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Abstract— A method to characterize the symmetries inherent
within physical systems via automorphism groups has already
been established. In this paper, we define a specific block
diagonal form to which a matrix can be decomposed if and
only if it conforms with a given set of symmetries. We
employ this decomposition and resulting block diagonal form
to define controllability and stabilizability and give a pole
placement algorithm when the feedback matrix is constrained
by the inherent patterns of the system. Finally, an example is
given which demonstrates our controllability notion and pole
placement algorithm.

I. INTRODUCTION

The majority of decentralization techniques in the control
literature depend on optimal control procedures with decen-
tralizing constraints on the feedback matrices. For example,
the work of Shah and Parillo applies this approach to the
decentralized control of systems with a poset-causal structure
[1]. These numerical methods may not provide necessary and
sufficient conditions to guarantee decentralization. Moreover,
they most often fail to directly exploit the inherent patterning
and structure which render the system decentralizable in the
first place.
There have been some attempts in the literature to take ad-
vantage of system structure to find decentralized controllers.
An early work by Brockett and Willems analyzes a class of
matrices which can be block diagonalized by a common base
matrix [2]. This class of so-called block circulant systems is
defined by a group of identical subsystems which are coupled
to each other in a ring structure.
A general notion of patterned linear systems was introduced
by Hamilton and Broucke [3], adopting the framework of
linear geometric control [4]. The methodology in [3] was
further pursued by Sniderman and Broucke [5]. In the course
of this research, a new definition of patterning arose: the
patterning of a matrix could be encoded through commuting
properties with other matrices. Namely, a matrix A is an
element of a set of commuting matrices C(U, V ) if and only
if UA = AV . Using this notion of patterning, a full set of
geometric results was elucidated for block circulant systems,
including a pole placement algorithm capable of generating
a stabilizing feedback which preserves aspects of patterning
in the original system (those encoded by the commuting
property). In one notable example, this algorithm was also
shown to generate decentralizing results [6].
Recently, in a paper by Consolini and Tosques [7], the
commutative notion of patterning was extended beyond a
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single commutative relationship to a set of commutative
operations defined in terms of a finite group. A key insight of
this paper is the use of the automorphism group of an equiv-
alent graph of subsystems. This finite group is a standard
way of representing symmetries inherent in mathematical
structures [8]. In the paper, deep results of group theory,
representation theory, and character theory were employed
to demonstrate that there exists a stabilizing feedback which
preserves the system property of commutativity with the ma-
trix representations of the finite group. However, no explicit
pole placement algorithm was given and complete results in
terms of standard geometric problems were lacking. Even
more recently, Consolini and Tosques have presented results
which prove that it is possible to find a decentralized output
feedback stabilizer if and only if there exists a controller that
respects the symmetry of the graph automorphism group of
the system [9].
This paper consolidates the group theoretic results of Con-
solini [7] with the algorithms and pole placement results of
Sniderman et al. [5] to formulate a more general theory of
patterned linear systems with the goal of developing a formal
algebraic notion of decentralization.

II. BACKGROUND

We review some notions from group theory and represen-
tation theory [10]. An isomorphism is a homomorphism
in which the defined map is bijective (characterized by an
invertible linear map in our case). Two mathematical objects
are said to be isomorphic (denoted by congruency symbol
∼=) if there exists a linear invertible map between them. An
automorphism is an isomorphism mapping a mathematical
object to itself. The General Linear Group (GLn(V)) is
the group of isomorphisms of a given vector space V onto
itself. The Symmetric Group (Sym(n)) is the group of all
permutations of a set of cardinality n [11]. Let A⊗B denote
the Kronecker product between two matrices A and B of
any dimension. The direct sum of matrices is defined to be
n
⊕
i=1
Ai = diag(A1, A2, . . . , An) [12].

