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Monotonic Reach Control on Polytopes
Mohamed K. Helwa and Mireille E. Broucke

Abstract—The paper studies the problem of making the tra-
jectories of an affine system defined on a polytopic state space
reach a prescribed facet of the polytope in finite time without first
leaving the polytope. The focus is on solvability by continuous
piecewise affine feedback, and we formulate a variant of the
problem in which trajectories exit in a monotonic sense. This
allows to obtain necessary and sufficient conditions for solvability
in certain geometric situations.

I. INTRODUCTION

We study the reach control problem (RCP) for affine sys-
tems on polytopes. The problem is to design a feedback to
force closed-loop trajectories starting anywhere in a polytopic
state space to leave the polytope from a prescribed exit facet of
the polytope in finite time [11]. Unlike previous work, here it is
not required that trajectories leave the polytope at the first time
they reach the exit facet. The main motivation behind RCP
for affine systems on polytopes is the control of a subclass
of hybrid systems called piecewise affine hybrid systems [12],
[5]. A piecewise affine hybrid system consists of a discrete
automaton such that each discrete mode is equipped with its
own continuous-time affine dynamics defined on a polytope.
When the continuous state crosses a facet of a polytope, the
system is transferred to a new discrete mode. Reach control
for piecewise affine hybrid systems requires at each discrete
mode to prevent transitions to certain discrete modes, and to
force a transition to a desired discrete mode. This requirement
is translated at the continuous level to force all the state
trajectories of a continuous-time affine system defined on
a polytope to leave the polytope through a prescribed exit
facet in finite time - that is, to solve RCP for an affine
system on a polytope [12]. Interesting applications of RCP can
include motion of robots in complex environments [2], aircraft
and underwater vehicles [3], anesthesia, genetic networks [4],
smart buildings, process control, among others [10].

The most definitive results on RCP are focused on reach
control on simplices by affine feedback [12], [17], [6]. Results
for polytopes come in one of two forms. Either one must
perform a triangulation of the polytope and apply simplex-
based reach control methods [12], [17]. Alternatively, one may
impose conditions so that the design can be carried out in
two independent steps: first one assigns control inputs at the
vertices of the polytope guaranteeing propitious closed-loop
behavior; second, one selects any triangulation of the polytope
and one forms a (continuous) piecewise affine feedback based
on the vertex control values of step one. The distinction
between these two approaches is that simplex-based methods
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require stronger conditions on the vector field at the vertices
of the triangulation; for instance, closed-loop trajectories can
only exit from one exit facet of a given simplex. Instead, the
second approach imposes weaker conditions at the vertices; for
example, trajectories could exit from more than one facet of a
given simplex. The penalty for the more relaxed requirements
of the second method is that trajectories may not actually
achieve the specification to exit the polytope. To guarantee
this, an extra, exogenous condition must be added. It can
be shown both theoretically and via examples that the two
methods are complementary.

Past research on reach control on polytopes has either
required strong sufficient conditions or restrictive assumptions
on the system dynamics [11], [15]. This paper initiates a study
of the reach control problem in which such restrictions are
removed; instead geometric properties of the system are ex-
ploited to the best possible extent. In particular, the placement
of O, the set of possible equilibria, relative to the polytope
P plays a key role, and in certain cases, clear necessary
and sufficient conditions can be obtained which remove the
conservativism or restrictiveness of previous work. We then
formulate the monotonic reach control problem (MRCP) where
it is required that trajectories exit the polytopic state space in a
monotonic sense relative to a foliation of parallel hyperplanes.

Recent results on RCP include [7], [8], [1], [9], [18],
[19] . Those results exploit system structure on simplices,
particularly the reach control indices [9] and the concept
of reach controllability [19]. Such structure is inexistent on
polytopes due to their high combinatorial complexity. Instead
in this paper we adopt a more computational approach. Finally,
a preliminary version of this note appeared in [13]. While [13]
focused on the differences between MRCP and the simplex-
based approach [12], [6] and on the relationship between
MRCP and solvability of RCP by arbitrary triangulations, this
note focuses on providing solution methods for MRCP. Also,
here we include all proofs, important technical remarks (e.g.
Remark 4.1), and an efficient algorithm for MRCP (Section
V).

Notation. Let K ⊂ Rn be a set. The closure is K, and
the interior is K◦. The notation 0 denotes the subset of Rn
containing only the zero vector. The notation co {v1, v2, . . .}
denotes the convex hull of a set of points vi ∈ Rn.

