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Abstract

We study the Reach Control Problem (RCP) to make the solutions of an affine
system defined on a polytopic state space reach and exit a prescribed facet of
the polytope in finite time without first leaving the polytope. So-called invari-
ance conditions are used to prevent solutions from leaving the polytope through
facets which are not designated as the exit facet. These conditions are known
to be necessary for solvability of the RCP on polytopes by continuous state
feedback. We study whether the invariance conditions are also necessary for
solvability of the RCP on polytopes by open-loop controls. We show by way
of a counterexample that surprisingly the answer is negative. We identify a
suitable class of polytopes for which the invariance conditions remain necessary
conditions.

1. Introduction

We study the Reach Control Problem (RCP) for affine systems on polytopes.
The problem is to design a state feedback to force closed-loop solutions starting
anywhere in a polytopic state space P to leave the polytope from a prescribed
exit facet of the polytope in finite time [7, 9, 10]. The RCP is a fundamental
reachability problem for piecewise affine hybrid systems [2, 8]. The problem
has been developed in [7, 8, 13, 4, 14, 5, 1] for simplices and [7, 11, 9, 10]
for polytopes. In these papers the invariance conditions are used to prevent
solutions from leaving the polytope from facets which are not designated as
the exit facet. They were shown to be necessary conditions for solvability of
the RCP on polytopes by continuous state feedback in [7] and to be necessary
conditions for solvability of the RCP on simplices by open-loop controls in [5]. In
this note we show that the invariance conditions are not necessary conditions for
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solvability of the RCP on polytopes by open-loop controls. We prove that for a
special class of polytopes the invariance conditions remain necessary conditions
using open-loop controls. The result extends both [7] and [5], and opens the
door for determining the largest feedback class needed to solve the RCP on
polytopes.

Notation. Let K ⊂ R
n be a set. The closure is K, and the interior is K◦.

The notation K1 \ K2 denotes elements of the set K1 not contained in the set
K2. The notation B denotes the open ball of radius 1 centered at the origin.
For two vectors x, y ∈ R

n, x · y denotes the inner product of the two vectors.
The notation co {v1, v2, . . .} denotes the convex hull of a set of points vi ∈ R

n.
Let TP(x) denote the Bouligand tangent cone to set P ⊂ R

n at point x [6]. A
set-valued map Y : Rn → 2R

q

is said to be upper semicontinuous at x ∈ R
n if

for all ǫ > 0, there exists δ > 0 such that ‖x− x′‖ < δ ⇒ Y(x′) ⊂ Y(x) + ǫB.

2. Reach Control Problem

Consider an n-dimensional polytope P := co {v1, . . . , vp} with vertex set
V := {v1, . . . , vp}. An edge of P is a 1-dimensional face of P , and a facet of P is
an (n−1)-dimensional face of P . Let F0,F1, . . . ,Fr denote the facets of P . The
facet F0 is called the exit facet and facets F1, . . . ,Fr are called the restricted
facets. Let hi be the unit normal to each facet Fi pointing outside the polytope.
Define the index sets I := {1, . . . , p}, J := {1, . . . , r}, and J(x) := {j ∈ J | x ∈
Fj}. That is, J(x) is the set of indices of the restricted facets that contain x.
For each x ∈ P , define the closed, convex cone

C(x) :=
{

y ∈ R
n | hj · y ≤ 0, j ∈ J(x)

}

. (1)

Note that the index 0 never appears in J(x) since F0 is the exit facet. For any
x ∈ P \ F0, C(x) = TP(x), the Bouligand tangent cone to P at x. Instead, at
x ∈ F0, C(x) and TP(x) are different since C(x) includes directions pointing out
of P . See Figure 1. We consider the affine control system defined on P :

ẋ = Ax+Bu+ a , x ∈ P , (2)

where A ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) = m. Let B = Im B, the

image of B. Also define O := { x ∈ R
n | Ax + a ∈ B } and OP := P ∩ O, the

set of all possible equilibrium points of (2) in P . We say that a function µ :
[0,∞) → R

m is an open-loop control for (2) if it is bounded on any compact time
interval and it is measurable. These standard conditions ensure the existence
and uniqueness of solutions of (2). Let φu(t, x0) denote the trajectory of (2)
under a control law u starting from x0 ∈ P . We are interested in studying
reachability of the exit facet F0 from P by feedback control.

