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Abstract— The paper studies the reach control problem
(RCP) to make trajectories of an affine system defined on a
simplex reach and exit a prescribed facet of the simplex in
finite time without first leaving the simplex. Affine feedbacks are
generally used to solve RCP, and there is an emerging belief that
affine feedback and continuous state feedback are equivalent
with respect to solvability of RCP on simplices. This equivalence
has been proved under an assumption on the triangulation of
the state space. There remains the question of whether this
result can also be proved under arbitrary triangulations. In this
paper, we show that the answer is negative by constructing an
example for which no solution based on affine feedback exists,
yet a continuous state feedback solves the problem. Then for
single-input affine systems we provide a constructive method for
synthesis of multi-affine feedbacks to solve RCP on simplices
for the case where affine feedbacks fail to solve the problem.

I. INTRODUCTION

We study the reach control problem (RCP) for affine
systems on simplices. The problem is to design a state
feedback to make the closed-loop trajectories starting in a
simplex reach and exit a prescribed facet of the simplex in
finite time [7]. In contrast with [7], it is not required here
that trajectories leave the simplex immediately after they
reach the exit facet for the first time [8], [15]. RCP is a
fundamental reachability problem for an important class of
hybrid systems [6], namely piecewise affine hybrid systems
[8]. For interesting applications of RCP, the reader is referred
to [1], [2], [3].

RCP was first formulated in [7], and it has been developed
in [8], [15], [4], [16], [17], [13], [9], [10], [11], [12]. The
literature on RCP can be classified into two main streams.
First, solvability of RCP on simplices by affine feedback
was deeply studied in [8], [15], [4], [16], [17]. To apply the
methods developed in these papers, the polytopic state space
is first triangulated into simplices, and then an affine feed-
back is synthesized on each simplex, with the intention that
the set of controllers on the simplices will collectively solve
the problem on the polytopic region. Second, solvability of
RCP on polytopes was directly studied in [7], [9], [10], [11],
[12], where continuous piecewise affine (PWA) feedback is
synthesized to solve the problem.

The question arises of whether continuous PWA feedback
on polytopes (affine feedback on simplices) is the largest
continuous feedback class needed to solve RCP. As a first

M. K. Helwa is with the Department of Electrical and Computer En-
gineering, McGill University, Montreal, QC H3A OE9, Canada (e-mail:
mohamed.helwa@mcgill.ca). M. E. Broucke is with the Department of
Electrical and Computer Engineering, University of Toronto, Toronto, ON
M5S 3G4, Canada (e-mail: broucke@control.utoronto.ca). Supported by the
Natural Sciences and Engineering Research Council of Canada (NSERC).

step in answering this question, we focus in this paper on
simplices and study the relationship between affine feedbacks
and continuous state feedbacks for RCP on simplices. In [4],
it has been shown that affine feedback and continuous state
feedback are equivalent for solving RCP on simplices. The
result holds under the assumption that the polytopic state
space has been triangulated properly with respect to O, the
set of possible equilibria of the system. Specifically, for an n-
dimensional simplex S of the triangulation, S∩O is either the
empty set or a k-dimensional face of S, where 0 ≤ k ≤ n.
There remains the question of whether this result holds under
arbitrary triangulations of the state space.

In this paper we show that the answer is negative by
constructing a counterexample in which affine feedbacks
fail to solve RCP, yet a continuous state feedback solves
the problem. Then, we investigate an alternative feedback
class for solving RCP on simplices for the case where affine
feedbacks fail. Since this research study is completely novel,
we focus in this paper on single-input affine systems, and
we provide a constructive method for the synthesis of multi-
affine feedbacks for RCP on simplices.

The paper is organized as follows. In the next section we
review RCP. Section III provides the counterexample for the
equivalence of affine feedback and continuous state feedback.
In Section IV we explore the geometric properties of the
set of open-loop equilibria in the simplex. In Section V we
provide a constructive method for the synthesis of multi-
affine feedbacks for RCP on simplices. In Section VI two
examples are given illustrating the synthesis method. Section
VII concludes the paper.

Notation. Let S ⊂ Rn be a set. The closure is S, the
interior is S◦, and the boundary is ∂S. The relative interior
is denoted ri (S) and the relative boundary of S, denoted
rb (S), is S \ ri (S). The notation 0 denotes the subset of
Rn containing only the zero vector. The notation B denotes
the open ball of radius 1 centered at the origin. The notation
co {v1, v2, . . .} denotes the convex hull of a set of points
vi ∈ Rn, and the notation aff {v1, v2, . . .} denotes the affine
hull of a set of points vi ∈ Rn. The notation LfV (x) denotes
the Lie derivative of function V : Rn → R with respect to
function f : Rn → Rn. Finally, TP(x) denotes the Bouligand
tangent cone to set P ⊂ Rn at point x [5].

II. REACH CONTROL PROBLEM

We consider an n−dimensional simplex S :=
co {v0, v1, · · · , vn} with vertex set V := {v0, v1, · · · , vn}
and facets F0, · · · ,Fn (the facet is indexed by the vertex it
does not contain). Let hi, i ∈ {0, · · · , n}, be the unit normal
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Fig. 1. The convex cones C(vi) in a two-dimensional simplex.

vector to the facet Fi pointing outside the simplex, and let
F0 be the exit facet. We call the other facets F1, · · · ,Fn
the restricted facets. Define I := {1, · · · , n} to be the set of
indices of the restricted facets of S. Given x ∈ S , let I(x)
be the minimal index set such that x ∈ co {vi | i ∈ I(x)}.

Consider the affine control system defined on S:

ẋ = Ax+Bu+ a , x ∈ S , (1)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m.
Let φu(t, x0) denote the trajectory of (1) under a control
law u starting from x0 ∈ S and evaluated at time t. We are
interested in studying reachability of the exit facet F0 from
S.