II. REACH CONTROL PROBLEM

Consider an n-dimensional polytope

P := co {v1, . . . , vp}

with vertex set V := {v1, . . . , vp} and facets F0,F1, . . . ,Fr.
The target set is the facet F0 of P . Let hi be the unit normal to
each facet Fi pointing outside the polytope. Define the index
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sets I := {1, . . . , p} and J := {1, . . . , r}. For each x ∈ P ,
define the closed, convex cone

C(x) :=
{
y ∈ Rn | hj · y ≤ 0, j ∈ J s.t. x ∈ Fj

}
.

We consider the affine control system defined on P:

ẋ = Ax+Bu+ a , x ∈ P , (1)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m. Let
φu(t, x0) be the trajectory of (1) under a control law u starting
from x0 ∈ P . We are interested in studying reachability of the
target set F0 from P by feedback control.

Problem 2.1 (Reach Control Problem (RCP)): Consider
system (1) defined on P . Find a state feedback u(x) such
that:

(i) for every x0 ∈ P there exist T ≥ 0 and γ > 0 such that
φu(t, x0) ∈ P for all t ∈ [0, T ], φu(T, x0) ∈ F0, and
φu(t, x0) /∈ P for all t ∈ (T, T + γ).

RCP says that trajectories of (1) starting from initial conditions
in P reach and exit the target F0 in finite time, while not
first leaving P . Notice that in order for condition (i) to make
sense it is assumed that the dynamics (1) are extended to a
small neighborhood of P . In the sequel we use the shorthand
notation P P−→ F0 to denote that condition (i) of Problem 2.1
holds for some control.

Definition 2.1: We say the invariance conditions are solv-
able if for each v ∈ V there exists u ∈ Rm such that

Av +Bu+ a ∈ C(v) . (2)

Equation (2) is referred to as the invariance conditions either
for a specific vertex, or collecting all conditions for all vertices,
for a polytope. The relevance of the invariance conditions to
RCP is that they ensure that trajectories only exit P via F0

under affine or PWA feedback [11].
Let B = Im B, the image of B. Define the set

O := { x ∈ Rn | Ax+ a ∈ B } . (3)

Notice that the vector field Ax + Bu + a can vanish at any
x ∈ O for an appropriate choice of u ∈ Rm, so O is the
set of all possible equilibrium points of (1). That is, if x0 is
an equilibrium of (1) under feedback control, then x0 ∈ O.
It can be verified that either O = ∅ or O is an affine space
with dimension between m and n. We also define the set of
possible equilibrium points of (1) on P by

OP := P ∩ O . (4)

Since O is an affine space, either OP = ∅ or OP is a κ-
dimensional polytope in P . If OP 6= ∅, we define the vertex
set of OP to be VO = {o1, . . . , oq}, where oi are the vertices
of OP (not necessarily vertices of P). Also define the index
set IO = {1, . . . , q}. Finally, we review the definition of
triangulation [14]. A triangulation T of a polytope P is a
subdivision of P into full dimensional simplices S1, · · · ,SL
such that (i) P = ∪Li=1Si, (ii) For all i, j ∈ {1, · · · , L} with
i 6= j, the intersection Si ∩ Sj is either empty or a common
face of Si and Sj .

III. FROM SIMPLICES TO POLYTOPES

In this section, we focus on continuous state feedbacks. It is
known that for simplices, RCP is solvable by affine feedback if
and only if two conditions hold: (a) the invariance conditions
(2) are solvable, and (b) the unique affine feedback built from
one such solution does not admit a closed-loop equilibrium
in the simplex [12], [17]. The no-equilibrium requirement can
also be expressed as a so-called flow condition, which gives
an equivalent numerical test [17]. We are interested to obtain
the most immediate extension of this result for polytopes.
First, we restrict our attention to continuous piecewise affine
(PWA) feedback. Assuming PWA feedback, the invariance
conditions remain necessary conditions for solvability of RCP
on polytopes [11]. Instead, the flow condition is no longer
necessary for solvability on polytopes. Indeed the statement
that there is no closed-loop equilibrium is no longer equivalent
to existence of a flow condition when dealing with general
polytopes, because the equivalence relies on the convexity
of the closed-loop vector field. Convexity is preserved with
affine feedback, but it may not be with PWA feedback. On
the other hand, the flow condition affords useful properties;
particularly that trajectories exit the polytope in an orderly
way. In this section we begin an exploration of the extent to
which results for simplices carry over to polytopes. Guided by
these insights, we formulate in Section IV a restricted version
of RCP: we incorporate the requirement of a flow condition
into the problem statement, and we call this restricted problem
monotonic reach control.
Let T be a triangulation of polytope P . A point x ∈ P lies in
the interior of precisely one simplex Sx in T whose vertices
are, say, v1, . . . , vk. Then x =

