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Abstract— We consider a disturbance rejection problem for
discrete-time LTI systems with a known plant and unknown
exosystem, and we utilize adaptive internal models to solve
this problem. The main application is short-term visuomotor
adaptation, a subconscious brain process taking place over
repetitive trials and elicited by a visual error closely following
the execution of a movement. Our model is vetted by recovering
results from visuomotor experiments involving removal or loss
of measurements during adaptation.

I. INTRODUCTION

Visuomotor adaptation is a subconscious, “machine-like”

brain process taking place over repetitive trials and elicited

by a visual error closely following the execution of a

movement. Visuomotor adaptation is intended to calibrate

over a lifetime the mapping between what is seen and how

to move. As a means to expose the underlying computations

of this brain process, neuroscientists create experiments

that artificially perturb what is seen by the subject during

movement. Examples include saccades with an intersaccadic

step of the target [11]; the visuomotor rotation experiment

with fast arm reaches [29]; and throwing darts while looking

through prism glasses [18].

In prior work we proposed a model of visuomotor adapta-

tion based on adaptive internal models [6]. We also utilized

adaptive internal models to model the slow eye movement

systems [1], [2]. This paper presents an alternative design

to [6] that initiates an investigation of intermittent measure-

ments in neuroscience applications of regulator theory.

The paper starts by solving a regulator problem for

discrete-time LTI systems assuming the exosystem param-

eters are unknown, the plant parameters are known, and

the measurement is the error signal. Regulator designs

for discrete-time systems are fewer in number than their

continuous-time counterparts; a sample includes [22], [28],

[23], [16], [35]. In [4] additive sensor disturbances are

rejected using a self-tuning external model. A phase-locked

loop method was used in [7] to reject sinusoidal disturbances.

Deadbeat control is used in [8]. In [15] a more advanced

problem of estimating the number of frequencies in the

disturbance is considered. In [32] separate adaptation laws

are used for each unknown frequency of the disturbance.

We present a regulator design amenable as a framework

for neuroscience studies. Particularly, the design must be

able to recover behaviors of the studied motor system; e.g.

visuomotor adaptation does not exhibit deadbeat behavior or

frequency selective adaptation, etc.
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Next, we present a model of visuomotor adaptation that

extends the model in [6] in order to recover behaviors of

recent visuomotor experiments in which the error signal is

not present, is “ignored” by the subject, or is artificially

clamped at a fixed value unrelated to the subject’s movement.

Our model includes saturation in the control input, so we

provide a stability analysis of the resulting nonlinear system.

II. REGULATOR DESIGN

We present a discrete-time regulator design that may be

used as a template for developing a model of visuomotor

adaptation; the design is somewhat more general than what

is required in our application. Consider the discrete-time

system

x(k + 1) = Ax(k) +Bu(k) + Eζ(k) (1a)

ζ(k + 1) = Sζ(k) (1b)

e(k) = Cx(k) +Dζ(k) , (1c)

where x(k) ∈ R
n is the state, ζ(k) ∈ R

q is the exosystem

state, u(k) ∈ R is the input, and e(k) ∈ R is the regulated

output. Here Dζ(k) and Eζ(k) are disturbance signals. The

control objective is to find a regulator to make e(k) go to

zero asymptotically.

We impose the following standard assumptions:

(A1) (A,B) is a controllable pair;

(A2) (C,A) is an observable pair;

(A3) S has simple eigenvalues on the unit circle in the

complex plane;

(A4) det

[
A− λI B
C 0

]
6= 0 for all λ ∈ σ(S). Let (Π,Γ) be

the unique solution of the regulator equations

ΠS = AΠ+BΓ + E (2a)

0 = CΠ+D . (2b)

(A5) (Γ, S) is an observable pair;

(A6) Dimension q is interpreted as a known upper bound on

the order of the exosystem, while parameters (S,D,E) are

unknown;

(A7) Parameters (A,B,C) are known;

(A8) The measurement is e.

Remark 1: Assumptions (A1) and (A2) may be relaxed;

for instance, we may replace (A1) by (A,B) is stabilizable.