Problem 2.1: (Reach Control Problem (RCP)) Consider
system (1) defined on a simplex S. Find a state feedback
u(x) such that for every x0 ∈ S, there exist T ≥ 0 and γ > 0
such that φu(t, x0) ∈ S for all t ∈ [0, T ], φu(T, x0) ∈ F0,
and φu(t, x0) /∈ S for all t ∈ (T, T + γ).
RCP says that trajectories of (1) starting in S reach and exit
F0 in finite time, while not first leaving S. We write S S−→
F0 if RCP is solved by some feedback. Notice that in order
for the above problem definition to make sense, it is assumed
that the dynamics (1) are extended to a neighborhood of S .

For x ∈ S, define the closed, convex cone C(x) by

C(x) :=
{
y ∈ Rn | hj · y ≤ 0, j ∈ I \ I(x)

}
.

Observe that I \ I(x) is the set of indices of the restricted
facets in which x is a point. Figure 1 illustrates the cones
C(vi) as shaded cones attached at each vi since they are
used to characterize tangent velocity vectors. Notice that for
v0, C(v0) is exactly the Bouligand tangent cone to S at v0,
TS(v0). Instead, at vi ∈ F0, they are different since C(vi)
includes directions pointing out of S . Indeed the definition
of C(vi) does not involve h0 because F0 is the exit facet.

Definition 2.1: We say the invariance conditions are solv-
able if there exist u0, · · · , un ∈ Rm such that

Avi +Bui + a ∈ C(vi) , i ∈ {0, · · · , n}. (2)
The invariance conditions (2) are used to construct affine
feedbacks [7]; by convexity of affine feedbacks on S, (2)
ensures that all the restricted facets are blocked, so trajecto-
ries can exit S only through F0. More generally, we say a
state feedback u(x) satisfies the invariance conditions if

Ax+Bu(x) + a ∈ C(x), x ∈ S . (3)

Note that for x ∈ S◦∪ ri (F0), C(x) = Rn, so the invariance

conditions hold trivially for those points.
The following necessary and sufficient conditions have

been established for solvability of RCP by a given affine
feedback.

Theorem 2.1 ([8],[15]): Given the system (1) on an n-
dimensional simplex S and an affine feedback u(x) = Kx+
g, where K ∈ Rm×n, g ∈ Rm, and u0 = u(v0), · · · , un =

u(vn), S S−→ F0 by u(x) if and only if
(a) The invariance conditions (2) hold,
(b) There is no closed-loop equilibrium in S.
Theorem 2.1 is not useful in control synthesis since it
depends on having a candidate affine feedback. Instead, the
geometry of the problem should be explored to find con-
structive conditions for RCP. To that end, let B = Im (B),
the image of B. Define

O := {x ∈ Rn|Ax+ a ∈ B}.

One can show that if O 6= ∅, then O is an affine space with
dimension between m and n. Notice that at any x ∈ O, the
vector field Ax+Bu+a can vanish by an appropriate choice
of u. Indeed, O is the set of all possible equilibrium points
of the system; that is, if x0 is an equilibrium of (1) under
feedback control, then x0 ∈ O. We also define

OS := S ∩ O.

Since O is an affine space, either OS = ∅ or OS is a convex
polytope in S with a dimension 0 ≤ κ ≤ n. Let VOS =
{o1, · · · , ok+1} denote the set of vertices of OS and IOS =
{1, · · · , k + 1}. We define

cone(OS) :=
⋂

i∈IOS

C(oi) .

Theorem 2.2 ([16]): Suppose m = 1. If S S−→ F0 by
continuous state feedback, then B ∩ cone(OS) 6= 0.

Finally, we review an important version of LaSalle Theo-
rem [10] which is used in our proofs in Sections III, V.

Theorem 2.3 (LaSalle): Consider the system (1) defined
on a compact set P . Let u(x) be a continuous state feed-
back such that the closed-loop vector field f(x) is locally
Lipschitz on a neighborhood of P . Suppose there exists
a continuously differentiable (C1) function V : Rn → R
that satisfies LfV (x) ≤ 0, x ∈ P . Let M := {x ∈
P | LfV (x) = 0}. If M does not contain an invariant set,
then all trajectories starting in P leave it in finite time.

III. A COUNTEREXAMPLE

There is a belief in the literature that affine feedback and
continuous state feedback are equivalent from the point of
view of solvability of RCP on simplices. This result has
been proved in [4] for the case where the state space has
been triangulated with respect to O: namely, for any simplex
S of the triangulation, OS is either the empty set or a κ-
dimensional face of S. There remains the question of whether
this result can also be proved under arbitrary triangulations.
In this section, we present an example first studied in [16]
showing that under arbitrary triangulations, affine feedback
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and continuous state feedback are not equivalent for solving
RCP on simplices. In particular, RCP is not solvable by affine
feedback, yet a continuous state feedback can be devised to
solve the problem.

Consider a simplex S = co {v0, . . . , v4}, where v0 = 0,
vi = ei (ei is the ith Euclidean coordinate vector), and hi =
−ei, i ∈ {1, · · · , 4}. Consider the affine system on S

ẋ =


−1 0 1 0
−3 −6 −3 −2

0 0 −4 0
0 0 0 4

x+


−3
−5

8
4

u+


0
3
1
0

 .
(4)

Let b := (−3,−5, 8, 4). It can be verified that

O =

{
x ∈ R4 | x1 = x4 +

1

4
, x2 = x4 +

1

4
, x3 = −2x4 +

1

4

}
.