Let G be a multiplicative group of finite order. A linear
representation ρ of G in a representation space V ⊆ Rn is
a map ρ : G −→ GL(V), where GL(V) is the general linear
group of isomorphisms on V . Given elements a, b, c ∈ G
such that a · b = c, we have that ρ(a) · ρ(b) = ρ(c). We
call two different representations ρ1 : G −→ GL(V1) and
ρ2 : G −→ GL(V2) isomorphic (denoted by ρ1 ∼= ρ2) if
there exists a linear transformation τ : V1 −→ V2 such that
τρ1(g) = ρ2(g)τ for all g ∈ G. A representation is said to be
irreducible if there does not exist a non-trivial subspace V ′ ⊂



V that is invariant to the action of G, i.e. ρ(g)V ′ ⊂ V ′ for all
g ∈ G. We henceforth denote any irreducible representation
with the tilde, i.e. ρ̃. We recall Schur’s Lemma, which is one
of the most fundamental concepts of representation theory,

Lemma 1 (Schur’s Lemma). Let ρ̃1 : G −→ GL(V1) and
ρ̃2 : G −→ GL(V2) be two irreducible representations of
G, and let A : V1 −→ V2 be a linear map such that ρ̃2(g) ·
A = A · ρ̃1(g) for all g ∈ G. Then:
(1) If ρ̃1(g) is not isomorphic to ρ̃2(g), then A = 0.
(2) If V1 = V2 and ρ1 = ρ2, then A is a scalar multiple of

identity.

There are a finite number h of irreducible representations
ρ̃i : G −→ GL(Wi), i = 1...h, for a given group G
that are unique up to isomorphism [10]. Thus any irre-
ducible representation is isomorphic to exactly one of the ρ̃i.
Henceforth, the irreducible representations will be fixed to
be {ρ̃1, . . . , ρ̃h}, with representation spaces {W1, . . . ,Wh},
respectively. The following Lemma from [10, Proposition
1.8] regards the decomposition of a representation into
irreducible constituents.

Lemma 2. Suppose we have a representation of G in V given
by ρ : G −→ GL(V). Then there exists a decomposition,

V =W⊕η11 ⊕ . . .⊕W⊕ηhh

where the Wi are the distinct irreducible representation
spaces of G such that ρ(g)Wi ⊂ Wi. Each ηi is the
multiplicity of Wi in V . Note that it is possible that ηi = 0.

In the following lemma we show how this decomposition is
extended to the representation itself.

Lemma 3. Given a real vector space V ∼ Rn and a
representation of G in V given by ρ : G −→ GL(V), there
exists an invertible matrix T such that for all g ∈ G,

ρ̃(g) = T−1ρ(g)T =
h
⊕
i=1

ηi
⊕
j=1

ρ̃i(g)

=



ρ̃1(g)
. . .

ρ̃1(g)
. . .

ρ̃h(g)
. . .

ρ̃h(g)


,

(1)

where the ρ̃i(g) ∈ Rni×ni are the h irreducible represen-
tations each repeated with multiplicity ηi and ni is the
dimension of the corresponding representation space Wi.

The proof of this lemma is omitted as it clearly follows from
Lemma 2. We call the matrix T the irreducible decomposi-
tion transformation. A computationally tractable method by
which a specific transformation matrix T can be found for
a given representation is available, but was excluded due to
space limitations.

III. THE AUTOMORPHISM GROUP

We consider the linear time-invariant system,

ẋ = Ax+Bu (2)

where x ∈ X , u ∈ U , X ∼ Rn, U ∼ Rm, and
rank(B) = m. We seek a method to characterize the patterns
that are inherent within the structure of a large scale linear
system. In a number of canonical examples, patterns may be
characterized via a commutative property between system
matrices and a set of base matrices representing a symmetry
operation [5], [13], [7]. As presented in [7], we define a
finite group of symmetry operations which commute with
the system matrices of (2). This group can be found via the
following procedure:

1. Partition the state space of the large scale system into
its known subsystems: X = X1⊕ . . .⊕Xm, where each
Xi corresponds to the state space of ith subsystem.

2. Partition the system matrices (A,B) according to the
partition of the state space above. The blocks along
the diagonal of A represent the system matrix Ai for
each subsystem i. The off-diagonal blocks of the A
matrix represent the coupling between the subsystems.
Finally, the non-zero blocks of the partitioned B matrix
represent inputs into the subsystems.