(A3) guarantees that reference and disturbance signals are

bounded. While the solution (Π,Γ) is unknown, (A4) as-

sumes it exists. (A5) is without loss of generality since one

can trim off the unobservable part of the exosystem without

affecting the plant. In (A6), the interpretation of q as an upper



bound on the exosystem order means the exosystem may be

overmodeled for a given disturbance. ⊳
In the sequel, let ε(k) represent any arbitrary exponen-

tially stable term. We say the SISO transfer function H(z)
is stable if its poles lie inside the unit circle in the complex

plane.

We develop a controller of the form

u(k) = us(k) + uim(k) , (3)

where us is for closed-loop stability, and uim is to satisfy the

internal model principle. First we design us. Define z(k) :=
x(k)−Πζ(k). Using (2) we obtain the error model

z(k + 1) = Az(k) +Bu(k)−BΓζ(k) (4a)

e(k) = Cz(k) . (4b)

Under Assumptions (A1) and (A2), we define the observer

ẑs(k + 1) = Aẑs(k) +Bus(k) + Ls(e(k)− Cẑs(k)) (5)

where Ls is selected so that (A−LsC) is Schur stable. Let

the estimation error be z̃s(k) := z(k)− ẑs(k). Then

z̃s(k + 1) = (A− LsC)z̃s(k) +B(uim(k)− Γζ(k)) .

Assuming we can design the internal model such that

(uim(k)−Γζ(k)) → 0 independently of the z̃s error dynam-

ics, then z̃s(k) → 0. Therefore, we choose us(k) = Kẑs(k)
such that (A+BK) is Schur stable in order to stabilize the

z dynamics.

Next we design uim. First, we transform the exosystem

according to the method in [23]. Let F be Schur stable

and (F,G) a controllable pair. Then σ(F ) ∩ σ(S) = ∅ and,

since (Γ, S) is an observable pair, there exists a coordinate

transformation w = Mζ such that in new coordinates, the

exosystem is

w(k + 1) = Fw(k) +Gd(k) (6a)

d(k) := ψw(k) , (6b)

where ψ = ΓM−1. Now we have an error model

z(k + 1) = Az(k) +Bu(k)−Bd(k) (7a)

e(k) = Cz(k) . (7b)

We build the internal model in two stages, beginning with

the state observer

ẑd(k + 1) = Aẑd(k) +Bu(k) + Ld(e(k)− Cẑd(k)) (8)

where we choose Ld such that Ad := A − LdC is Schur

stable. Next, define z̃d(k) := z(k)− ẑd(k). Then

z̃d(k + 1) = Adz̃d(k)−Bd(k) (9a)

df (k) := Cz̃d(k) (9b)

where df is the filtered disturbance. Letting Hd(z) :=
−C(zI −Ad)

−1B, one can write df = Hd(z) [d]. The next

result provides another realization of df ; see also [23].

Lemma 2: Consider a discrete signal d generated by the

exosystem (6). Define the filtered signal df := Hd(z) [d],
where Hd(z) is a stable scalar transfer function. Then df

can be expressed as

wf (k + 1) = Fwf (k) +Gdf (k) (10a)

df (k) = ψwf (k) + ε(k) . (10b)

Proof: Let Hw(z) = ψ(zI − F )−1G. Then d =
Hw(z)[d]. To account for initial conditions, we note that sta-

ble scalar transfer functions commute, modulo an exponen-

tially stable term. Thus we have df = Hd(z)[Hw(z)[d]] =
Hw(z)[Hd(z)[d]] + ε = Hw(z)[df ] + ε. A realization of

Hw(z)[df ] proves the result.

Remark 3: One can also show that wf = Hd(z)I[w] + ε,
where I denotes component-wise application of the filter. ⊳

Recalling that df (k) = e(k) − Cẑd(k), we complete the

internal model for the filtered disturbance using

ŵf (k + 1) = Fŵf (k) +G(e(k)− Cẑd(k)) . (11)

Define the estimation error w̃f (k) := wf (k)− ŵf (k). Using

(11) and Lemma 2, we get w̃f (k + 1) = Fw̃f (k) where

w̃f (k) → 0 exponentially since F is Schur stable. To show

that (8) and (11) form an internal model of d, we require the

following.