∑k
i=1 λivi, where λi > 0 and∑

i λi = 1. Coefficients λ1, . . . , λk are called the barycentric
coordinates of x. Given a state feedback u(x) on P , we say
u is a piecewise affine feedback associated with T if for any
x ∈ P , x =

∑
i λivi implies u(x) =

∑
i λiu(vi), where {vi}

are the vertices of Sx and the λi are the barycentric coordinates
of x. It is easy to show that u(x) is a continuous state feedback
on P .

Remark 3.1: If u(x) is a piecewise affine feedback on P ,
then for each n-dimensional simplex Sk ∈ T, there exist Kk ∈
Rm×n and gk ∈ Rm such that u(x) takes the form u(x) =
Kkx+ gk, x ∈ Sk.
We say T is a triangulation of P with respect to O if T is a
refinement of a subdivision of the point set V ∪ VO such that
OP is a union of simplices in T.

Example 3.1: Consider the polytope in Figure 1. In Fig-
ure 1(a) OP = co {o1, o2} is a 1-dimensional simplex in T,
so we say T is a triangulation with respect to O. In Figure 1(b)
OP cannot be expressed as a union of simplices in T, so T is
not a triangulation with respect to O.

Suppose we are given a triangulation T of P with respect to
O and we are given u(x), a piecewise affine feedback defined
on T which satisfies the invariance conditions of P . Define

bi := Aoi +Bu(oi) + a ∈ B ∩ C(oi) , i ∈ IO . (5)

If we want to exclude closed-loop equilibria in P , then we
only need to concentrate on the behavior of the closed-loop
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Fig. 1. Two triangulations of P . (a) T is a triangulation with respect to O,
and (b) T is not.

vector field in OP . A basic result of convex analysis says that
there are no closed-loop equilibria in OP if there is a flow
condition on OP .

Lemma 3.1: Let {b1, . . . , bq | bi ∈ B} be such that 0 6∈
co {b1, . . . , bq}. Then there exists β ∈ B such that β · bi < 0,
i = 1, . . . , q.

The condition that 0 6∈ co {b1, . . . , bq} can be related to the
existence of closed-loop equilibria in P .

Theorem 3.2: Consider the system (1) defined on a poly-
tope P . Let T be a triangulation of P with respect to O, u(x)
be a piecewise affine feedback defined on T, and bi be as in
(5). If 0 6∈ co {b1, . . . , bq}, then the closed-loop system has
no equilibrium in P .

Proof: Let x ∈ OP , and without loss of generality, sup-
pose x =

∑k
i=1 λioi, where λi are the barycentric coordinates

of x such that λi > 0 and
∑k
i=1 λi = 1. Let β ∈ B be as

in Lemma 3.1. Since OP is a union of simplices in T, and
y(x) := Ax+Bu(x) + a is affine on each simplex, we have
β · y(x) = β ·

(∑k
i=1 λiy(oi)

)
=
∑k
i=1 λi(β · bi) < 0. Thus,

y(x) 6= 0 for all x ∈ OP . Since y(x) 6= 0 for all x ∈ P \OP ,
the result is obtained.

The previous theorem gives a general condition in order that
the closed-loop system has no equilibrium in P . In [6], two
geometric sufficient conditions were presented to guarantee
that there are no closed-loop equilibria in a given simplex.
The first condition was that B∩cone(S) 6= 0, where, cone(S)
is the tangent cone to simplex S at the vertex not contained in
the exit facet F0. The second condition was that there is a set
of linearly independent vectors {b1, . . . , bq | bi ∈ B ∩ C(vi)},
where it is assumed that v1, . . . , vq are the vertices of S ∩O.
We would like to translate these two geometric conditions for
simplices to the more general setting of polytopes. To that end,
define

cone(OP) :=
⋂
o∈VO

C(o) .

