k0 such that: w(k) = d0
for k ∈ [k0, k1), w(k) = −d0 for k ∈ [k1,∞), and

y(k2) = −y(k0). Let Tr0 and Tr2 be the rise times starting

at k0 and k2, respectively. We say (1a) - (1b) exhibits

anterograde interference if Tr0 < Tr2. Moreover Tr2

increases as the number of trials in the first learning block

increases. ⊳

Rapid unlearning is a behavior in which the rate of

unlearning is faster than the rate of initial learning, if

the number of trials in the learning block is small. Rapid

unlearning may be exhibited in a BLW experiment.

Definition 5 (Rapid Unlearning): Suppose there exist dis-

crete times k2 > k1 > k0 such that: w(k) = d0 for k ∈
[k0, k2), w(k) = 0 for k ∈ [k2,∞), and y(k1) = yss−y(k2).
Let Tr1 and Tr2 be the rise times starting at k1 and k2,

respectively. We say (1a) - (1b) exhibits rapid unlearning if

Tr1 > Tr2. Moreover Tr2 decreases as the number of trials

in the first learning block decreases. ⊳

Rapid downscaling is a behavior in which the rate of

learning in a secondary learning block is faster when the

disturbance is set to a fraction of its value in the initial

learning block.

Definition 6 (Rapid Downscaling): Suppose there exist

α ∈ (0, 1) and discrete times k2 > k1 > k0 such that:

w(k) = d0 for k ∈ [k0, k2), w(k) = αd0 for k ∈ [k2,∞),
and y(k1) = (1 + α)yss − y(k2). Also, we assume that

the steady-state value of y(k) for k ≥ k2 is αyss, and

|y(k2)| > α|yss|. Let Tr1 and Tr2 be the rise times starting

at k1 and k2, respectively. We say (1a) - (1b) exhibits

rapid downscaling if Tr1 > Tr2. Moreover Tr2 decreases

as the number of trials in the first learning block k2 − k0
decreases. ⊳

Remark 7: The justification for the expression y(k1) =
(1 + α)yss − y(k2) in the previous definition is as follows.

To make a fair comparison between the rise times for the

learning block and the downscaling block, the output y(k)
must vary over the same range of values. If the initial time for

the measurement of rise time in the learning block is selected

to be k1, then the total variation of y(k) from this time to

steady-state is yss − y(k1). Similarly, for the downscaling

block, the total variation of y(k) is y(k2) − αyss. Equating

these two expressions and solving for y(k1), we obtain the

expression above. ⊳

Spontaneous recovery is a behavior observed during the

washout block of a BLUW experiment in which y(k)
partially “rebounds” to its value at the end of the learning

block rather than converging monotonically to zero.

Definition 8 (Spontaneous Recovery): Suppose there ex-

ist discrete times k2 > k1 > k0 such that w(k) = d0 for

k ∈ [k0, k1), w(k) = −d0 for k ∈ [k1, k2), w(k) = 0 for

k ∈ [k2,∞), and y(k2) = y(k0). We say (1a) - (1b) exhibits

spontaneous recovery if the percent overshoot starting from

y(k2) = y0 satisfies: OS% > 0. ⊳

III. IMPLICATIONS

We explore several implications of the dynamic properties

of adaptation. First, an immediate fact also confirmed exper-

imentally [11] is that they cannot arise from a first-order LTI

model.

Lemma 9: Consider the stable system (1a)-(1b). If the

system is first-order, then it does not exhibit savings, an-

terograde interference, rapid unlearning, rapid downscaling,

or spontaneous recovery.

Now consider the open-loop model

x(k + 1) = Ax(k) +Bu(k) (2a)

y(k) = x(k) + d(k) , (2b)

where w.l.o.g. B > 0. This linear system (2a) provides

a high-level, abstract description of the change in quality

of movement over successive trials of a single degree of

freedom of the body. The integer k denotes the trial number,

x(k) is the state of that single degree of freedom at the end of

the k-th trial, d(k) is an additive disturbance at the k-th trial,

and y(k) is a measurement observed by the subject at the

end of the k-th trial. The term Ax(k) models a retention or

memory mechanism of the state in the previous trial. Because

u(k) is a free variable, this scalar open-loop model places

no restrictions whatsoever on the possible dynamics of the

considered degree of freedom of the body. Finally, we define

the observed error at the k-th trial to be

e(k) = r(k) − y(k) = r(k) − x(k)− d(k) , (3)

where r(k) is the desired (reference) position at the end of

the k-th trial.