Lemma 4: Consider a discrete signal d generated by the

exosystem (6). Define the filtered signal df := Hd(z) [d]
with respective state wf , where Hd(z) is a stable scalar

transfer function. Suppose that no zero of Hd(z) is an

eigenvalue of S′ := F+Gψ. Then there exists a nonsingular

matrix Mf ∈ R
q×q such that wf = Mfw + ε and d =

ψfwf + ε with ψf = ψM−1
f .

Proof: By Remark 3, wf = Hd(z)I[w] + ε. Let

Hd(z) = N(z)
D(z) with N(z) and D(z) coprime polynomials.

Then D(z)I [wf ] = N(z)I [w] + ε. From (6) and (10), it

follows that D(S′)wf (k) = N(S′)w(k) + ε(k). We know

N(S′) is invertible since the roots of N(z) do not coincide

with the eigenvalues of S′. Similarly, D(S′) is invertible

because D(z) is Schur stable. Letting Mf = D−1(S′)N(S′)
we have our result.

To apply Lemma 4, we notice that because of (A4), no

zero of C(zI −A)−1B coincides with an eigenvalue of S′.

Since state feedback does not move the zeros of a scalar

transfer function, then also Hd(z) has the required property.

Now we have d(k) = ψfwf (k) + ε(k) = ψf ŵf (k) + ε(k).
Naturally, we define

uim(k) = ψ̂f (k)ŵf (k) , (12)

where ψ̂f (k) ∈ R
1×q is an estimate of ψf .

Next we must design the parameter adaptation process.

The error model (7) cannot be used for this purpose since

in general A may be unstable. Instead, we use the observer

(11) and invoke the discrete-time equivalent of the swapping

lemma [27].

Lemma 5: Let ψ : Z → R
1×q and w : Z → R

q be

discrete signals. Let H(z) := C(zI − A)−1B be a stable

scalar transfer function. Then

ψH(z)I [w]−H(z) [ψw]

= Hc(z)
[
zHb(z)

[
wT

]
(z − 1)[ψT]

]
,



where Hb(z) = (zI −A)−1B, and Hc(z) = C(zI −A)−1.

Using the discrete-time swapping lemma, we have

df = Hd(z)[d] = Hd(z)[ψf ŵf + ε] = ψfw + ε ,

where w := Hd(z)I[ŵf ]. Hence we define the augmented

error

e(k) := e(k)− (Cẑd(k) + ψ̂f (k)w(k))

= df (k)− ψ̂f (k)w(k)

= ψ̃f (k)w(k) + ε(k) ,

where ψ̃f (k) := ψf − ψ̂f (k). Finally, we choose the

parameter adaptation law

ψ̂f (k + 1) = ψ̂f (k) + γ(k)e(k)w(k)T (13a)

γ(k) =
γ

1 + w(k)Tw(k)
, (13b)

where γ(k) > 0 is the adaptation rate and γ ∈ (0, 2).

Theorem 6: Consider the system (1) satisfying Assump-

tions (A1)-(A8), and consider the regulator given in (3),

(5), (8), (11), (12), and (13). Suppose Acl := A + BK ,

As := A−LsC, and Ad := A−LdC are Schur stable. Then

ψ̂f (k) is bounded, ψ̃f (k)ŵf (k) → 0, and e(k) → 0.

Proof: We study the adaptive subsystem consisting of

e(k) = ψ̃f (k)w(k) + ε(k)

ψ̃f (k + 1) = ψ̃f (k)− γ(k)e(k)w(k)T .