Problem 2.1 (Reach Control Problem (RCP)). Consider system (2) de-
fined on P. Find a state feedback u(x) such that for every x0 ∈ P, there exist
T ≥ 0 and γ > 0 such that φu(t, x0) ∈ P for all t ∈ [0, T ], φu(T, x0) ∈ F0, and
φu(t, x0) /∈ P for all t ∈ (T, T + γ).
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Figure 1: The convex cones C(vi) in a two-dimensional polytope.

The RCP says that the solutions of (2) starting from initial conditions in P
reach and exit F0 in finite time, while not first leaving P . In the sequel we use

the shorthand notation P P−→ F0 to denote that the RCP is solvable by some
control.

Definition 2.1. We say the invariance conditions are solvable if for each v ∈ V ,
there exists u ∈ R

m such that

Av +Bu+ a ∈ C(v) . (3)

Equation (3) is referred to as the invariance conditions either for a specific
vertex, or collecting all conditions for all vertices, for a polytope.

3. Counterexample

The invariance conditions (3) are known to be necessary for solvability of
the RCP on polytopes by continuous state feedback [7] and on simplices by
open-loop controls [5]. We show by way of a counterexample that for general
polytopes and open-loop controls, the invariance conditions are, however, no
longer necessary.

We consider the polytope P = co {v1, · · · , v5} ⊂ R
3 shown in Figure 2

with vertices v1 = (12 , 1, 1), v2 = (0, 1, 0), v3 = (1, 1, 0), v4 = (1, 0, 0), and
v5 = (0, 0, 0). The exit facet is F0 = co {v1, v2, v3}, depicted as a hatched region
in the figure. The restricted facets are F1 = co {v1, v2, v5}, F2 = co {v1, v3, v4},
and F3 = co {v1, v4, v5}. Also, h1 = (−2√

5
, 0, 1√

5
), h2 = ( 2√

5
, 0, 1√

5
), and h3 =

(0,− 1√
2
, 1√

2
).
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Figure 2: The invariance conditions are not solvable but the RCP is solvable by open-loop
controls.

The affine control system is

ẋ = Ax+Bu + a =





2 0 −1
0 2 0
1
10 0 1



 x+





1 0
0 1
0 0



u+





0
−2
1



 .

The set of possible equilibria of this system is O = {x ∈ R
3 | 1

10x1 + x3 = −1}.
It can be verified that P ∩O = ∅. This means that for all x ∈ P and all u ∈ R

2,
Ax+Bu+ a 6= 0.

We show that the invariance conditions of P at v1 are not solvable. We
observe that v1 ∈ F0 ∩ F1 ∩ F2 ∩ F3, so J(v1) = {1, 2, 3}. The condition (3) at
v1 states that there must exist u1 ∈ R

2 such that

y1 := Av1 +Bu1 + a ∈ C(v1) = {y ∈ R
3 | hj · y ≤ 0, j ∈ {1, 2, 3}

}

.

Letting u1 = (u11, u12) and substituting numerical values, we have y1 = (u11, u12, 2+
1
20 ). The condition h1 ·y1 ≤ 0 becomes u11 ≥ 1.025, and the condition h2 ·y1 ≤ 0
becomes u11 ≤ −1.025. Clearly these two conditions cannot be solved simul-
taneously for u11, so there does not exist u1 ∈ R

2 so that (3) holds at v1. We
conclude the invariance conditions of P are not solvable at v1.

Second, we show there exist open-loop controls solving the RCP on P . In
fact, we construct a piecewise affine feedback that solves the problem. First we
triangulateP using the triangulation T = {S1,S2}, where S1 = co {v1, v2, v3, v5}
and S2 = co {v1, v3, v4, v5} are two simplices, as shown in Figure 2. Sec-

ond, we split the control objective as S2
S2−→ F by affine feedback, where

F := S1 ∩ S2 = co {v1, v3, v5}, and S1
S1−→ F0 by affine feedback.
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It is well-known that the RCP is solvable by affine feedback on simplices
if and only if the invariance conditions of the simplex are solvable and the
unique affine feedback constructed from one choice of solution of the invariance
conditions does not admit a closed-loop equilibrium in the simplex [8, 13]. Since
P ∩ O = ∅, neither S1 nor S2 can have equilibria, so we must only construct
affine feedbacks satisfying the invariance conditions of S1 and S2, respectively.
For the vertices of S2 we select control values u1 = (−5, 10), u3 = (−12, 10),
u4 = (−12, 12), and u5 = (5, 12). Then we construct the unique affine feedback
u(x) on S2 satisfying u(vi) = ui, vi ∈ S2 [7]. Similarly, we construct the affine

feedback on S1 that achieves S1
S1−→ F0. We conclude by Theorem 9 of [11] that

the following discontinuous piecewise affine feedback solves the RCP on P .