In particular, B∩ cone(OP) is the cone of directions in B that
simultaneously satisfy the union of all invariance conditions
at all vertices of OP .

Lemma 3.3: Suppose B∩cone(OP) 6= 0. Then there exists
{b1, . . . , bq | bi ∈ B ∩ C(oi)} such that 0 6∈ co {b1, . . . , bq}.

Proof: Select any 0 6= b ∈ B ∩ cone(OP) and set bi = b
for i ∈ IO. Since cone(OP) ⊂ C(oi), we have bi ∈ B ∩ C(oi)

for all oi ∈ VO. Clearly 0 6∈ co {b1, . . . , bq}.
Next, consider the condition for a simplex S that there

is a linearly independent set of vectors {b1, . . . , bq | bi ∈
B ∩ C(vi)}. Removing the restriction that vertices of OP are
vertices of P , we have the following analogous condition for
polytopes.

Lemma 3.4: Suppose there exists a linearly independent
set of vectors {b1, . . . , bq | bi ∈ B ∩ C(oi)}. Then 0 6∈
co {b1, . . . , bq}.

The previous two conditions provide the analogy for poly-
topes of the related geometric conditions for simplices. Then
based on Theorem 3.2, both of the previous conditions imply
there is no closed-loop equilibrium in P , assuming P is
triangulated with respect to O. Unfortunately, in contrast with
the situation for simplices, a no-equilibrium condition is not
enough to deduce that RCP is solved, as discussed before. For
this reason we bring in the flow condition explicitly in the
problem statement; this approach is developed next.

IV. MONOTONIC REACH CONTROL PROBLEM

Problem 4.1 (Monotonic Reach Control Problem (MRCP)):
Consider system (1) defined on P . Find a state feedback u(x)
such that:
(i) for every x0 ∈ P there exist T ≥ 0 and γ > 0 such that

φu(t, x0) ∈ P for all t ∈ [0, T ], φu(T, x0) ∈ F0, and
φu(t, x0) /∈ P for all t ∈ (T, T + γ).

(ii) There exists ξ ∈ Rn such that for all x ∈ P , ξ · (Ax +
Bu(x) + a) < 0.

The new condition (ii) is called a flow condition, and the prob-
lem is called “monotonic” because trajectories flow through
the polytope in a common sense with respect to a foliation of
parallel hyperplanes with normal vector ξ. We write P P−→ F0

monotonically if properties (i)-(ii) of Problem 4.1 hold.
Although MRCP is a restricted version of RCP, it is more

general than the existing technique that depends on imposing
the sufficient condition h0 · (Ax + Bu(x) + a) > 0, x ∈ P
[11]. Clearly, this strong sufficient condition is a special case
of the flow condition in which ξ = −h0.

Remark 4.1: It can be easily recognized that algebraic
necessary and sufficient conditions for solvability of MRCP
by continuous PWA feedback can be obtained directly based
on the control values at the vertices of P . In particular, MRCP
is solvable by continuous PWA feedback if and only if there
exist ξ ∈ Rn and u(vi) ∈ Rm, i ∈ I , such that

ξ · (Avi +Bu(vi) + a) < 0, i ∈ I (6)
hj · (Avi +Bu(vi) + a) ≤ 0, i ∈ I, j ∈ J s.t. vi ∈ Fj . (7)

However, the inequalities (6) are bilinear inequalities whose
solving is NP hard. In [12] and [17], numerical algorithms
were proposed for RCP on simplices to convert the bilinear
inequalities associated with the flow condition to a series of
linear programming (LP) problems whose number increases
exponentially with the system dimension. Instead of these
computationally expensive techniques, we explore the geomet-
ric conditions for solvability of MRCP in this section, which
will lead to efficient synthesis methods.

Now we investigate geometric necessary and sufficient
conditions for solvability of MRCP under assumptions on
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the placement of O with respect to P . The first result when
OP = ∅ is based on the following technical lemma.

Lemma 4.1: Consider the system (1) defined on a compact,
convex set A. If A ∩O = ∅, then there exists β ∈ Ker (BT )
such that β · (Ax+Bu+ a) < 0, for all x ∈ A and u ∈ Rm.