To deal with the exponentially stable term ε(k), we note that

there exists a pair (Cε, Aε) with Aε Schur stable such that

ε(k + 1) = Aεε(k) and |ε(k)| ≤ |Cεε(k)|. For α > 0, let

Pε be positive definite and solve the discrete-time Lyapunov

equation AT
ε PεAε − Pε = −αI . Define the Lyapunov

function V (k) := ||ψ̃f (k)||2 + ε(k)TPεε(k). With some

algebra and Young’s inequality, we obtain

∆V (k) ≤ −γ′(k)e(k)2 − (α− ||Cε||
2)||ε(k)||2

γ′(k) := (2− γ)γ(k)

where γ′(k) > 0 and α is selected so that α > ||Cε||2.

We conclude ∆V (k) ≤ 0 and so ψ̂f (k) is bounded.

By the monotone convergence theorem, V (k) = V (0) +∑k

j=1 ∆V (j) converges and thus the divergence test tells us

that ∆V (k) → 0. Now we also know by (A3), (6), (10),

and the stability of Hd(z) that w(k), ŵf (k), and w(k) are

bounded. In turn, for any γ ∈ (0, 2), γ′(k) is bounded away

from zero, and so it must be that e(k) → 0.

By (A3) and (10), there exist matrix Mr ∈ R
q×(2s+1) and

vector ŵr(k) such that ŵf (k) =Mrŵr(k) + ε(k) and

ŵr(k) = (1, cos(ω1k), sin(ω1k), . . . , cos(ωsk), sin(ωsk))

with 0 < ωi < π, ωi 6= ωj for i 6= j, and 2s+ 1 ≤ q. Then

w = Hd(z)I [Mrŵr + ε] =MrHd(z)I [ŵr] + ε .

Since Hd(z) is stable, Hd(z)I [ŵr] = wr + ε, where

wr = (Hd(1), |Hd(e
jω1)| cos(ω1k + φ(ω1)),

|Hd(e
jω1)| sin(ω1k + φ(ω1)), . . .) ,

and φ(ωi) = ∠Hd(e
jωi). One can verify by direct calculation

that wr is stationary, i.e. its autocovariance Rwr
(k) exists;

see [26]. Moreover, it can be shown that

Rwr
(0) = diag

(
Hd(1)

2,
|Hd(e

jω1)|2

2
, · · · ,

|Hd(e
jωs)|2

2

)
.

The zeros of Hd(z) are the same as those of the plant C(zI−
A)−1B and by (A4), Hd(1) 6= 0, and |Hd(e

jωi )| 6= 0 for

i = 1, . . . , s. Therefore, Rwr
(0) is positive definite.

Now the augmented error is

e(k) = ψ̃f (k)Mrwr(k) + ε(k) =: ψ̃r(k)wr(k) + ε(k) ,

and we have established that ψ̃r(k)wr(k) → 0, ∆ψ̃r(k) =
∆ψ̃f (k)Mr → 0, and Rwr

(0) > 0. Then we can apply the

discrete-time equivalent of the proof of Theorem 2.7.4 in

[27] to conclude ψ̃r(k)Rwr
(0)ψ̃r(k)

T → 0 and ψ̃r(k) → 0.

This implies ψ̃f (k)ŵf (k) = ψ̃r(k)ŵr(k) + ε(k) → 0.

Recalling z̃s(k) = z(k)− ẑs(k), one has

z(k + 1) = Aclz(k)−B(ψ̃f (k)ŵf (k) +Kz̃s(k)) + ε(k)

z̃s(k + 1) = Asz̃s(k)−Bψ̃f (k)ŵf (k) + ε(k) .

It follows z̃s(k) → 0 and z(k) → 0. Finally, e(k) → 0.

III. MODEL OF VISUOMOTOR ADAPTATION

To arrive at a model of visuomotor adaptation we apply

the previous regulator design by specifying the open-loop

model, the stabilizing controller us, the adaptive internal

model, and the parameter adaptation law. We make three

simplifying assumptions. First, we focus on motor adaptation

tasks regarding only one degree of freedom of movement; for

instance, horizontal movement of the eye, hand angle relative

to a reference angle in a horizontal plane, the horizontal

angle of a dart thrown by a subject, and so forth. This

restriction may be removed in more advanced versions of

the model. Second, we assume linear time-invariant open-

loop models due to their known efficacy to model short-

term motor adaptation phenomena [31]. Third, we focus on

constant disturbances, since these dominate in experiments;

see [3].