3. We define a graph G with a set of vertices V =
{1, ...,m} corresponding to the subsystems and a set of
edges E = {(i, j) ∈ V × V : i and j adjacent} corre-
sponding to the non-zero Aij blocks.

4. Identify the set of permutation operations on the vertex
set V for which the edge set E remains unchanged. This
is akin to finding the subsystem states which can be
interchanged without affecting the overall system. This
set of operations is known as the automorphism group
[11], which we denote as G. This group is a subgroup
of the finite m-dimensional symmetric group Sym(m)
and is therefore finite [11].

The automorphism group G is represented in both the state
X and input U spaces by a set of permutation matrices as
shown in [7].

IV. PATTERNED DECOMPOSITION OF A MATRIX

Armed with the finite group characterization of symmetries,
we endeavor to further characterize the properties of a matrix
that possesses the patterning prescribed by a given finite
group G. We begin with a fundamental definition.

Definition 1 (G-Patterned Matrix). Let G be a finite group,
V1 = Rn and V2 = Rm be vector spaces, and ρ1 : G −→
GL(V1) and ρ2 : G −→ GL(V2) be two representations of
G. We say the matrix A ∈ Rn×m is G-patterned if ρ1(g) ·
A = A · ρ2(g) for all g ∈ G.

This definition is similar to the G-equivariant definition
given in [7]. We now begin the main contribution of this
paper by stating a powerful theorem which equates G-
patterning to a special block diagonal form. We recall that a
given representation space V can decomposed into a direct



sum of the h irreducible representation spaces Wi, each
repeated with multiplicity ηi and having dimension ni.

Theorem 1 (Patterned Matrix Structure). We are given
ρ1 : G −→ GL(V1) and ρ2 : G −→ GL(V2) such
that V1 ∼ Rn and V2 ∼ Rm, as well as T1 and T2,
the associated irreducible decomposition transformations.
A matrix A ∈ Rn×m is G-patterned if and only if the
decomposed matrix Ã = T−11 AT2 has the following block
diagonal form,

Ã =


Ã1 0 . . . 0

0 Ã2 . . . 0
...

...
. . .

...
0 0 . . . Ãh

 (3)

where
Ãi = Âi ⊗ Ini

, Âi ∈ Rη
1
i×η

2
i .

The integers η1i and η2i are the multiplicities of each Wi in
V1 and V2, respectively.

Proof. We first partition Ã as

Ã =

Ã11 . . . Ã1h

...
. . .

...
Ãh1 . . . Ãhh

 , Ãij ∈ Rη
1
i ·ni×η2j ·nj .

We will show that A is G-patterned if and only if,

Ãij =

{
Âi ⊗ Ini

if i = j
0 if i 6= j

.

From (1), we know that for each representation ρ1 and ρ2,
there exist transformation matrices T1 and T2 such that for
j = 1, 2,

ρ̃1(g) = T−1j ρj(g)Tj =


Rj1(g)

Rj2(g)
. . .

Rjh(g)

 ,
where the blocks Rji (g) are given, for all g ∈ G, by

Rji (g) =
ηji
⊕
k=1

ρ̃i(g) , i = 1, . . . , h , j = 1, 2 . (4)

( =⇒ ) Let A be G-patterned. Applying the irreducible
decomposition transformations to the commutative property,
we have that ρ1(g) ·A = A · ρ2(g) if and only if ρ̃1(g)Ã =
Ãρ̃2(g), where Ã = T−11 AT2. Rewriting the commutative
formula explicitly in terms of the Rji blocks, we have for all
g ∈ G,

R1
i (g)Ãij = ÃijR

2
j (g) , ∀ i, j . (5)

Equivalently,ρ̃i(g) . . .
ρ̃i(g)


︸ ︷︷ ︸

η1i times

Ãij = Ãij

ρ̃j(g) . . .
ρ̃j(g)


︸ ︷︷ ︸

η2j times

.