Setting x4 = 0 in the defining equations for O, we get o1 :=(
1
4 ,

1
4 ,

1
4 , 0
)
. Setting x3 = 0, we get o2 :=

(
3
8 ,

3
8 , 0,

1
8

)
. Thus,

OS = co {o1, o2} where o1 = 1
4v0 + 1

4v1 + 1
4v2 + 1

4v3 ∈ F4,
and o2 = 1

8v0 + 3
8v1 + 3

8v2 + 1
8v4 ∈ F3. Clearly, OS ∩

S◦ 6= ∅ and OS ∩ F0 = ∅. Because o1 ∈ F4 and o2 ∈ F3,
we have cone(OS) = {y ∈ R4 | h3 · y ≤ 0, h4 · y ≤
0}. Since h3 · b < 0 and h4 · b < 0, b ∈ B ∩ cone(OS),
so solvability of RCP by continuous state feedback cannot
be ruled out by Theorem 2.2. Also, it can be verified that
u = 0 satisfies the invariance conditions (3), so solvability
of RCP by continuous state feedback cannot be ruled out by
Proposition 3.1 of [7]. Nevertheless, it was shown in [16]
based on the concept of reach controllability that in this
example RCP is not solvable by affine feedback. Here we
present a direct argument that illuminates the reason behind
this failure.

Lemma 3.1: Given simplex S and system (4), RCP is not
solvable by affine feedback.

Proof: Suppose by way of contradiction that u(x) =

Kx + g achieves S S−→ F0. Define ui = Kvi + g and
yi = Avi + Bui + a, i ∈ {0, . . . , 4}. Using (4) we have
y0 = (−3u0,−5u0 + 3, 8u0 + 1, 4u0), y1 = (−3u1 −
1,−5u1, 1+8u1, 4u1), y2 = (−3u2,−3−5u2, 1+8u2, 4u2),
and y3 = (1−3u3,−5u3,−3+8u3, 4u3). Since u(x) satisfies
the invariance conditions, we get h1 · y0 = 3u0 ≤ 0 and
h4 ·y0 = −4u0 ≤ 0, so u0 = 0. Similarly, h2 ·y1 = 5u1 ≤ 0
and h4 · y1 = −4u1 ≤ 0, so u1 = 0; h1 · y2 = 3u2 ≤ 0 and
h4 · y2 = −4u2 ≤ 0, so u2 = 0; and h2 · y3 = 5u3 ≤ 0 and
h4 · y3 = −4u3 ≤ 0, so u3 = 0; By convexity, u(x) = 0 for
all x ∈ F4 = co {v0, · · · , v3}. Now we observe that

y(o1) =
1

4
y0 +

1

4
y1 +

1

4
y2 +

1

4
y3 = 0 .

This contradicts S S−→ F0.

The failure occurs because the affine feedback cannot achieve
the invariance conditions at vi, i ∈ I(o1), without having
an equilibrium at o1. To solve this problem, we must find
a continuous state feedback u(x) such that (i) u(vi) = 0,
i ∈ I(o1), to satisfy the invariance conditions at the vertices;
and (ii) u(o1) > 0 to remove the equilibrium point at o1. To

that end, consider the multi-affine state feedback

u(x) = x1x2x3 .

We observe that u(x) = 0 for x ∈ F1∪F2∪F3 and u(x) > 0
for x ∈ S \ (F1 ∪ F2 ∪ F3). This means u(x) meets the
requirements (i)-(ii). Now we show that u(x) indeed solves
RCP on S.

Lemma 3.2: The closed-loop vector field y(x) := Ax +
Bu(x) + a satisfies the invariance conditions (3).

Proof: Suppose x ∈ F1. Since h1 = (−1, 0, 0, 0) and
x1 = 0, we have h1 ·y(x) = x1−x3 +3x1x2x3 = −x3 ≤ 0.
Suppose x ∈ F2. Since h2 = (0,−1, 0, 0), x2 = 0, and
x1 + x3 + x4 ≤ 1, we have h2 · y(x) = 3x1 + 3x3 + 2x4 −
3 ≤ 3(x1 + x3 + x4) − 3 ≤ 0. Suppose x ∈ F3. Since
h3 = (0, 0,−1, 0) and x3 = 0, we have h3 · y(x) = −1 ≤ 0.
Suppose x ∈ F4. Since h4 = (0, 0, 0,−1) and x4 = 0, we
have h4 · y(x) = −4x1x2x3 ≤ 0. Combining these facts, we
conclude (3).

Proposition 3.3: Given simplex S and system (4), S S−→
F0 using u(x).

Proof: Consider the flow function V (x) := h4 · x [10],
[12]. We compute V̇ (x) = h4 ·y(x) = −4x4−4x1x2x3 ≤ 0,
x ∈ S . Also, V̇ (x) = 0 when x4 = 0 and x1x2x3 = 0. To
apply the LaSalle Principle, Theorem 2.3, we must show
M :=

{
x ∈ S | V̇ (x) = 0

}
does not contain an invariant

set. In this example, we have M = F4 ∩ (F1 ∪ F2 ∪ F3).
On M, x4 = 0 and x1x2x3 = 0, so the dynamics for states
x̃ := (x1, x2, x3) reduce to:

˙̃x = Ãx̃+ ã =

 −1 0 1
−3 −6 −3

0 0 −4

 x̃+

 0
3
1

 .
Define x = ( 1

4 ,
1
4 ,

1
4 ) and observe that Ãx+ ã = 0. Consider

the function Ṽ (x̃) := (x̃ − x)TP (x̃ − x), and consider
the Lyapunov equation ÃTP + PÃ = −I , where P is
a symmetric matrix and I is the identity matrix. Because
σ(Ã) ⊂ C−, a unique solution exists, given by

P =

 17
28

−1
28

4
25−1

28
1
12

−1
35

4
25

−1
35

261
1400

 .
Then one can verify ˙̃V (x̃) = −‖x̃ − x‖2 < 0 for all
(x̃, 0) ∈ M. Since M is compact, by a standard argument,
all trajectories must leave M [10], [12]. In particular, there
is no invariant set in M. By Theorem 2.3, all trajectories
initiated in S leave it in finite time. Then, since the invariance
conditions (3) are achieved (Lemma 3.2), S S−→ F0 using
u(x).
The above example shows that under arbitrary triangulations,
affine feedback and continuous state feedback are not equiv-
alent for solving RCP on simplices. Also, it gives a hint
that multi-affine feedbacks may be a suitable class to solve
RCP on simplices when affine feedbacks fail. The above
analysis is specific to this example. We aim to find a general
methodology for constructing multi-affine feedbacks to solve
RCP on simplices.
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IV. THE EQUILIBRIUM SET

The objective of the rest of this paper is to elaborate a
synthesis method for multi-affine feedbacks that works in
cases like the previous example when affine feedbacks fail
but RCP is still solvable by continuous state feedback. Since
multi-affine feedback synthesis for RCP on simplices has not
been studied before, we focus in this paper on single-input
affine systems.