Consider a scalar plant model (1a). It provides a high-level,

abstract description of the quantitative change in movement

over successive trials of a single degree of freedom of the

body. Integer k is the trial number, x(k) ∈ R is the state of

that single degree of freedom at the end of the k-th trial, u(k)
captures the overall motor command, and Ax(k) models

a retention or memory mechanism of the state from the

previous trial. In visuomotor adaptation, the error signal (1c)

is a visual error observed by the subject shortly following

the completion of a trial. It typically takes the form

e(k) = r(k) − x(k)− d , (14)



where r(k) represents a desired target position for the k-th

trial, and d is a constant additive visual disturbance at the k-

th trial. We assume w.l.o.g. that r(k) = 0. Comparing to (1c),

we have C = −1 and d = −Dζ(k). Since all measurements

in visuomotor adaptation are assumed to be visual, we may

assume E = 0 in (1a); that is, no disturbance enters directly

in the plant. Notice that since all disturbances are constant,

we will have q = 1 and S = 1 in (1b).

With the open-loop model in place, next we define the sta-

bilizing controller and adaptive internal model. It is helpful

to consider the error model, derived from (14):

e(k + 1) = Ae(k)−Bu(k) + (A− 1)d . (15)

Since e(k) is available for measurement, the stabilizing

observer (5) that generates ẑs is not required. We take

us(k) = Ke(k) where K is such that |A − BK| < 1.

The adaptive internal model is given in (8) and (11). Define

ê(k) := Cẑd(k). This notation suggests that df (k) = e(k)−
ê(k) may be interpreted as a prediction error [30]. Using

this notation, (8)-(11) become:

ê(k + 1) = Aê(k)−Bu(k)− Ld(e(k)− ê(k))

ŵf (k + 1) = Fŵf (k) +G(e(k)− ê(k)) .

Finally, we must specify the parameter adaptation law.

Visuomotor adaptation can be differentiated as short-term

adaptation taking place over minutes, and long-term adap-

tation taking place over days and weeks [25]. We interpret

short-term adaptation in terms of disturbance rejection, with

the dominant behavior arising from the dynamics of ŵf .

Long-term adaptation is known to regard adaptation to

changes in plant parameters [25]. Because we only model

short-term adaptation, we assume (8) already utilizes the

correct values of A and B. Given that we restrict the model

to constant disturbances (q = 1), we can also assume that

ψ̂f has already adapted to its correct value, ψf = 1−Ad

B
ψ.

Therefore, we take uim(k) = ψf ŵf (k).
In summary, our model of visuomotor adaptation is

x(k + 1) = Ax(k) +Bu(k) (16a)

e(k) = −x(k)− d (16b)

ê(k + 1) = Aê(k)−Bu(k)− Ld(e(k)− ê(k)) (16c)

ŵf (k + 1) = Fŵf (k) +G(e(k)− ê(k)) (16d)

u(k) = Ke(k) + ψf ŵf (k) . (16e)

A. Simulations

To verify the suitability of this model, we consider the

six standard behaviors of visuomotor adaptation [31]: sav-

ings, reduced savings, anterograde interference, spontaneous

recovery, rapid unlearning, and rapid downscaling. These

behaviors have been characterized in terms of the transient

response of a stable linear system in [6]. Our simulations

focus on the visuomotor rotation experiment, one of the most

extensively investigated experiments regarding visuomotor

adaptation [29]. A subject rapidly moves a cursor on a

computer screen from a start position through a target disk

placed at a zero reference angle. In this case, x(k) is the hand

0 50 100 150 200
Reach Index

-30

-20

-10

0

10

20

30

40 Disturbance
Hand Angle

0 5 10 15 20 25
Reach Index

0

5

10

15

20

25

30

35

H
an

d 
A

ng
le

 (
de

g)