Now we make a further partition of Ãij as follows:

Ãij =


(Ãij)11 . . . (Ãij)1η2j

...
. . .

...
(Ãij)η1i 1 . . . (Ãij)η1i η2j

 , (Ãij)kl ∈ Rni×nj .

Applying this decomposition to (5), we obtain a completely
reduced form of the commutative property; namely

ρ̃i(g) · (Ãij)kl = (Ãij)kl · ρ̃j(g), ∀i, j, k, l. (6)

First, suppose i 6= j. Then ρ̃i is not isomorphic to ρ̃j , so by
Schur’s lemma, (Ãij)kl = 0, for all k, l. This implies that
Ãij = 0. Second, suppose i = j. Then ρ̃i is equal to ρ̃j , so
by Schur’s Lemma,

(Ãij)kl = aikl · Ini
,

where aikl ∈ R. We can factor the identity matrix and employ
an abuse of notation to obtain

Ãi = Ãii = Âi ⊗ Ini
=


ai11 . . . ai

1η2j
...

. . .
...

ai
η1i 1

. . . ai
η1i η

2
j

⊗ Ini
.

As a result Âi ∈ Rη1i×η2i .
( ⇐= ) Note that we only need to prove equation (6) for
the commutative property to be true overall. First, suppose
i 6= j. Then, by assumption, (Ãij)kl = 0. Therefore,
ρ̃i(g)(Ãij)kl = 0 = (Ãij)klρ̃j(g) for all i, j, k, l such that
i 6= j and for all g ∈ G. Therefore, the commutative property
is satisfied.
Next, suppose i = j. For all k, l and for all g ∈ G we have,

ρ̃i(g) · (Ãij)kl = ρ̃i(g) · aikl · Ini

= aikl · Ini
· ρ̃i(g) = (Ãij)kl · ρ̃j(g).

Thus the commuting property holds in both cases and A is
G-patterned.

Definition 2 (Pattern Reduced Form). We can decompose
any G-patterned matrix A into the form given in Theorem 1.
We refer to the direct matrix sum of the Âi from Theorem
1 as the Pattern Reduced Form and denote this form by Â ∈
Rγ1×γ2 such that Â =

h
⊕
i=1
Âi (with γ1 =

∑h
i=1 η

1
i and γ2 =∑h

i=1 η
2
i ),

We now state some of the properties of the eigenvalue
spectrum of a square G-patterned matrix. Let σn denote
the disjoint union of n repetitions of a given spectrum σ.
Note that the spectral sets are allowed to contain repeated
elements.

Lemma 4. Let A ∈ Rn×n be a G-patterned matrix. The
spectrum σ(A) is equivalent to the disjoint union of the
spectra of the Âi each repeated ni times, where ni is the
dimension of the irreducible representation associated with
Âi,

σ(A) =
h
]
i=1
σni(Âi). (7)



Proof. Let M =
h
⊕
i=1
Mi be an arbitrary square matrix. We

note first that σ(M) = σ(
h
⊕
i=1
Mi) =

h
]
i=1
σ(Mi), since M

is block diagonal. We also note that by a property of the
Kronecker product, σ(M⊗In) = σn(M). Therefore σ(A) =

σ(Ã) = σ(
h
⊕
i=1
Ãi) = σ(

h
⊕
i=1
Âi ⊗ Ini

) =
h
]
i=1
σ(Âi ⊗ Ini

) =

h
]
i=1
σni(Âi).

We say that A has a patterned spectrum if its spectrum is as
in Lemma 4 above.

V. PATTERNED CONTROL THEORY

A. Patterned Dynamical System

We now extend the concept of a G-patterned matrix to a LTI
dynamical system.

Definition 3 (G-Patterned System). Let G be a finite group.
Let A and B in (2) above both be G-patterned such that
there exist ρx(G) : G→ GL(X ) and ρu(G) : G→ GL(U)
such that ρx(g)A = Aρx(g) and ρx(g)B = Bρu(g) for all
g ∈ G. Then we say the system (A,B) is a G-Patterned
System.