Proof: Since A is compact and convex, the image of A
under the affine map x 7→ Ax+a, denotedW1 = A(A)+a is
also compact and convex. Also,W1∩B = ∅. For suppose not.
Then there is a point x ∈ A such that Ax+a ∈ B. Then x ∈ O,
by definition, which contradicts A∩O = ∅. Note that bothW1

and B are convex sets, and that W1 is bounded. By Corollary
11.4.2 in [16], there exists a hyperplane H separating B and
W1 strongly. This implies B is parallel to H since B is a
subspace. Let β be the normal vector to H pointing to the
side containing B. Then, β ∈ Ker (BT ) and β · (Ax+ a) < 0
for all x ∈ A. Since β ·B = 0, the result follows.

Theorem 4.2: Consider the system (1) defined on a poly-
tope P , and suppose OP = ∅. Then P P−→ F0 monotonically
by continuous piecewise affine feedback if and only if the
invariance conditions (2) are solvable.

Proof: (=⇒) Follows from the necessity of the invariance
conditions [11]. (⇐=) Select the control ui ∈ Rm for each
vertex vi ∈ V to satisfy the invariance conditions (2). Form a
triangulation T of P . Using the method of [11], one can find
unique Kj and gj corresponding to the affine feedback u(x) =
Kjx+ gj on each simplex Sj ∈ T such that u(vi) = ui, i =
1, . . . , p. We obtain the piecewise affine closed-loop system
ẋ = (A+ BKj)x+ (a+ Bgj). (Note that since P ∩ O = ∅,
the closed-loop system has no equililbria in P .) By Lemma 4.1
there exists β ∈ Ker (BT ) such that β ·(Ax+Bu(x)+a) = β ·
(Ax+a) < 0, x ∈ P . By a standard argument, all trajectories
exit P in finite time. Moreover, since the invariance conditions
(2) hold, trajectories in P exit through F0 [11]. Thus, P P−→
F0 monotonically by piecewise affine feedback.

Suppose we have found ξ ∈ Rn and ε > 0 such that ξ ·
(Ax + Bu(x) + a) < −ε, x ∈ P . Then, it can be easily
shown that an upper bound on the time to leave P is Tu =
maxx∈P ξ·x−minx∈P ξ·x

ε . For more details, refer to Remark 4.9
of [11].

In [6] necessary and sufficient conditions for solvability of
RCP on simplices were obtained based on the assumption that
S ∩ O is a face of the simplex. The same assumption for
polytopes makes possible a straightforward generalization to
polytopes for solvability of MRCP.

Assumption 4.1: Polytope P and system (1) satisfy the
following condition: OP is a κ-dimensional face of P , where
0 ≤ κ ≤ n. In particular, OP = co {v1, . . . , vq}, where vi is
a vertex of P , and let VO := {v1, . . . , vq}.

Theorem 4.3: Consider the system (1) defined on P and
suppose Assumption 4.1 holds. Then P P−→ F0 monotonically
by continuous piecewise affine feedback if and only if
(i) The invariance conditions (2) are solvable.

(ii) There exists {b1, . . . , bq | bi ∈ B ∩ C(vi)} such that 0 6∈
co {b1, . . . , bq}.
Proof: (=⇒) Let y(x) := Ax+Bu(x)+a, where u(x) is

the PWA feedback achieving P P−→ F0 monotonically. Since
u(x) is a continuous state feedback, the invariance conditions

are solvable [11]. Now suppose that condition (ii) does not
hold. This implies 0 ∈ co {y(v1), . . . , y(vp)}. On the other
hand, by the assumption that P P−→ F0 monotonically, there
exists ξ ∈ Rn such that ξ · y(vi) < 0 for i ∈ I . This
implies 0 and co {y(v1), . . . , y(vp)} are strongly separated,
a contradiction.

(⇐=) For each vertex vi ∈ V \ OP , select a control ui ∈
Rm to satisfy the invariance conditions (2). For vi ∈ VO, select
ui ∈ Rm such that Avi + Bui + a = bi ∈ B ∩ C(vi). Form
a triangulation T of P . Using the method of [11], one can
find unique Kj and gj corresponding to the affine feedback
u(x) = Kjx+gj on each n-dimensional simplex Sj ∈ T such
that u(vi) = ui, i = 1, . . . , p and y(vi) = bi, i = 1, . . . , q.
We obtain the piecewise affine closed-loop system ẋ = (A+
BKj)x+(a+Bgj) =: y(x), x ∈ P . We show a flow condition
holds on P . First, by Lemma 3.1, a flow condition holds for
the closed loop vector field y(x) := (A + BKi)x + Bgi + a
at vertices of OP . That is, there exists β1 ∈ B such that β1 ·
y(vi) = β1 · bi < 0, i = 1, . . . , q. Next let P ′ := co {vi | vi ∈
V \ VO}. Note that because OP is a face of P , P ′ ∩ O = ∅.
According to Lemma 4.1, there exists β2 ∈ Ker (BT ) such
that for all x ∈ P ′, β2 · (Ax + Bu(x) + a) < 0. Define β =
αβ1+(1−α)β2 for some α ∈ (0, 1). Consider vi ∈ VO. Using
the fact that β2 · bi = 0, we have β · y(vi) = αβ1 · y(vi) < 0.
Next consider vi ∈ V \ VO. We have