Suppose that A = 1, meaning the brain retains an exact

memory of the last state (it may do so using proprioception
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Fig. 1: The model (4) does not exhibit spontaneous recovery

in a BLUW experiment. The hand angle does not rebound

above zero during the washout block.

from the muscles). The simplest strategy to reject the distur-

bance in this case is to utilize error feedback, u(k) = Ke(k),
yielding an error model e(k + 1) = (1 − BK)e(k). If

|1−BK| < 1, then e(k) tends to zero. Hence, the dynamics

of adaptation would be first-order, contradicting Lemma 9.

The proposal that the brain utilizes proprioception to be able

to employ static error feedback seems unlikely, as confirmed

experimentally for the saccadic system [11].
Next, consider an adaptive observer, as suggested in [25],

to generate an estimate x̂(k) of x(k). Let x̃(k) = x̂(k)−x(k)
be the estimation error, and suppose x̃(k + 1) = (A −
LC)x̃(k) with L chosen such that |A − LC| < 1. Now we

notice that if r(k) = 0, then d̂(k) := −x̂(k) − e(k) is an
accurate estimate of d(k). Thus, to reject the disturbance
d(k) in the error dynamics, a linear feedback based on
measurement of e(k) and x̂(k) would suffice. For example,
u(k) = 1

B
[1−A] x̂(k) +Ke(k). The closed-loop system is

x(k + 1) = (1− BK)x(k) + (1−A)x̃(k)−BKd(k) (4a)

x̃(k + 1) = (A− LC)x̃(k) . (4b)

The closed-loop eigenvalues are 1 − BK and A − LC so

we select K such that 0 < 1−BK < 1 (note that selecting

(1 − BK) < 0 would result in oscillations not witnessed

in adaptation experiments). One can prove this model is not

capable to reproduce the dynamics of adaptation. Simulation

results for a BLUW visuomotor rotation experiment are

shown in Figure 1.

Finally, it has been proposed that the brain builds an

internal model of the error dynamics [22]. Suppose A = 1
(see equation (3) of [22]) and consider

ê(k + 1) = ê(k)−Bu(k) +G(e(k)− ê(k)) . (5)

The simplest controller to drive the error to zero using this

observer is u(k) = Kê(k). We select K and G such that

0 < 1−BK < 1 and 0 < 1−G < 1 for stability, as well as

for consistency with experimental data (adaptation generally

does not exhibit damped oscillations). In the next result we

use the experimental observation that x(k) is monotonic

during learning and unlearning blocks.

Lemma 10: Consider (2) and (5) with A = 1 and u(k) =
Kê(k). Suppose x(k) is monotonic over the unlearning block

of a BLUW experiment. Then the closed-loop system does

not exhibit spontaneous recovery.

Proof: Consider a BLUW experiment in which the

baseline block occurs over a discrete interval [0, k1−1] with

d(k) = 0; the learning block occurs over [k1, k2 − 1] with

d(k) = d0 < 0; the unlearning block occurs over [k2, k3 −
1] with d(k) = −d0 > 0; and the washout block occurs

over [k3,∞) with d(k) = 0. We assume that x(k3) = −ǫ,

where 0 < ǫ < −d0 (such an index must exist since x(k)
asymptotically approaches d0 < 0 in the unlearning block.