Our synthesis method strongly relies on properties of ES ,
the set of equilibria in S of the open-loop system ẋ = Ax+a.
Let

E := {x ∈ Rn | Ax+ a = 0} .

Also define ES := S ∩ E . Clearly E ⊆ O and ES ⊆ OS . In
this section we present our main assumptions, review some
technical results about ES in [16], [17], and finally investigate
further properties of ES .

First, we present the main assumptions used in the rest
of the paper. As stated above, we assume m = 1. In [4] it
was assumed that if OS 6= ∅, then OS is a κ-dimensional
face of S, where 0 ≤ κ ≤ n. Here, we consider the general
case where O intersects the interior of S. In general, this
intersection is a convex polytope. However, in this paper we
assume OS is a simplex, and we restrict OS so that it does
not intersect F0.

Assumption 4.1:
(A1) OS = co {o1, · · · , oκ+1}, a κ-dimensional simplex

with 1 ≤ κ ≤ n.
(A2) If ES 6= ∅, then ES = co {ε1, · · · , εκ0+1}, a κ0-

dimensional simplex with 0 ≤ κ0 ≤ κ.
(A3) OS ∩ S◦ 6= ∅.
(A4) OS ∩ F0 = ∅.
Suppose without loss of generality (w.l.o.g.) that v0 = 0.
From Proposition 3.1 of [7], we know that the invariance con-
ditions are necessary for solvability of RCP by continuous
state feedback. Here, we assume w.l.o.g. that the invariance
conditions are solvable using u = 0. If the invariance
conditions are solvable using u(x) = Fx + g 6= 0, then
we consider the new affine system ẋ = Ãx + ã + Bu =
(A+BF )x+(a+Bg)+Bu, and apply the proposed design
procedure to it to obtain the multi-affine feedback. The final
control law is u(x) = Fx + g + w(x), where w(x) is the
obtained multi-affine feedback.

In [16], [17] the same assumptions were used to find geo-
metric necessary and sufficient conditions for solvability of
RCP by affine feedback. The reader is referred to Remark 1
of [17] for more discussion on Assumption 4.1. Assumption
4.1 enables us to study an interesting geometric case that is
more general than the one studied in [4] and to make use
of foundational results from [16], [17]. The results required
from [16], [17] are as follows.

Theorem 4.1 ([16], [17]): Suppose that Assumption 4.1
holds and m = 1. Also, suppose Avi + a ∈ C(vi) for i ∈
{0, · · · , n} and B ∩ cone(OS) 6= 0. If ES 6= ∅, then ES ⊂
rb (OS) ⊂ ∂S.

Theorem 4.1 says that if the necessary conditions for
solvability of RCP on S by continuous state feedback are

o1 o2 

Fig. 2. The set ES in Example 4.1

achieved, then equilibrium points can appear only on the
boundary of S .

Lemma 4.2 ([16], [17]): Suppose that Assumption 4.1
holds and m = 1. Also, suppose Avi + a ∈ C(vi) for
i ∈ {0, · · · , n} and B ∩ cone(OS) 6= 0. If ES 6= ∅, then
ES is a κ0-dimensional face of OS , where 0 ≤ κ0 < κ.

Lemma 4.3 ([16], [17]): Suppose m = 1 and Avi + a ∈
C(vi) for i ∈ {0, · · · , n}. Also, suppose there exists x ∈ ES
such that I(x) = {0, · · · , q}, where 1 ≤ q < n. Then there
exists a coordinate transformation z = T−1x such that the
transformed system has the form

ż =

[
A1 A12

0 A2

]
z +

[
a1
0

]
+

[
b1
b2

]
u , (5)

where A1 ∈ Rq×q , A12 ∈ Rq×(n−q), a1 ∈ Rq , b1 ∈ Rq ,
A2 ∈ R(n−q)×(n−q), and b2 ∈ Rn−q for q > 0.
In [16], [17] it was also shown that T = [v1 · · · vn]. Lemma
4.3 says that we can always decompose the dynamics into
those contributing to equilibria and transversal dynamics.

Now we are ready to go beyond [16], [17] and discover an
important property of the equilibrium set ES . We show that if
Assumption 4.1 and the necessary conditions for solvability
of RCP by continuous state feedback hold, then not only is
ES in the boundary of S, but also it is a single point.

Theorem 4.4: Consider the system (1) defined on simplex
S. Suppose that m = 1, Assumption 4.1 holds, Avi + a ∈
C(vi), i ∈ {0, . . . , n}, and B ∩ cone(OS) 6= 0. If ES 6= ∅,
then dim(ES) = 0.

The technical proof of this result is found in the Appendix.
Here we present an example that illustrates the proof idea.

Example 4.1: Consider a canonical simplex S =
co {v0, · · · , v4} ⊂ R4 with v0 = 0 and vi = ei, i =
1, . . . , 4. Consider the system (1) defined on S and suppose
Assumption 4.1 holds, Ax + a ∈ C(x) for all x ∈ S , and
B ∩ cone(OS) 6= 0. Also suppose ES = co {o1, o2} where
I(o1) = {0, 1, 2} and I(o2) = {0, 1, 3} as shown in Figure 2.
Observe that ES ⊂ co {v0, · · · , v3} ⊂ ∂S as required by
Theorem 4.1 and that ES ∩ ri (co {v0, . . . , v3}) 6= ∅. Now
consider o1 ∈ F3 ∩ F4. Clearly

hj · (Ao1 + a) = hj · 0 = 0 , j = 3, 4 .
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Also since Ax+ a ∈ C(x), x ∈ S,

hj · (Avi + a) ≤ 0 , i = 0, 1, 2, j = 3, 4 .