Learning
Relearning

Fig. 1: Savings using model (16).
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Fig. 2: Anterograde interference using model (16).

angle (in degrees) at the end of the reach; y(k) = x(k) + d
is the cursor angle at the end of the reach; and d is a

constant disturbance (in degrees) added to the hand angle

to generate the cursor angle. We choose parameter values:

A = 0, B = 1, S = 1, F = 0.9, G = 0.1, K = 0.25,

Ld = 0, and ψf = ψ = (1 − F )/G. The assumption that

A = 0 means that the brain does not use prioprioception

from the muscles of the arms to remember the hand angle

from the previous trial. This assumption may be modified as

needed when considering other sensorimotor systems. The

assumption B = 1 simply normalizes the effect of the motor

command.

Figure 1 depicts savings, in which a subject learns a

disturbance of d(k) = −30◦ over two learning blocks of

trials separated by a short block of trials with d(k) = 30◦.

The right figure shows that savings occurred because the rate

of adaptation in the second learning block is faster than in the

first. Figure 2 shows anterograde interference, in which the

rate of adaptation to a disturbance d(k) = 30◦ in a second

learning block is reduced following a learning block with

the opposite disturbance of d(k) = −30◦. Figure 3 shows

spontaneous recovery, in which the hand angle rebounds to

a positive value even with zero disturbance during a washout

block of trials, when the washout block follows a learning

block of trials with non-zero disturbance. Our model also

recovers the other three behaviors; these are omitted due to

space constraints.

IV. MEASUREMENT-FREE CASE

One takeaway of this paper is that if we interpret visuomo-

tor adaptation as a disturbance rejection problem, then any

regulator design that solves the disturbance rejection problem

may serve as a starting point for modeling this adaptation

process. In our previous work [6] we utilized a regulator

design from [28] as well as ideas from [32] to construct a

model. Here we utilize a regulator design inspired by [23] to
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derive an alternative model with equivalent behavior. The so-

called standard behaviors we invoked to validate our model

represent the experimental record circa 2006 [31]. Since that

time neuroscientists have devised new experiments to further

unveil the computations in the brain. These new experiments

explore the effect of removal of the measurement e(k) in so-

called no visual error trials; the effect of verbal instructions

to the subject to ignore the presented visual error; and the

effect of artificially clamping the visual error in so-called

error clamp trials. Such experiments raise questions for

regulator theory on how best to handle a loss of measurement

of e(k). To explore further, we invoke a third regulator design

suggested by the error model (15).

Because (15) has relative degree 1, one may directly

construct a Kreisselmeier observer to recover the unknown

disturbance [12], [13]. Thus, we may consider a third model

of visuomotor adaptation given by

x(k + 1) = Ax(k) +Bu(k) (17a)

e(k) = −x(k)− d (17b)

w0(k + 1) = Fw0(k) + FGe(k) (17c)

w1(k + 1) = Fw1(k)−Ge(k) (17d)

w2(k + 1) = Fw2(k)−Gu(k) (17e)

ŵ(k) = w0(k) +Ge(k) +Aw1(k)−Bw2(k) (17f)

u(k) = us(k) + uim(k)

= Ke(k) +
ψ

B
ŵ(k) . (17g)

One can show that when Ad = A+Ld is selected to be zero

in (16), then (16) and (17) are equivalent.

Many experimental studies have been conducted on the

effect of removing the visual error during no visual error

trials following a learning block of trials [10], [20]. The

major finding is that in the no visual error block, the state

x(k) slowly returns to the zero reference position of the

target. Figure 2 of [10] shows that the rate of decay to zero

is faster in a washout W block when d(k) = 0, than in a no-

cursor N block when e(k) is removed. From a mathematical

perspective, removal of the error e(k) is equivalent to zero

error and would result in the estimate ŵ(k) sustaining its

value at the end of the learning block. Since this does not

occur, we deduce that the brain must distinguish zero error

from no error measurement. Considering (17), a reasonable

way to achieve a slow decay of ŵ(k) when e(k) is not

presented at the end of a trial is to remove u(k) from (17e).