u(x) =















[

−22 5 6
0 −2 0

]

x+

[

5
12

]

, x ∈ S1
[

−17 0 − 3
2

0 −2 0

]

x+

[

5
12

]

, x ∈ S2 \ S1 .

This feedback has a discontinuity along F , but it does not have sliding modes.
This is because u(x) satisfies the invariance conditions of S1, and so once solu-
tions initiated in S2 \ S1 enter S1, they cannot return to S2 \ S1 before leaving
P through F0.

Using this feedback solution of the RCP we can now understand how the
problem is solvable using open-loop controls. In particular, solutions starting
in S2 \ S1 near v1 cross through F = S1 ∩ S2 into S1 because S2 contains no
equilibrium and because F2 and F3 are restricted for S2. For example, to see
that F2 and F3 are restricted for S2 we verify the invariance conditions of S2 at
v1. We have y1 = Av1 + Bu(v1) + a) = (−5, 0, 2 + 1

20 ) where u(v1) = (−5, 10)
using the controller for S2 \ S1. Then we obtain

h2 · y(v1) =
1√
5
(2, 0, 1) · (−5, 0, 2 +

1

20
) =

1√
5
(−8 +

1

20
) ≤ 0

h3 · y(v1) =
1√
2
(0,−1, 1) · (−5, 0, 2 +

1

20
) =

1√
2
(−8 +

1

20
) ≤ 0 .

The invariance conditions of S2 at v3, v4 and v5 can similarly be verfied to show
that F2 and F3 are restricted using the affine feedback for S2 \ S1. Once the
solution starting in S2 \ S1 reaches F , the affine controller for S1 takes over.
This controller drives the solutions through F0, the only facet not restricted in
S1.

The proposed piecewise affine controller and corresponding open-loop con-
trols work despite the fact that the invariance conditions of P at v1 are not
solvable. The invariance conditions of P at v1 include two incompatible con-
straints, h1 · (Av1 +Bu1+a) ≤ 0 and h2 · (Av1+Bu1+a) ≤ 0, which cannot be
solved simultaneously for u1 ∈ R

2. Instead, using piecewise affine control these
constraints are split between S1 and S2. The constraint regarding h1 is part of
the invariance conditions of S1 at v1, while the constraint regarding h2 is part
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of the invariance conditions of S2 at v1.
The defect in this example appears to be that the vertex v1 is over-constrained

with regard to the invariance conditions because it belongs to too many re-
stricted facets of P . If we can devise a mathematical condition to limit the
number of restricted facets at each vertex of the polytope, then it may be possi-
ble to return to a situation when the invariance conditions are again necessary
for solving the RCP. The question that remains is: how can we ensure that the
structure of the polytope is such that no vertex is over-constrained with respect
to invariance conditions? We propose a solution in the next section.

4. Main Result

In this section we propose a suitable class of polytopes for which the invari-
ance conditions remain necessary conditions. To that end, an n-dimensional
polytope P is said to be simple if each k-dimensional face of P is contained in
exactly n−k facets [3]. Figure 1 shows an example of a two-dimensional simple
polytope.

Remark 4.1. If P is a simple polytope, then P has the following properties [3]:

(i) Each vertex of P is contained in exactly n edges.

(ii) Let F be a facet of P and v a vertex of P in F . Then there are exactly
n− 1 edges in F containing v.

Theorem 4.1. Let P be an n-dimensional simple polytope. If P P−→ F0 by
open-loop controls, then the invariance conditions (3) are solvable.