Now o1 =
∑2
i=0 α

o1
i vi with αo1i > 0 and

∑
i α

o1
i = 1.

Combined with the previous two inequalities, we get

hj · (Avi + a) = 0 , i = 0, 1, 2, j = 3, 4 .

Since v0 = 0, this becomes

hj · a = 0 , hj ·Avi = 0 , i = 1, 2, j = 3, 4 . (6)

In like manner for o2 ∈ F2 ∩ F4, we obtain

hj · a = 0 , hj ·Avi = 0 , i = 1, 3, j = 2, 4 . (7)

Using the fact that hj = −ej , j ∈ {1, . . . , 4}, (6) and (7)
imply that the system has the form

ẋ =


a11 a12 a13 a14

0 a22 0 a24
0 0 a33 a34
0 0 0 a44

x+Bu+


γ1
0
0
0

 . (8)

Consider the intersection of E with the subspace H4 :=
aff (F4) = {x ∈ R4 | x4 = 0}. It is characterized by the
linear constraints Ax+ a = 0 and x4 = 0. That is,

a11x1 + a12x2 + a13x3 + γ1 = 0 (9a)
a22x2 = 0 (9b)
a33x3 = 0 . (9c)

If a22 6= 0, then any x ∈ E ∩ H4 must have x2 = 0
to satisfy the second equation, a contradiction to ES ∩
ri (co {v0, . . . , v3}) 6= ∅. Therefore, a22 = 0. Similarly,
a33 = 0. This implies (9) provides at most 1 independent
equation to characterize E ∩H4, so dim(E ∩H4) ≥ 2. Then
since E ∩H4 is an affine space in R3 intersecting the interior
of co {v0, . . . , v3}, a simplex in R3, we have dim(ES) =
dim(E ∩ H4) ≥ 2, a contradiction to ES = co {o1, o2}. C

V. MULTI-AFFINE FEEDBACK SYNTHESIS

In this section we present a general method for synthesis
of multi-affine feedbacks to solve RCP on simplices. We
assume throughout the section that (possibly after an affine
coordinate transformation) the simplex is in canonical form:

v0 = 0 , vi = ei , i = 1, . . . , n ,

where ei is the ith Euclidean coordinate vector. Note that this
is no loss of generality as any simplex can be transformed
to canonical form.

Definition 5.1: A function f : Rn → Rm is multi-affine
if it is a polynomial in x1, · · · , xn with the property that the
degree of f in any xi, i ∈ I , is either 0 or 1. Equivalently,
f has the form:

f(x1, · · · , xn) =
∑

i1,··· ,in∈{0,1}

ci1,··· ,inx
i1
1 · · ·xinn

with ci1,··· ,in ∈ Rm for all i1, · · · , in ∈ {0, 1} and using the
convention that if ik = 0, then xikk = 1.

If ES = ∅, then the conditions Avi + a ∈ C(vi), i ∈
{0, . . . , n}, imply from Theorem 2.1 that u = 0 solves RCP
on S. Therefore, we focus our attention on the case when
ES 6= ∅. Following Theorem 4.4, let ES = {o1} where
I(o1) = {0, . . . , q}. Since ES ⊂ ∂S (by Theorem 4.1), we
have q < n. We consider a multi-affine feedback of the form

u(x) = x1x2 · · ·xq.

We show that this multi-affine feedback solves RCP on S.
First, we show that u(x) satisfies the invariance conditions.

Lemma 5.1: Consider the system (1) defined on a simplex
S. Suppose Assumption 4.1 holds, ES = {o1} with I(o1) =
{0, · · · , q}, where q < n, and m = 1. Also, suppose

(N1) Avi + a ∈ C(vi), i = 0, . . . , n.
(N2) B ∈ B ∩ cone(OS) 6= 0.

Then the multi-affine feedback u(x) = x1 · · ·xq satisfies the
invariance conditions (3).

Proof: Due to the assignment of vertices, xj = 0 when
x ∈ Fj for j ∈ {1, . . . , n}. First, consider j = 1, . . . , q. We
have u(x) = 0 for x ∈ F1∪· · ·∪Fq . By (N1) and convexity,

hj ·(Ax+Bu(x)+a) = hj ·(Ax+a) ≤ 0, x ∈ Fj , j = 1, . . . , q .

Next consider j = q + 1, . . . , n. By (N2), B ∈ C(o1). That
is,

hj ·B ≤ 0 , j ∈ I \ I(o1) = {q + 1, . . . , n} . (10)

Notice that with our assignment of vertices of S, u(x) ≥ 0
for all x ∈ S. Then by combining (N1), convexity, and (10),
we get

hj · (Ax+Bu(x) + a) ≤ 0 , x ∈ Fj , j = q+ 1, . . . , n .

We conclude u(x) satisfies (3).
Now we show that using our proposed multi-affine feed-

back u(x) = x1 · · ·xq , all closed-loop trajectories initiated
in S leave it in finite time, and so u(x) solves RCP on S.
For this we require a technical lemma.

Lemma 5.2: Let H := {x ∈ Rn | ρ1 ·x = c1, . . . , ρr ·x =
cr} be an affine space, where ρi ∈ Rn and ci ∈ R. Consider
the system ẋ = Ax + a and suppose there exist x0 ∈ H
and T > 0 such that φ(t, x0) ∈ H for all t ∈ [0, T ). Then
φ(t, x0) ∈ H for all t.