That is, the washout block begins after x(k) has crossed 0
during the unlearning block. See Figure 1. The solution over

the washout block is

x(k) = (1−BK)k−k3x(k3) + ẽ(k3)Āz(k)

where z(k) = [(1 − BK)k−k3 − (1 − G)k−k3 ] and Ā :=
BK

G−BK
. To show that the system exhibits spontaneous re-

covery, we must show there exists a time k4 > k3 such that

x(k4) > 0. First, observe −ǫ(1 − BK)k−k3 < 0 for all

k ≥ k3. Second, consider z(k) and Ā. If 0 < 1 − BK <

1 − G < 1, then Ā < 0 and z(k) < 0 for all k ≥ k3.

Instead if 0 < 1 − G < 1 − BK < 1, then Ā > 0 and

z(k) > 0 for all k ≥ k3. Thus, Āz(k) > 0 for k ≥ k3.

Finally, we must consider the sign of ẽ(k3). If we can show

ẽ(k3) < 0, then ẽ(k3)Āz(k) < 0 for all k ≥ k3 and there is

no spontaneous recovery. Observe that ẽ(k3) = ê(k3)−e(k3).
Then, −e(k3) = x(k3) < 0. Also, x(k) is decreasing during

the unlearning block and since x(k+1) = x(k) +BKê(k),
then ê(k3) < 0. Thus, we conclude that ẽ(k3) < 0 and hence,

x(k) < 0 for k ≥ k3.

IV. VISUOMOTOR ADAPTATION MODEL

In this section we develop a model of visuomotor adapta-

tion by casting the problem as one of disturbance rejection

of deterministic disturbances acting on a linear system. From

(2)-(3) we obtain the error model

e(k + 1) = Ae(k)−Bu(k) + r(k + 1)− d(k + 1)

−Ar(k) +Ad(k)

= Ae(k)−Bu(k) + d(k) . (6)

We assume d(k) is an unknown deterministic signal gener-

ated by a linear exosystem

w(k + 1) = Fw(k) +Gd(k) , d(k) = Ψw(k) , (7)

where w ∈ Rq is the exosystem state, and Ψ ∈ R1×q are the

unknown exosystem parameters. We assume, as usual, the

eigenvalues of S := F +GΨ lie on the unit circle ∂C1, F is

Schur stable, (F,G) is a controllable pair, and w.l.o.g. (Ψ, S)
is an observable pair. The disturbance rejection problem is

to find a controller such that e(k) −→ 0.

Consider the adaptive internal model

ŵ(k + 1) = Fŵ(k) +Gu(k) (8a)

Ψ̂(k + 1) = Ψ̂(k) + εsgn(K)e(k)ŵ(k)T (8b)

u(k) = Ke(k) + Ψ̂(k)ŵ(k) , (8c)

where ŵ(k) ∈ R
q is the state of the adaptive internal model,

Ψ̂(k) is an estimate of Ψ, and ε > 0 is the learning rate.

Substituting u(k) into (8a) with Ψ̂(k) ≡ Ψ, we obtain the

familiar internal model ŵ(k + 1) = Sŵ(k) +GKe(k), thus

satisfying the internal model principle [7]. In the sequel we



focus on disturbance rejection of constant disturbances [11],

[21].

Lemma 11: Consider (6)-(8) with q = 1, S = 1, 0 <

F < 1, 0 ≤ A < 1, and Ψ̂(k) ≡ Ψ. There exists K such

that e(k) → 0 as k → ∞.
Proof: Define the estimation error

w̃(k) = ŵ(k) +
1

B
Ge(k)−

G

B(1− F )
w(k) .

Let ζ̃(k) := (e(k), w̃(k)). The closed-loop system is

ζ̃(k + 1) = Ãclζ̃(k) :=

[
A−BK +ΨG −BΨ
1

B
(GA− FG) F

]
ζ̃(k) . (9)

The characteristic polynomial of Ãcl is ∆cl(z) = z2 −
(1 +A−BK) z +A−BKF . An analysis based on a Jury

table leads to stability conditions: A− 1 < BKF < A+ 1;

0 < BK(1 − F ); and BK(1 + F ) < 2(1 + A). Since

0 < F < 1, the second condition is met by choosing

sgn(K) = sgn(B). Since A − 1 < 0, then BKF >

A − 1. Finally, we choose K sufficiently small such that

BK < min{ 1+A
F

,
2(1+A)
1+F

}, thus satisfying the first and third

conditions.