The measurement-free model becomes:

x(k + 1) = Ax(k) +Bu(k) (18a)

e(k) = −x(k)− d (18b)

w0(k + 1) = Fw0(k) (18c)

w1(k + 1) = Fw1(k) (18d)

w2(k + 1) = Fw2(k) (18e)

ŵ(k) = w0(k) +Aw1(k)−Bw2(k) (18f)

u(k) =
ψ

B
ŵ(k) . (18g)

If A and F are Schur stable, then this system is exponentially

stable.

Despite the appeal of the foregoing measurement-free

model, the experimental evidence suggests the brain utilizes

several other strategies to manage unavailable or unreliable

measurements. First, it has been repeatedly observed in

experiments that a small steady-state error proportional to the

size of the disturbance persists, despite potentially hundreds

of trials [34]; this phenomenon also arises in the saccadic

system. Second, in certain experimental conditions a satura-

tion in the response as a function of error size is observed

[24], [17], [20], [9]. Third, when subjects are instructed to

ignore the presented visual error, the response exhibits a

jump on the next trial, suggesting that certain error-driven

computations in the brain can be disabled at will. Indeed,

it is known that subjects are capable to deploy so-called

feedforward strategies when they are explicitly instructed to

do so (even if a visual error is presented) [19].

Based on these experimental observations, we augment

the model (17) with linear and saturated zones as well as the

possibility to utilize feedforward strategies:

u(k) = Ke(k) +Kwuim(k) (19a)

u(k) = uf(k) +Kwuim(k) (19b)

uσ(k) = σ(u(k)) , (19c)

where σ(·) can be any suitable saturation function, and

uim(k) is given in (17g). The controller (19a) is applied

under nominal conditions when a visual error is available.

The controller (19b) is deployed when either no visual error

is available or the subject is presented with a measurement

at the end of a trial, but is instructed to ignore it. The

subject then disables the error feedback component Ke(k)
and instantaneously switches to a (remembered) feedforward

strategy uf (k). Notice that we assume the subject does not

have the efficacy to disable uim, as we regard this component

as capturing a subconscious brain process. Finally, during so-

called error clamp trials (explained below), we invoke (19c)

to ensure that signals remain bounded.

Remark 7: Importantly, we have scaled uim in (19a)-

(19c) by a factor 0 < Kw < 1 in order to capture a

tradeoff between the regulation and stability requirements



of the regulator problem. When Kw = 1, then the regulation

requirement is satisfied with zero steady-state error. As

Kw is decreased, the steady-state error increases, but the

stability margin of the system obtained by simply removing

e(k) from (17) improves. In this manner, we are able to

capture both the steady-state errors observed in experiments

as well as the slow decay during no visual error trials. This

mathematical device of employing a parameter Kw to induce

non-zero steady-state errors is a heuristic, not driven by any

neuroscience or formal considerations. Indeed, we suspect

that a deeper (not yet modeled) phenomenon may be at

play resulting in non-zero steady-state errors in visuomotor

adaptation. In sum, our invocation of Kw is for expediency,

to be able to propose a simple yet plausible model. ⊳

A. Stability Analysis

Due to the modifications introduced in (19), it is necessary

to revisit the question of closed-loop stability. Stability

analysis using (19a) or (19b) is straightforward. Here we

focus on the saturated controller (19c) during error clamp

trials, when a saturated response arises [20], [9]. These are

trials in which the experimenter has artificially clamped the

value of the presented visual error e(k) to a fixed value e.
In this case the model (17) becomes

x(k + 1) = Ax(k) +Bσ(u(k)) (20a)

ŵ(k + 1) = Fŵ(k) +BGσ(u(k)) + c1 (20b)

u(k) = Ke+Kwŵ(k) , (20c)

where c1 := G(1 − A)e and Kw := Kw
ψ
B

. We assume A
and F are Schur stable, F,B,G > 0, and 0 < Kw < 1.