Proof: Let H1 be the smallest affine set containing
{φ(t, x0) | t ∈ (0, T )}. Then H1 ⊆ H, so it can be expressed
as H1 = {x ∈ Rn | ρ1 · x = c1, · · · , ρs · x = cs}, with
r ≤ s. Now we have ρj ·φ(t, x0) = cj for t ∈ (0, T ) and j ∈
{1, · · · , s}. Taking the derivative, ρj ·(Aφ(t, x0)+a) = 0 for
t ∈ (0, T ) and j ∈ {1, · · · , s}. By definition, H1 is the affine
hull of {φ(t, x0) | t ∈ (0, T )}, and so there exist ti ∈ (0, T ),
i = 1, . . . , z, such that H1 = aff {φ(t1, x0), . . . , φ(tz, x0)}.
That is, for each x ∈ H1, x =

∑z
i=1 α

x
i φ(ti, x0) with∑z

i=1 α
x
i = 1. Then we have

ρj · (Ax+ a) =

z∑
i=1

αxi ρj · (Aφ(ti, x0) + a) = 0,

x ∈ H1, j = 1, . . . , s.
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By Nagumo’s Theorem [5], H1 is an invariant set. Hence,
φ(t, x0) ∈ H1 ⊆ H for all t.

The following is the main result of this section.
Theorem 5.3: Consider the system (1) defined on a sim-

plex S. Suppose Assumption 4.1 holds, ES = {o1} with
I(o1) = {0, · · · , q}, where q < n, and m = 1. Also suppose
(N1) Avi + a ∈ C(vi), i = 0, . . . , n.
(N2) B = Aoκ+1 + a ∈ B ∩ cone(OS) 6= 0.

Then S S−→ F0 by u(x) = x1 · · ·xq .
Proof: The first step of the proof is to show there exists

ξ ∈ Rn such that ξ ·(Ax+Bu(x)+a) ≤ 0 for all x ∈ S. The
image of S◦ under the affine map x 7→ Ax+a, denoted C1, is
convex and relatively open by Theorems 3.4 and 6.6 of [14].
By assumption, ES = {o1} ⊂ ∂S. Therefore, Ax + a 6= 0
for all x ∈ S◦. Thus, the nonempty relatively open convex
set C1 and the nonempty affine set {0} do not intersect. By
Theorem 11.2 of [14], there exists a hyperplaneH containing
{0} such that one of the open half-spaces associated with H
contains C1. That is, there exists ξ ∈ Rn such that

ξ · (Ax+ a) < 0 , x ∈ S◦ . (11)

By continuity of x 7→ (Ax+ a), we get

ξ · (Ax+ a) ≤ 0 , x ∈ S . (12)

Next we claim that ξ · B < 0. For this we first show
that Aoi + a = γiB with γi ≥ 0, for all i ∈ IOS . First,
Ao1 + a = 0 so γ1 = 0. Second, γ2, . . . , γκ+1 must all
have the same sign. Otherwise, by convexity there exists x ∈
co {o2, . . . , oκ+1} such that Ax+ a = 0, which contradicts
that ES = {o1}. Since by (N2), γκ+1 = 1, we have γi > 0,
i = 2, . . . , κ+ 1. Now let xo ∈ S◦ ∩ OS . By Theorem 4.1,
xo ∈ ri (OS). That is, xo =

∑κ+1
i=1 βioi with βi > 0 and∑κ+1

i=1 βi = 1. Then Axo + a =
∑κ+1
i=1 βi(γiB) = γB with

γ > 0. Finally, by (11) we have

ξ ·B =
1

γ
ξ · (Axo + a) < 0 . (13)

By the assignment of vertices for a canonical simplex,
u(x) ≥ 0 for all x ∈ S. Combining (12) with (13) we have

ξ · (Ax+Bu(x) + a) ≤ 0 , x ∈ S . (14)

Moreover,

ξ·(Ax+Bu(x)+a) = 0 ⇐⇒ ξ·(Ax+a) = 0 and u(x) = 0 .

The second step of the proof is to use the flow-like
condition (14) in the LaSalle Principle for RCP (Theorem
2.3) to show that all closed-loop trajectories exit S. For this
we identify the set

M = {x ∈ S | ξ · (Ax+ a) = 0, u(x) = 0} .

According to the LaSalle Principle for RCP, we must show
thatM does not contain any invariant set. SinceM⊂ {x ∈
S | u(x) = 0} = F1∪· · ·∪Fq , the dynamics onM reduce to
ẋ = Ax+ a. Suppose by the way of contradiction that there
exists x0 ∈ M such that φ(t, x0) ∈ M for all t ≥ 0. Since
M ⊂ F1 ∪ · · · ∪ Fq , w.l.o.g. suppose x0 ∈ F1 ∩ · · · ∩ Fk

and x0 6∈ Fk+1 ∩ · · · ∩ Fq for some 1 ≤ k ≤ q. There
are two cases. First, if k = q then φ(t, x0) cannot leave
F1∪· · ·∪Fq instantaneously (otherwise φ(t, x0) leavesM, a
contradiction). Second, suppose k < q. Since Fk+1∪· · ·∪Fq
is a compact set and x 7→ Ax+ a is locally Lipschitz, there
exists t′ > 0 such that φ(t, x0) /∈ (Fk+1 ∪ · · · ∪ Fq) for
t ∈ [0, t′]. Then φ(t, x0) cannot leave F1 ∪ · · · ∪ Fk instan-
taneously (for if so, φ(t, x0) leaves ∪qi=1Fi instantaneously,
so it leaves M, a contradiction). We conclude there exist
j ∈ {1, . . . , k} and a time T ′ > 0 such that φ(t, x0) ∈ Fj
for all t ∈ [0, T ′). Applying Lemma 5.2, φ(t, x0) ∈ aff (Fj)
for all t. But by assumption φ(t, x0) ∈ M for t ≥ 0, so
we have φ(t, x0) ∈ Fj for t ≥ 0. Now we show this is
impossible.