Define ζ(k) := (e(k), ŵ(k)), and consider the closed-loop

system

ζ(k + 1) = Âclζ(k) + Eclw(k) (10)

where Âcl =

[
A−BK −BΨ̂(k)

GK F +GΨ̂(k)

]
and Ecl =

[
Ψ
0

]
.

Define the parameter estimation error Ψ̃(k) := Ψ̂(k) − Ψ.

Then Ψ̃ has dynamics

Ψ̃(k + 1) = Ψ̃(k) + εsgn(K)e(k)ŵ(k)T . (11)

Theorem 12: Consider (6)-(8) with q = 1, S = 1, and

F Schur stable. Let K be such that Ãcl is Schur stable.

Then there exists ε∗ > 0 such that for all 0 < ε < ε∗, the

equilibrium (e, w̃, Ψ̃) = 0 is locally exponentially stable.

Proof: To analyze stability we invoke averaging theory

for discrete time systems [1]. The averaged system for (11)

is

Ψ̃av(k + 1) = Ψ̃av(k) + εsgn(K)fav(Ψ̃av(k)) , (12)

where

fav(Ψ̃) = lim
T→∞

1

T

σ+T∑

j=σ+1

ess(j)ŵss(j) . (13)

Here ess(j) and ŵss(j) are the steady state responses of e

and ŵ to a constant input d(k) ≡ d0, under the assumption

that Ψ̂(k) ≡ Ψ̂ is a constant, and the closed-loop system is

stable. Also, we assume the limit in (13) exists uniformly

in σ and for all Ψ̃ in some neighborhood of the origin. The

dependence of fav on Ψ̃ is implicit, as it will arise from the

expressions for ess and ŵss.

One can show that when Ψ̂(k) ≡ Ψ, then Ãcl and Âcl have

the same characteristic polynomial. Thus, if Ãcl is stable,

then for Ψ̂(k) sufficiently close to Ψ, also Âcl is stable.

Therefore, ess and ŵss are well-defined. Applying the Z-

transform to the closed-loop system (10) we obtain

e(z) =
(z − F −GΨ̂)

∆(z)

d0z

z − 1
(14a)

ŵ(z) =
GK

∆(z)

d0z

z − 1
, (14b)

where ∆(z) := z2 −
(
F +GΨ̂ +A−BK

)
z + A(F +

GΨ̂)−BKF . This yields

ess =
(1− F −GΨ̂)

∆(1)
d0 = −

GΨ̃

∆(1)
d0 , ŵss =

GK

∆(1)
d0 .

Returning to the averaged system (12), we have

Ψ̃av(k + 1) = Ψ̃av(k)− εsgn(K)K

(
Gd0

∆(1)

)2

Ψ̃av(k) .

This system is exponentially stable if 0 < ε <
2(∆(1))2

|K|(Gd0)2
.

Finally, it is straightforward to verify that the assumptions

(B1-B6) in [1] are satisfied. Hence, we can invoke Theo-

rem 2.2.4 in [1] to conclude the proof.

Remark 13: We have retained the parameter estimation

equation (8b), even though it is not strictly necessary for dis-

turbance rejection of constant disturbances, nor is it required

to elicit the dynamic properties of adaptation. Parameter

estimation not only allows for more complex disturbances,

but also it provides adaptation of biological parameters

{A,B, F,G}, which can experience a slow drift over days

and weeks. ⊳

In summary, our proposed model consists of (2a) de-

scribing the evolution over successive trials of the physical

process; (2b) characterizing the measurement by the sub-

ject at the end of the kth trial; (8a)-(8b) describing brain

processes, with (8a) evolving over minutes to model short-

term adaptation, and (8b) evolving over days and weeks

to contribute to (but not fully model) long-term adaptation.

Finally, (8c) captures an important aspect (see Remark 14)

that the motor command consists of a “primitive” error

feedback combined with an estimate of the disturbance.