Definition 4 (Pattern Reduced Form). We say (Â, B̂) is the
Pattern Reduced Form of the system (A,B). Additionally,
we call each (Âi, B̂i) a pattern reduced subsystem of the
system (A,B).

B. Patterned Controllability

We are now positioned to define an appropriate notion of
controllability for a given patterned system. That is, we
characterize when a system is controllable via a feedback
that preserves the patterning of the original system.

Definition 5 (Pattern Controllable). We say that a G-
patterned system (A,B) is pattern controllable if each
pattern reduced subsystem (Âi, B̂i) is controllable in the
standard linear control theory sense.

C. Patterned Pole Placement

In pursuit of our pole placement goal, we first consider the
following two lemmas, which will bridge the gap between
pattern controllability and patterned pole placement.

Lemma 5. Let A and B be as in (2) with K ∈ Rn×n
and let A,B, and K be G-patterned. Then the matrix A +

BK is also G-patterned. Moreover, ˜A+BK = Ã + B̃K̃

and ̂A+BK = Â + B̂K̂. Furthermore, σ( ̂A+BK) =
h
]
i=1
σ(Âi + B̂iK̂i).

Proof. Due to space limitations, we provide only a proof
sketch. Applying the appropriate transformations, we have
˜A+BK = Ã+B̃K̃ =

h
⊕
i=1
σ(Âi+B̂iK̂i)⊗Ini

. The spectrum

σ( ̂A+BK) =
h
⊕
i=1
σ(Âi+B̂iK̂i) =

h
]
i=1
σ(Âi+B̂iK̂i) by the

proof of Lemma 5.

Now we state our main pole placement result with a proof
that constructively demonstrates how to determine patterned
feedback K.

Theorem 2 (Patterned Pole Placement). Let (A,B) be G-
patterned system. Let L be an arbitrary symmetric spectrum
of size |σ(Â)|. There exists a G-patterned matrix K ∈ Rm×n
such that σ( ̂A+BK) = L if and only if (A,B) is pattern
controllable.

Proof. ( =⇒ ) First we assume that we have a G-patterned
matrix K such that σ( ̂A+BK) = L. Since A, B, and K
are patterned we know that A+BK is patterned by Lemma

5. Since, by Lemma 5 we have σ( ̂A+BK) =
h
]
i=1
σ(Âi +

B̂iK̂i), clearly we can split the spectrum accordingly L =
h
]
i=1
Li such that σ(Âi + B̂iK̂i) = Li for all i = 1...h. Since

each Li is freely assignable, (Âi, B̂i) must be controllable
via feedback K̂i.
( ⇐= ) Now assume (A,B) is pattern controllable. This
implies that the (Âi, B̂i) are controllable for all i = 1, ..., h.
Thus, for each (Âi, B̂i), there exists a K̂i which can be found
using standard pole placement such that σ(Âi+B̂iK̂i) = Li,
where Li is again an arbitrary spectrum. We note that for
each K̂i we can define a matrix K̃i = K̂i ⊗ Ini (recall that
ni corresponds to the dimension of the associated irreducible
representation space Wi). We can then form the direct sum

K̃ =
h
⊕
i=1
K̃i and apply the appropriate irreducible decom-

position transformations such that K = T−1u K̃Tx. From
Theorem 1, K : X −→ U is G-patterned by construction

and by Lemma 5, L =
h
]
i=1
Li =

h
]
i=1
σ(Âi + B̂iK̂i) =

σ( ̂A+BK).

Thus, if the system is pattern controllable, we will be able
to use a patterned feedback to place all of the poles of the
spectrum σ( ̂A+BK). By Lemma 4, this implies that all
of the poles of the system can be placed arbitrarily, albeit
with some necessary multiplicity resulting from the pattern
preservation.

D. Pattern Stabilizability

We can define a notion of stabilizability as follows,

Definition 6 (Pattern Stabilizability). The G-patterned sys-
tem (A,B) is Pattern Stabilizable if there exists a G-
patterned matrix K ∈ Rm×n such that σ(A+BK) ⊂ C−.