Let C2 be the image of Fj under the mapping x 7→ Ax+a.
Since Fj is convex and compact, C2 is also convex and
compact [14]. Since ES = {o1}, I(o1) = {0, . . . , q},
and j ∈ {1, . . . , q}, we have ES ∩ Fj = ∅. Therefore,
Ax + a 6= 0, x ∈ Fj . Thus, the compact convex sets C2
and {0} do not intersect. By Corollary 11.4.2 of [14], there
exists a hyperplane H that strongly separates C2 and {0}. In
particular, there exists ρ ∈ Rn such that ρ · (Ax + a) < 0
for x ∈ Fj . This implies φ(t, x0) leaves Fj in finite time,
a contradiction. We conclude M does not contain invariant
sets. Then by LaSalle Theorem (Theorem 2.3), all closed-
loop trajectories initiated in S leave it in finite time. Since
the invariance conditions hold (Lemma 5.1), the trajectories
can do so only via F0. We conclude S S−→ F0 by u(x).

Remark 5.1: 1) The above result is still true for the
case when in condition (N2), B = c(Aoκ+1 + a),
where c > 0, c 6= 1. If −B = Aoκ+1 + a ∈ B ∩
cone(OS) 6= 0, then S S−→ F0 by u(x) = −x1 · · ·xq .

2) If the given simplex is not in canonical form, then
the obtained multi-affine feedback u(x) should be
converted back to original coordinates. The control
law in the original coordinates is continuous but not
necessarily multi-affine (see Example 6.2).

VI. EXAMPLES

Example 6.1: Consider again the example presented in
Section III. The objective is to show how our results in the
previous section can be used to systematically synthesize
multi-affine feedback that solves RCP on S.
First, we check whether the conditions of Theorem 5.3
are achieved. As shown before, OS = co {o1, o2}, where
o1 = ( 1

4 ,
1
4 ,

1
4 , 0) ∈ F4 and o2 = ( 3

8 ,
3
8 , 0,

1
8 ) ∈ F3.

Also, we have ES = {o1} ⊂ F4. Hence, in this example
dim(OS) = 1, dim(ES) = 0, OS∩S◦ 6= ∅, and OS∩F0 = ∅.
Thus, Assumption 4.1 holds. Also it can be verified that
u = 0 satisfies the invariance conditions at the vertices of S.
Then as shown before in Section III, B = (−3,−5, 8, 4) ∈
B ∩ cone(OS). We conclude that the conditions of Theorem
5.3 are achieved, and so S S−→ F0 by multi-affine feedback.
In this example q = 3, and so u(x) = x1x2x3, which is the
same feedback used in the example in Section III.
The advantage here is that Theorem 5.3 enables us to find the
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multi-affine feedback systematically. Also, we don’t need to
have a separate proof for each example as we did in Lemma
3.2 and Proposition 3.3. C

Example 6.2: Consider the following affine system

ẋ =


−1 0 0 1 3
−3 −6 0 −1 13

0 0 5 0 −1
0 0 9 −4 −1
0 0 1 0 2

x+


2
8
9

17
5

u+


0
4
0
1
0

 ,
(15)

defined on a simplex S = co {v0, · · · , v5}, where v0 =
0, v1 = e1, v2 = e2, v3 = (0, 1, 0, 1, 0), v4 = (0, 0, 1, 1, 0),
and v5 = (1, 1, 1, 1, 1). The objective is to find a continuous
state feedback that solves RCP on S.
First, it can be verified that u = 0 solves the in-
variance conditions at the vertices of S (Avi + a ∈
C(vi), i ∈ {0, · · · , 5}). Secondly, we compute the sets
OS and ES . It can be verified that OS = co {o1, o2},
where o1 = (0.25, 0.5, 0, 0.25, 0) ∈ (F4 ∩ F5) and o2 =
(0.5568, 0.572, 0.2614, 0.2614, 0.1818) ∈ F3. Also, Ao1 +
a = 0, while Ao2 + a 6= 0. Therefore, in this example
dim(OS) = 1, dim(ES) = 0, OS∩S◦ 6= ∅, and OS∩F0 = ∅.
So, Assumption 4.1 holds. Then we check whether there
exists 0 6= b ∈ B ∩ cone(OS). Since o1 ∈ (F4 ∩ F5) and
o2 ∈ F3, we have

cone(OS) =
{
y ∈ R5 | h3 · y ≤ 0, h4 · y ≤ 0, h5 · y ≤ 0

}
,

where h3 = (0, 0, 1,−1, 0), h4 = (0, 0,−1, 0, 1), and h5 =
(0, 0, 0, 0,−1). It can be verified that B = (2, 8, 9, 17, 5) ∈
B ∩ cone(OS).
Although the necessary conditions for solvability of RCP by
continuous state feedback are achieved, it can be shown using
an argument similar to the one used in Lemma 3.1 that RCP
is not solvable by affine feedback. Instead, the conditions
of Theorem 5.3 are achieved, and so RCP is solvable by
continuous state feedback.

To find this feedback, we firstly construct the coordinate
transformation matrix T = [v1 · · · v5], and define z =
T−1x. In the new coordinates, the transformed vertices are
ei = T−1vi, i ∈ {0, · · · , 5}, and the transformed unit
normal vectors are −ej , j ∈ {1, · · · , 5}. In this example
o1 ∈ (F4 ∩ F5), and so I(o1) = {0, · · · , 3}. Theorem 5.3
tells us that the multi-affine feedback u(z) = z1z2z3 solves
RCP on S. In the original coordinates the continuous control
law is u(x) = (x1 − x5)(x2 + x3 − x4 − x5)(−x3 + x4).
Note that another method of solving this example is to firstly
transform the system to the new coordinates, then check the
conditions of Theorem 5.3 in the new coordinates, and finally
return the feedback to the original coordinates. C

VII. CONCLUSION

In this paper we have shown that under arbitrary trian-
gulations of the state space, affine feedback and continuous
state feedback are not equivalent for RCP on simplices. We
present an example for which no solution based on affine
feedback exists, yet a continuous state feedback solves the

problem. Then we have identified for single-input affine
systems an alternative feedback class for RCP on simplices
when affine feedbacks fail to solve the problem. We first
explored significant geometric properties of the equilibrium
set. Then we used these properties to synthesize multi-affine
feedbacks for RCP on simplices.
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APPENDIX