β·(Avi+Bui+a) = αβ1·(Avi+Bui+a)+(1−α)β2·(Avi+a) .

The term β1 · (Avi+Bui+ a) is a constant of unknown sign,
whereas we know β2 · (Avi + a) < 0. Therefore it is possible
to select α sufficiently small so that β ·(Avi+Bui+a) < 0 for
all vi ∈ V \VO. We conclude that for all vi ∈ V , β ·y(vi) < 0.

Now let x ∈ P , and without loss of generality, suppose x =∑k
i=1 λivi, where λi are the barycentric coordinates of x such

that λi > 0 and
∑k
i=1 λi = 1. Since y(x) is affine on simplices

of T, we have y(x) =
∑k
i=1 λiy(vi). Therefore, for x ∈ P ,

β · y(x) =
∑k
i=1 λiβ · y(vi) < 0. By a standard argument,

all trajectories exit P in finite time, and by Proposition 3.1 of
[11], they do so through F0. Thus, P P−→ F0 monotonically
by piecewise affine feedback.

Lemmas 3.3 and 3.4 provide sufficient geometric conditions
for condition (ii) of Theorem 4.3. These provide the analog to
the results for simplices appearing in [6]. Finally, we consider
the general case when OP∩P◦ 6= ∅. This case is considerably
more difficult; indeed a complete solution is not known even
for simplices. Therefore, we study only single-input systems.
The starting point for this study is a necessary condition whose
proof for the case of simplices is provided in [19].

Theorem 4.4: Consider the system (1) defined on a poly-
tope P . Suppose m = 1 and OP 6= ∅. If RCP is solvable by
continuous state feedback, then B ∩ cone(OP) 6= 0.

Starting from Theorem 4.4, we create a monotonic flow by
“pushing” a vector b ∈ B∩cone(OP) onto each of the vertices
of P while preserving the invariance conditions. We show that
if MRCP is solvable, then it is solvable by this b-extremal
solution. This then leads to a design procedure for constructing
the appropriate controls, to be developed in Section V.
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Let y ∈ Rn and define the index set Iy := {i ∈ I | y ∈
C(vi)}. That is, Iy is the index set of vertices for which the
velocity vector y satisfies the invariance conditions of that
vertex. By Theorem 4.4, B ∩ cone(OP) 6= 0 is a necessary
condition for solvability of RCP when m = 1, so we assume
we have such a b ∈ B ∩ cone(OP). For the indices i 6∈ Ib,
let ui be such that yi := Avi +Bui + a ∈ C(vi) contains the
maximal b component. In particular, ui is the solution of the
following LP

max
u∈R

b · (Avi +Bu+ a) (8a)

subject to: Avi +Bu+ a ∈ C(vi). (8b)

Since b 6∈ C(vi) and m = 1, the maximum exists and is unique,
and it corresponds to one or more invariance conditions
evaluating to zero at vi. Given a triangulation T of P , let
u(x) denote any PWA feedback such that u(vi) = ui, i 6∈ Ib.

The following result tells us that a b-extremal controller,
in the sense just described, can always be selected to solve
MRCP, if it is solvable by PWA feedback. The second con-
dition (ii) below, presently less meaningful, will be seen to
provide a useful tool in the algorithmic solution of MRCP, to
be developed in Section V.

Theorem 4.5: Consider the system (1) defined on a poly-
tope P . Suppose m = 1 and OP 6= ∅. Suppose T is a
triangulation and u(x) an associated continuous piecewise
affine control such that P P−→ F0 monotonically using u(x).
Then there exist 0 6= b ∈ B∩ cone(OP), yi = Avi+Bui+ a,
i /∈ Ib, where ui is the solution of the LP (8), and u(x) as
above such that:

(i) P P−→ F0 monotonically using u(x),
(ii) 0 /∈ co {b, yi | i /∈ Ib}.