Theorem 3 (Pattern Stabilizable Subsystems). The G-
patterned system (A,B) is Pattern Stabilizable if and only if
the pattern reduced subsystems (Âi, B̂i) are stabilizable in
the standard linear control sense for all i = 1, ..., h.

Proof. By Lemma 4 and Lemma 5 we have that σ(A +

BK) =
h
]
i=1
σni(Âi + B̂iK̂i) for all i = 1 . . . h. Therefore,

σ(A+BK) ⊂ C− if and only if
h
]
i=1
σni(Âi+ B̂iK̂i) ⊂ C−,

which is clearly true if and only if, for all i = 1...h,
σ(Âi + B̂iK̂i) ⊂ C− with given K̂i ∈ Rηui ×ηxi . This is,



of course, the definition of stabilizability for (Âi, B̂i) in the
standard linear control sense.

VI. EXAMPLE

We present a system that has the general structure of a two
level binary tree. We define the system matrices as follows:

A =



A1 A4 A4 0 0 0 0
A4 A2 0 A4 A4 0 0
A4 0 A2 0 0 A4 A4

0 A4 0 A3 0 0 0
0 A4 0 0 A3 0 0
0 0 A4 0 0 A3 0
0 0 A4 0 0 0 A3


A1 =

[
2 2
4 6

]
;A2 =

[
−1 2
3 −4

]
;

A3 =

[
−7 8
3 2

]
;A4 =

[
−5 0
0 3

]
;

B =


0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1


T

.

As explained in Section III, this system can be represented
by the following graph:

Fig. 1: Two level binary tree graph of example system

In the graph, the Xi represent the subsystems with directed
arrows indicating the interactions between them as given
by the A matrix. That is, a non-zero entry Aij of the A
matrix represents that subsystem Xj affects subsystem Xi

and a line is therefore directed from Xj to Xi on the graph.
The inputs uj represent the inputs from the matrix B. The
symmetry or pattern of the system is immediately apparent
upon viewing the graph representation. However, for this
and more complicated systems there exists software to aid
in determining the full group of automorphic permutation
operations (G) along with their matrix representations ρx(g)
and ρu(g). To find the permissible permutations we use
NAUTY [14] and for the remainder of the group theoretic
information that we may need for a given system we rely on
the well known Groups, Algorithms, Programming (GAP)
System for Computational Discrete Algebra [15]. The sym-
metry inherent within this system was found to correspond to
the dihedral D8 group. This group is commonly denoted as

follows: G = {e, a, a2, a3 = a−1, x, ax, a2x, a3x} where x
and a are such that a4 = x2 = e and xax−1 = a−1 [16]. The
system is, by definition, G-patterned with the D8 group. For
the purpose of exposition we demonstrate the state space and
input space representations of a couple of the group elements
(note that these are the permutation matrices corresponding
to the permutations found via the procedure in Section III).

ρx(ax) =


I2 0 0 0 0 0 0
0 I2 0 0 0 0 0
0 0 I2 0 0 0 0
0 0 0 I2 0 0 0
0 0 0 0 I2 0 0
0 0 0 0 0 0 I2
0 0 0 0 0 I2 0

; ρx(a2x) =

I2 0 0 0 0 0 0
0 0 I2 0 0 0 0
0 I2 0 0 0 0 0
0 0 0 0 0 I2 0
0 0 0 0 0 0 I2
0 0 0 I2 0 0 0
0 0 0 0 I2 0 0

;