Proof: [Proof of Theorem 4.4] Suppose, by the way
of contradiction, that dim(ES) = κ0 > 0. By Assump-
tion 4.1 (A2), ES is a simplex. In particular, ES =
co {o1, · · · , oκ0+1}. From Theorem 4.1, we have ES ⊂
rb (OS) ⊂ ∂S. Also, by Assumption 4.1 (A4), ES ∩F0 = ∅.
So, suppose w.l.o.g. that ES ⊂ co {v0, v1, · · · , vq}, where
q < n is the smallest index satisfying that. Let S ′ :=
co {v0, · · · , vq} and ES′ := E ∩ S ′. Clearly, ES′ = ES and
ES′ ∩ ri (S ′) 6= ∅. Note that ES′ can be expressed as the
intersection of the affine space E∩aff (Fq+1)∩· · ·∩aff (Fn)
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in Rq with S ′, a simplex in Rq . So, we have rb (ES′) ⊂
rb (S ′) (Lemma 1 of [17]). Since ES′ ⊂ S ′, rb (ES′) ⊂
rb (S ′), ES′ ∩ ri (S ′) 6= ∅, and by Assumption 4.1 (A4)
ES′∩F0 = ∅, then each index set I(oi), i ∈ {1, · · · , κ0 + 1},
has an exclusive member in {1, · · · , q} (Lemma 2 of [17]).
That is, there exists k ∈ I(oi), k 6= 0, and k /∈ I(oj), j ∈
{1, · · · , κ0 + 1} \ {i}. Suppose w.l.o.g. that we reorder the
vertex labeling {1, · · · , q} such that the indices belonging
to more than one set I(oi), i ∈ {1, · · · , κ0 + 1}, come first.
Then we bring the indices corresponding to the exclusive
members of I(o1), · · · , I(oκ0+1) respectively.
Now we study a vertex ok ∈ ES′ , k ∈ {1, · · · , κ0 + 1}. We
have by definition Aok + a = 0, and so

hj · (Aok + a) = 0, j ∈ I.

We know ok =
∑
i∈I(ok) αivi, where αi > 0 and∑

i∈I(ok) αi = 1. So,

hj · (A
∑

i∈I(ok)

αivi + a) = 0, j ∈ I.

Since
∑
i∈I(ok) αi = 1, this implies∑

i∈I(ok)

αihj · (Avi + a) = 0, j ∈ I. (16)

Since Avi + a ∈ C(vi), i ∈ {0, · · · , n}, we must have

hj · (Avi + a) ≤ 0, i ∈ I(ok), j ∈ I \ I(ok). (17)

Since αi > 0, (16) and (17) imply that

hj ·(Avi+a) = 0, i ∈ I(ok), j ∈ I\I(ok), k ∈ {1, · · · , κ0 + 1}

Since 0 ∈ I(ok) and v0 = 0, we have

hj · a = 0, j ∈ I \ I(ok), (18a)

hj ·Avi = 0, i ∈ I(ok), j ∈ I \ I(ok), (18b)

for all k ∈ {1, · · · , κ0 + 1}.
Then we define the coordinate transformation z = T−1x,
where T = [v1 · · · vn]. Notice that since by definition
{v0, v1, · · · , vn} are affinely independent and v0 = 0, T
is non-singular [7]. It is easy to verify that the transformed
vertices are ei = T−1vi, i ∈ {0, · · · , n}, and the transformed
unit normal vectors are −ej = cjT

Thj , j ∈ {1, · · · , n},
where cj are positive scalars. Also, using (18) it can be
verified that the dynamics in the new coordinates are

ż =


Γ00 Γ01 · · · Γ0(κ0+1) Γ′

02
Γ11 Γ′

12

. . .
...

Γ(κ0+1)(κ0+1) Γ′
(κ0+1)2

A2




Z10

Z11

...
Z1(κ0+1)

Z2



+


γ1
0
...
0
0

+


b10
b11

...
b1(κ0+1)

b2

u ,
(19)

where empty entries are zeros, Z10 is a partition of z
corresponding to the indices appearing in more than one
set I(oi), i ∈ {1, · · · , κ0 + 1}, and Z11, · · · , Z1(κ0+1)

are partitions corresponding to the exclusive members of
I(o1), · · · , I(oκ0+1) respectively. Based on the above dis-
cussion, dim(Z1i) ≥ 1, i ∈ {1, · · · , κ0 + 1}. Finally, Z2
corresponds to the indices {q + 1, · · · , n}.
Then the affine set E ∩ aff (Fq+1) ∩ · · · ∩ aff (Fn) can be
characterized by the equations characterizing E and Z2 = 0,
which reduce to the following set of equations

Γ00Z10 + Γ01Z11 + · · ·+ Γ0(κ0+1)Z1(κ0+1) + γ1 = 0,

Γ11Z11 = 0,

...

Γ(κ0+1)(κ0+1)Z1(κ0+1) = 0. (20)

Suppose that dim(Γii) = pi × pi, i ∈ {1, · · · , κ0 + 1}. If
rank(Γ11) = p1, then any z ∈ E ∩aff (Fq+1)∩· · ·∩aff (Fn)
must have Z11 = 0, a contradiction to ES′ ∩ ri (S ′) 6=
∅. So, rank(Γ11) < p1. Similarly, rank(Γii) < pi, i ∈
{2, · · · , κ0 + 1}. Therefore, (20) provides at most q−(κ0+1)
independent equations to characterize E ∩ aff (Fq+1)∩ · · · ∩
aff (Fn). So, dim(E ∩ aff (Fq+1)∩· · ·∩ aff (Fn)) ≥ κ0 +1.
Finally, E ∩ aff (Fq+1) ∩ · · · ∩ aff (Fn) is an affine space
in Rq that intersects the interior of S ′, a simplex in Rq . So,
dim(ES′) = dim(E ∩ aff (Fq+1) ∩ · · · ∩ aff (Fn)) ≥ κ0 + 1,
a contradiction.
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