Proof: Since u(x) is a continuous state feedback solving
P P−→ F0, u(x) satisfies the invariance conditions [11]. Let
OP = co {o1, . . . , oq}. Define b = Ao1 + Bu(o1) + a ∈
B ∩ C(o1). Then we must have Aoi +Bu(oi) + a = αib with
αi > 0 for i = 2, . . . , q. Otherwise, by the same argument
as in the proof of Theorem 4.4, there is an equilibrium in P
using u(x). We conclude 0 6= b ∈ B ∩ cone(OP).
Secondly, we show that the solution of the LP (8), ui, i /∈
Ib, exists. Because the invariance conditions are solvable, a
feasible solution of the constraint (8b) exists. Suppose, by
contradiction, that for some i /∈ Ib the maximum does not
exist under the constraint (8b). Because i /∈ Ib, b /∈ C(vi) so
there exists j ∈ J such that vi ∈ Fj and hj · b > 0. Then we
have that the b-component in Bu can be made arbitrary large,
while also hj · (Avi+Bu+a) ≤ 0. This is clearly impossible
since hj · b > 0. Because m = 1, it can be easily shown that
the solution ui is also unique.
Now we show that (i)-(ii) are achieved. Since P P−→ F0

monotonically using u(x), there exists ξ ∈ Rn such that
ξ · (Ax + Bu(x) + a) < 0, x ∈ P . In particular, ξ · (Ao1 +
Bu(o1) + a) = ξ · b < 0. Now define u(x) := u(x) + w(x),
where w(x) is determined by Bw(x) = c(x)b, such that the
positive PWA function c(x) ≥ 0 associated with T arises from
assigning ui, i /∈ Ib. Also, set c(vi) = 0, i ∈ Ib. Then the

invariance conditions still hold, and for x ∈ P ,

ξ·(Ax+Bu(x)+a) = ξ·(Ax+Bu(x)+a)+ξ·c(x)b < 0 . (9)

We conclude P P−→ F0 monotonically using u(x). By
equation (9) and the fact that ξ · b < 0, we obtain (ii).
Theorem 4.5 suggests a design procedure to synthesize a PWA
control u(x) to achieve P P−→ F0 monotonically. The proce-
dure is simply to inject the largest possible b ∈ B∩ cone(OP)
component in any vertex with i 6∈ Ib, and to use a sufficiently
large b component for vertices with i ∈ Ib. We present an
algorithm in Section V.

V. ALGORITHM FOR MRCP

In this section we present an algorithm for solving MRCP
by PWA feedback for single-input systems. It is assumed that
OP 6= ∅, for if OP = ∅, then Theorem 4.2 provides a solution.
Also, if OP is a face of P , then Theorem 4.3 provides a
solution. The algorithm, inspired by Theorem 4.5, is easily
explained in words: for a single input system, there are only
two control directions b,−b ∈ B. Choose b ∈ B ∩ cone(OP)
(step 1). At all those vertices vi where b /∈ C(vi), we inject
a maximal b component into the vector field by choice of
control ui (step 2). If MRCP is solvable, then Theorem 4.5
tells us that such an extremal solution exists. A flow condition
must hold with extremal control values; that is, we can find
a candidate ξ ∈ Rn for Problem 4.1 (step 3). Then we use
ξ to select control values at the remaining vertices vi where
b ∈ C(vi) (step 4). If ξ cannot be found, then the procedure
is repeated with −b ∈ B ∩ cone(OP) (step 5). Theorem 5.1
shows that this procedure is sound and complete.

Algorithm 1:
1. Select 0 6= b ∈ B ∩ cone(OP).
2. For each i /∈ Ib, solve the LP for ui ∈ R:

max
u∈R

b · (Avi + a+Bu)

subject to: Avi + a+Bu ∈ C(vi) (10)

3. Solve the LP for ξ ∈ Rn:

ξ · (Avi + a+Bui) < 0 , i /∈ Ib (11a)
ξ · b < 0 . (11b)

4. If (11) is solvable, then for each i ∈ Ib, solve the LP
for ui ∈ R:

ξ · (Avi + a+Bui) < 0 (12a)
Avi + a+Bui ∈ C(vi) . (12b)

5. If (11) is not solvable, select −b ∈ B ∩ cone(OP) and
repeat steps 2− 4 after replacing b by −b.

6. Form a triangulation T of P using only vertices of
P . Construct an affine feedback u(x) = Kjx + gj
for each n−dimensional simplex Sj ∈ T such that
u(vi) = ui, i = 1, · · · , p.