Proof. Define Y(x) :=
{

Ax+Bw + a | w ∈ R
m
}

. Let x0 ∈ P \ F0. We show
C(x0) ∩ Y(x0) 6= ∅. By assumption there exists an open-loop control µ(t) and a
time T > 0 such that φµ(t, x0) ∈ P for all t ∈ [0, T ]. Since µ(t) is an open-loop
control, by definition there exists c > 0 such that ‖µ(t)‖ ≤ c, for all t ∈ [0, T ].
Consider the set Yc(x) :=

{

Ax + Bw + a | w ∈ R
m, ‖w‖ ≤ c

}

. One can easily
show that both x 7→ Yc(x) and x 7→ Y(x) are upper semicontinuous. Now take
a sequence {ti | ti ∈ (0, T ]} with ti → 0. Since Yc(x) is bounded on P , there

exists M > 0 such that ‖φµ(ti, x0) − x0‖ ≤ Mti. Therefore {φµ(ti,x0)−x0

ti
} is

a bounded sequence and there exists a convergent subsequence (with indices

relabeled) such that limi→∞
φµ(ti,x0)−x0

ti
=: v. Since φµ(ti, x0) ∈ P , v ∈ TP(x0)

(see [6], p. 90). Now we show v ∈ Y(x0). We have

φµ(ti, x0)− x0

ti
=

1

ti

∫ ti

0

[

Aφµ(τ, x0) +Bµ(τ) + a
]

dτ . (4)

Taking the limit, we get

v = Ax0 + a+B lim
i→∞

1

ti

∫ ti

0

µ(τ)dτ ∈ Y(x0) .
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Note that the limit exists by passing to a subsequence, if necessary, because
µ is bounded on compact intervals. We conclude that Y(x0) ∩ TP(x0) 6= ∅,
x0 ∈ P\F0. Since TP(x0) = C(x0), x0 ∈ P\F0, it follows that C(x0)∩Y(x0) 6= ∅,
x0 ∈ P \F0 . In particular, the invariance conditions are solvable at vi ∈ P \F0.

Now consider vi ∈ F0. If vi ∈ O, then the invariance conditions are solvable
by selecting ui ∈ R

m such that Avi + Bui + a = 0. Instead, suppose vi 6∈ O.
Suppose by the way of contradiction that Y(vi) ∩ C(vi) = ∅. Then Y(vi) and
C(vi) are non-empty disjoint polyhedral convex sets in R

n. By Corollary 19.3.3
of [12], they are strongly separated. That is, there exists ǫ > 0 such that
infy∈Y(vi),z∈C(vi) ‖y − z‖ > ǫ. By the upper semicontinuity of x 7→ Y(x), there
exists δ > 0 such that if ‖x − vi‖ < δ, then Y(x) ⊂ Y(vi) + ǫ

2B. Because P
is a simple polytope, by Remark 4.1(i) vi ∈ F0 is the intersection of exactly n
edges, and by Remark 4.1(ii), n− 1 of these edges are contained in F0. Let vivj
be the edge that is not contained in F0. By definition of a simple polytope, vivj
is the intersection of exactly n− 1 facets. Since vivj is not contained in F0 and
the vertex vi ∈ vivj is contained in exactly n facets by definition of a simple
polytope, then the n− 1 facets whose intersection forms vivj are the restricted
facets of P at vi. This implies by the definition of J(x) that J(x) = J(vi), for
each x ∈ [vi, vj). Then by (1), we conclude that for all x ∈ [vi, vj), C(x) = C(vi).
Let x̄ ∈ (vi, vj) ∩ {x ∈ R

n | ‖x− vi‖ < δ}. Since x̄ ∈ (vi, vj), C(x̄) = C(vi) so
infy∈Y(vi),z∈C(x̄) ‖y − z‖ > ǫ. However, we also have Y(x̄) ⊂ Y(vi) + ǫ

2B which
implies C(x̄) ∩ Y(x̄) = ∅, a contradiction to C(x) ∩ Y(x) 6= ∅, x ∈ P \ F0.

Example 4.1. We return to the counterexample and identify the defect to be
that P is not simple - vertex v1 is contained in four facets. Therefore, Theorem
4.1 does not apply. Indeed, in this specific example solvability of the invariance
conditions at v1 is not necessary for solvability of RCP by open-loop controls.

5. Conclusion

In this note we have shown by way of a counterexample that, in contrast
with the case for continuous state feedback, the invariance conditions are not
necessary for solvability of RCP on polytopes by open-loop controls. We have
identified a suitable class of polytopes, simple polytopes, for which the invari-
ance conditions are necessary. An open problem is to find the largest class of
feedbacks needed to solve RCP on simple polytopes assuming it is solvable by
open-loop controls.
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