V. SIMULATION RESULTS

Consider the visuomotor rotation experiment [13], [20], in

which a human subject makes rapid reaches with a mouse or

manipulandum from a start position to a target position on

a computer screen. The hand is occluded from view, but its

position at the end of each reach is momentarily presented by

a cursor on the screen. In this scenario, x(k) is the angle (in

degrees) of the final hand position at the k-th reach relative

to a reference line and measured at a predetermined radius

from the start position; d(k) is an experimentally imposed

disturbance (in degrees) in the observed cursor angle on the

k-th reach. The cursor angle at the k-th reach observed by

the subject is y(k) = x(k) + d(k). We assume w.l.o.g. that

r := 0 is the constant reference angle of the target disk. If

we assume only constant disturbances, no proprioception of

the hand position (A = 0), and w.l.og. B = 1, the error

model is: e(k + 1) = −u(k)− d0.
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Fig. 2: Savings with CP in a BLUR experiment. In the

right figure x(k) during the learning block is plotted in blue

superimposed with a horizontally shifted version of x(k)
during the relearning block in purple. The purple curve is

larger than the blue curve corresponding to faster learning in

the relearning block.
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Fig. 3: Reduced savings in a BLUWR experiment.

Next consider saccade adaptation. It is known that propri-

oception plays no role in the saccadic system, so A = 0.

Also w.l.o.g. let B = 1. The reference r(k) represents the

desired change in eye position (the desired saccade size)

for the k-th primary saccade; x(k) represents the change

in eye position during the kth primary saccade; and e(k)
represents the error between the final eye position and the

target position at the end of the k-th primary saccade.

The disturbance d(k) represents an experimentally imposed

displacement of the target position introduced while the

primary saccade is underway. The error is therefore given

by e(k) = r(k) + d(k) − x(k). If we further assume that

within a block of trials the displacement is a constant d0,

then the error model is: e(k+ 1) = −u(k) + r(k + 1) + d0.

This error model seems not to be amenable to our analysis

since the desired saccade size r(k) varies from saccade to

saccade. Therefore, we cannot regard d(k) = r(k+1)+d0 to

be a constant disturbance. However, it is known that saccade

adaptation occurs over adaptation fields [8] corresponding

to primary saccades of roughly the same size and direction.

This means that r(k) can be regarded to be a constant r0. The

error model becomes e(k + 1) = −u(k) + r0 + d0. In sum,

we can study either the saccadic system or the visuomotor

rotation experiment with the same parameters: A = 0, B =
1, and S = 1.

Figures 2-7 present simulation results for the visuomotor

rotation experiment. As discussed above, we assume that

A = 0 (no proprioception), B = 1, and S = 1 (all reference

and disturbance signals are constant). Also, K = 0.22, F =
0.8, G = 0.2, ε = 6e−7, and r(k) = 0. In all figures, the left

figure shows the disturbance d(k) as a function of the index

k and the middle figure shows x(k). For example, the left

figure in Figure 2 shows that d(k) = 0 during the baseline

block, d(k) = −30 during the learning block, d(k) = 30
during the counter-perturbation block, and d(k) = −30
during the relearning block. The center figure shows that

x(k) approaches its steady-state value xss = 30 during the
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Fig. 4: Anterograde interference in a BLU experiment. In

the right figure x(k) over the interval of the learning block

is shown in blue, and −x(k + k2) over the interval of the

unlearning block is shown in purple. The blue curve is larger

than the purple curve indicating that the learning rate is

reduced in the unlearning block.

0 10 20 30 40 50 60 70 80 90 100
Reach Index

-30

-25

-20

-15

-10

-5

0

D
is

tu
rb

an
ce

 (
de

g)

0 10 20 30 40 50 60 70 80 90 100
Reach Index

0

2

4

6

8

10

12

14

16

18

20

H
an

d 
A

ng
le

 (
de

g)

0 2 4 6 8 10 12 14 16
Reach Index

0

2

4

6

8

10

12

H
an

d 
A

ng
le

 (
de

g)

Learning
Unlearning

Fig. 5: Rapid unlearning in a BLW experiment.

learning block, and the steady-state value −xss = 30 during

the unlearning block.