Theorem 5.1: Consider the system (1) defined on a poly-
tope P . Suppose m = 1 and OP 6= ∅. MRCP is solvable
by continuous PWA feedback if and only if Algorithm 1
terminates successfully.
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Proof: (⇐=) Suppose the algorithm terminates success-
fully. It is required to show that the PWA feedback u(x)
calculated in step 6 solves MRCP on P . From (10) and (12b),
u(x) satisfies the invariance conditions (2). From (11a) and
(12a), a flow condition holds at the vertices of P . By the
same argument as at the end of the proof of Theorem 4.3
(with β replaced by ξ), P P−→ F0 monotonically by the PWA
feedback u(x).
(=⇒) Suppose that MRCP is solvable by continuous PWA
feedback. By way of contradiction, we show that if Algorithm
1 does not terminate successfully, then MRCP is not solvable
by continuous PWA feedback. Let’s consider all the cases
where the algorithm does not terminate successfully. Let
yi := Avi +Bui + a, i = 1, . . . , p.

1. The algorithm terminates in step 1 if B∩ cone(OP) = 0.
By Theorem 4.4, MRCP is not solvable by continuous
state feedback.

2. The algorithm terminates in step 2 if either (10) is
not solvable, but then the invariance conditions (2) are
not solvable. By Proposition 3.1 in [11], MRCP is not
solvable by continuous state feedback. Alternatively, for
some i /∈ Ib, the maximum does not exist under (10).
But, this is impossible as shown in the second part of the
proof of Theorem 4.5.

3. The algorithm terminates in step 4 if the LP is not feasi-
ble. As above, if (12b) is not solvable, then MRCP is not
solvable by continuous state feedback. Instead, suppose
(12a) is not achievable simultaneously with (12b). This
cannot happen because ξ · b < 0 and b ∈ C(vi), i ∈ Ib, so
any sufficiently large b-component added to a velocity
vector already satisfying (12b) solves the LP (see the
remark below).

4. The algorithm terminates in step 5 if either −b /∈ B ∩
cone(OP), or one of the LP problems in steps 2 − 4
is not solvable (for −b). First, consider the cases where
−b /∈ B ∩ cone(OP), or the LP in step 3 is not solvable
(for −b). For these cases, for every 0 6= b ∈ B∩cone(OP)
the LP problem in step 3 is not solvable. Equivalently,
by a result analogous to Lemma 3.1, for every 0 6=
b ∈ B ∩ cone(OP), 0 ∈ co {b, yi | i /∈ Ib}. Then by
Theorem 4.5(ii), MRCP is not solvable by continuous
PWA feedback. Secondly, consider the cases where the
LP problem in step 2, or 4 is not solvable (using −b). By
a similar argument to the previous two points, MRCP is
not solvable by continuous state feedback.

Remark 5.1: Algorithm 1 is most closely related to the
procedure contained in Theorem 4.17 of [12]. Their algorithm
is for simplices and multi-input systems, while our algorithm
is for polytopes and single-input systems. Comparing only the
single-input cases, their algorithm requires solving at most
2(n+1)+2(n+1) linear programming (LP) problems, where n
is the dimension of the simplex. Instead, our algorithm requires
solving at most 2p + 2 LP problems, where p is the number
of vertices of P .

Second, we remark that if (12b) is satisfied using u′i,
then it can be easily verified that a control that satis-

fies (12) is calculated as follows. For i ∈ Ib, let ci >

max{0,− ξ·(Avi+a+Bu
′
i)

ξ·b }. Select ui = u′i + w(vi), where
w(vi) is determined by Bw(vi) = cib.

VI. CONCLUSION

We formulated the monotonic reach control problem
(MRCP) and obtained intrinsic necessary and sufficient condi-
tions for solvability of MRCP by PWA feedback. We presented
a numerical algorithm to solve MRCP in the single-input case
which is the first to overcome the exponential complexity in
the system dimension of algorithms currently available in the
literature [12].
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