ρu(ax) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

; ρu(a2x) =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

.
where I2 represents a two-dimensional identity matrix. Note
that the system matrices will commute with these represen-
tations as prescribed by the definition of G-patterned system.
From the GAP software we know that there are 5 irreducible
representations that pertain to the D8 group, denoted here
as ρ̃1(g), ρ̃2(g), ρ̃3(g), ρ̃4(g), ρ̃5(g). The first four represen-
tations are one dimensional (n1 = n2 = n3 = n4 = 1),
while the fifth has 2 dimensions (n5 = 2) Additionally, we
can employ group theoretic techniques, such as the canonical
decomposition [17] to determine which irreducible represen-
tations compose the two representations above, along with
the multiplicities of each irreducible representation. The mul-
tiplicities of the irreducible representations composing ρx(g)
are as follows: ηx1 = 6, ηx2 = 0, ηx3 = 0, ηx4 = 4, ηx5 = 2. The
multiplicities of the irreducible representations composing
ρu(g) are as follows: ηu1 = 2, ηu2 = 0, ηu3 = 0, ηu4 =
1, ηu5 = 1. Knowing this, we can determine the irreducible
decomposition transformations Tx and Tu such that,

ρ̃x(g) = T−1x ρx(g)Tx

= diag

ρ̃1(g), . . . , ρ̃1(g)︸ ︷︷ ︸
6 times

, ρ̃4(g), . . . , ρ̃4(g)︸ ︷︷ ︸
4 times

, ρ̃5(g), ρ̃5(g)


ρ̃u(g) = T−1u ρu(g)Tu = diag (ρ̃1(g), ρ̃1(g), ρ̃4(g), ρ̃5(g)) .

Now we can apply the decomposition matrices to the system
matrices to give the following pattern decomposed forms of
A and B,

Ã = T−1x ATx = diag
(
Ã1, Ã4, Ã5

)
Ã1 =

 2 2 7.07 0 0 0
4 6 0 −4.24 0 0

7.07 0 −1 2 −7.07 0
0 −4.24 3 −4 0 4.24
0 0 −7.07 0 −7 8
0 0 0 4.24 3 2


Ã4 =

[ −1 2 −7.07 0
3 −4 0 4.24

−7.07 0 −7 8
0 4.24 3 2

]
; Ã5 =

[
[r]2 0 3 0
0 2 0 3
8 0 −7 0
0 8 0 −7

]

B̃ = T−1x ATu = diag
(
B̃1, B̃4, B̃5

)



B̃1 =

 0 0
1 0
0 0
0 0
0 0
0 1

 ; B̃4 =

[
0
0
0
1

]
; B̃5 =

[−1 0
0 −1
0 0
0 0

]
.

Employing Theorem 1, we note that the pattern reduced
forms of Ã and B̃ are as follows,

Â1 = Ã1; Â4 = Ã4; Â5 =
[
2 3
8 −7

]
B̂1 = B̃1; B̂4 = B̃4; B̂5 =

[−1
0

]
.

Note that only the matrices of corresponding to the fifth
irreducible representation (ρ̃5(g)) have a reduced form. This
is because only ρ̃5(g) has dimension (n5 = 2) greater than
one.
Each patterned-reduced subsystem (Â, B̂) is controllable
which implies that the entire system is pattern controllable.
As a result we can place all of the eigenvalues of the
patterned spectrum. We assign the spectra as follows: L1 =
{−1,−2,−3,−4,−5,−6},L4 = {−7,−8,−9,−10},L5 =
{−11,−12}. We use the MATLAB place function with the
pattern reduced matrices to find pattern reduced feedback
matrices,

K̂1 =
[−55.7805 −15.8845 −76.5477 −1.6165 8.5844 26.7933

20.8369 1.7377 10.5936 0.0816 −19.3971 −3.1155
]

K̂4 = [ 46.475 7.7522 −32.3612 −24 ]

K̂5 = [ 18 5.5 ] .

Finally we put the feedback matrices in their unreduced
form, collect them in a single matrix and reverse the pattern
decomposition,

K̃ = diag
(
K̂1, K̂4, K̂5 ⊗ I2

)
K = TuK̃T

−1
x .

The resulting K places the patterned spectrum and
is, of course, G-patterned. The resulting spectrum of
the system with feedback is as follows: σ(A + BK) =
{−1,−2,−3,−4,−5,−6,−7,−8,−9,−10,−11,−11,−12,
−12}. As expected, we see repetition of the last two
eigenvalues.
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