The right figure in Figure 2 verifies that savings has

occurred in the BLUR experiment. We plot x(k) during

the learning block superimposed with a horizontally shifted

version of x(k) during the relearning block. Precisely, x(k)
over the discrete time interval k ∈ [k0, k0 + 20] is shown

in blue, and x(k + k3) over the time interval k ∈ [0, 20] is

shown in purple. The time k3 is the second time when x(k3)
equals 0. We can see that the purple curve is larger than the

blue curve, corresponding to faster learning in the relearning

block. In Figure 3 a washout block with d(k) = 0 has been

inserted between the learning and relearning blocks. In the

right figure x(k + k1) over the time interval of the learning

block is shown in blue, and x(k+k2) over the time interval of

the relearning block is shown in purple. The discrete time k1
near the beginning of the learning block and the discrete time

k2 near the beginning of the relearning block are selected

such that x(k1) = x(k2). We can see that the purple curve is

almost identical to the blue curve, corresponding to reduced

savings.

The striking similarity between our simulation results and

the experimental results reported in Figure 3A of [11] is

noteworthy. Particularly, the inflections noted in [11] and

observed on the right of Figure 2 following the fast rise

of x(k) seem to be an intrinsic feature of the adaptation

response of the saccadic system.

Remark 14: The appearance of savings can be understood

in terms of the two components of the input (8c). When

there is a sudden change in the disturbance, as is the

case between learning/unlearning blocks, the Ke(k) term

responds proportionally to this error with K relatively small.

Then the change in hand angle from one trial to the next is

(K−1)e(k), with e(k) large, resulting in a fast change in the

hand position at the start of each block. Instead, the change

in ŵ(k) is significantly slower. Also, ǫ is orders of magnitude

smaller than G, so jumps in e(k) have a negligible effect on
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Fig. 6: Rapid downscaling in a BLD experiment.
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Fig. 7: Spontaneous recovery in an LUW experiment. The

hand angle rebounds to a value greater than zero during the

washout block, even though xss = 0.

Ψ̂(k) (the essence of averaging theory). ⊳

Figures 4-6 demonstrate anterograde interference, rapid

unlearning, and rapid downscaling, with the interpretations of

plots analogous to the interpretations for Figure 2. Figure 7

demonstrates spontaneous recovery. The right figure shows

x(k), particularly that x(k) rebounds to a value greater than

0 during the washout block corresponding to k ∈ [140, 240],
even though the steady state value for the washout block is

xss = 0.

VI. DISCUSSION

We have selected a form of the adaptive internal model

resembling the continuous time model in [19], which we also

utilized to model the oculomotor system in [3], [4] . One may

choose other adaptive internal models such as those in [17],

[9], [23]. Adaptive internal models are thought to reside in

the cerebellum, and the cerebellum is known to have only

two types of inputs. In our model, those two input types

to the adaptive internal model (8a)-(8b) would be u(k) (an

efference copy of the motor command) and e(k).
An influential model for sensorimotor adaptation is the

two-rate LTI model of [21], obtained by curve fitting to real

data for a force field experiment. The model includes slow

and fast states which are both regarded as memory states in

the brain (note the usage of terms “fast” and “slow” does

not regard eigenvalues of the LTI system). By comparison,

our model distinguishes a brain state ŵ(k) from a physical

state e(k) that evolves in the world and must be sensed by

the brain. Our fast state is e(k), and it is fast because of

the error feedback term Ke(k) in the controller. Our slow

state is the brain state ŵ(k). Even slower, by many orders

of magnitude, is the parameter estimate Ψ̂.

A study of internal model architectures was made in [14],

focusing on the coupling between fast and slow states. The

authors concluded that a model with a single fast state with

context switching (as a function of block type) between

multiple slow states gave the best fit to experimental data.

They ruled out two-state models in which the error does not

appear directly in both equations. Our model is consistent

with their findings: both e(k) and ŵ(k) utilize e(k) in their

updates. Also, the behavior of our slow state ŵ(k) depends

directly on the block type, exhibiting context switching as

the block type changes.
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