Then F +BGKw = F +GψKw is also Schur stable. Note

that the value of K can be arbitrary. In addition, we assume

σ(·) has the form

σ(u) =





−u , u < −u
u , −u ≤ u ≤ u
u , u > u ,

where u > 0. Using this saturation model, (20) is a switched

system with state-dependent switching among three affine

subsystems.

First we study stability of (20b). Define f(ŵ) := Ke +
Kwŵ and u = f(ŵ). Also define the linear and saturated

zones:

L :=
{
ŵ ∈ R | |f(ŵ)| ≤ ū} (21)

S+ :=
{
ŵ ∈ R | f(ŵ) > ū

}
(22)

S− :=
{
ŵ ∈ R | f(ŵ) < −ū

}
. (23)

The behavior of (20b) can be characterized in terms of a set

P :=

{
ŵ ∈ R |

−BGū+ c1
1− F

≤ ŵ ≤
BGū+ c1
1− F

}
.

Lemma 8: Set P is attractive under (20b).

Proof: The solution of (20b) is given by ŵ(k) =
F kŵ(0)+

∑k−1
i=0 F

k−i−1(BGσ(u(i))+c1). Upper and lower

bounds on ŵ(k) are given by ŵ(k) ≤ F kŵ(0) + (BGū +
c1)

∑k−1
i=0 F

k−i−1, and ŵ(k) ≥ F kŵ(0) + (−BGū +

c1)
∑k−1

i=0 F
k−i−1. Since 0 < F < 1 , both upper and lower

sequences are convergent. Hence,

−BGū+ c1
1− F

≤ lim
k→+∞

ŵ(k) ≤
BGū + c1
1− F

.

It immediately follows that P is attractive.
Lemma 9: For every ε ≥ 0, the set

Pε :=
{

ŵ ∈ R |
−BGū+ c1

1− F
− ε ≤ ŵ ≤

BGū+ c1

1− F
+ ε

}

is positively invariant under (20b).

Proof: Fix ε ≥ 0 and let ŵ(k) ∈ Pε. We show that

ŵ(k + 1) ∈ Pε. Since ŵ(k) ∈ Pε,
−BGū+c1

1−F − ε ≤ ŵ(k) ≤
BGū+c1

1−F + ε. Using (20b) we have

ŵ(k + 1) ≤ F

(
BGū+ c1
1− F

+ ε

)
+BGū+ c1

=
BGū+ c1
1− F

+ Fε ≤
BGū + c1
1− F

+ ε .

We can similarly bound ŵ(k + 1) from below to obtain
−BGū+c1

1−F −ε ≤ ŵ(k+1) ≤ BGū+c1
1−F +ε. That is, ŵ(k+1) ∈

Pε.
Lemma 10: For sufficiently small ε > 0, Pε ∩ S+ and

Pε ∩ S− are positively invariant under (20b).

Proof: We consider only Pε ∩S+, as the other case is

analogous. Suppose ŵ(k) ∈ Pε ∩ S+. By Lemma 9, ŵ(k +
1) ∈ Pε. Hence, we need only show ŵ(k + 1) ∈ S+. Since

ŵ(k) ∈ S+, f(ŵ(k)) > ū. Then σ(u(k)) = ū and there

exists δ > 0 such that f(ŵ(k)) > ū + δ. Using (20b) we

have ŵ(k + 1) = Fŵ(k) +BGū + c1. Then f(ŵ(k + 1))

= Ke+Kwŵ(k + 1)

= f(ŵ(k)) +Kw ((F − 1)ŵ(k) +BGū+ c1)

> ū+ δ +Kw

(
(F − 1)(

BGū + c1
1− F

+ ε) +BGū+ c1

)

= ū+ δ +Kw(F − 1)ε.

For a sufficiently small ε > 0, we have δ+Kw(F −1)ε > 0.

Then f(ŵ(k + 1)) > ū so ŵ(k + 1) ∈ S+, as required.

Lemma 8 shows that for all initial conditions, ŵ(k)
approaches P asymptotically. Lemma 10 shows that when

ŵ(k) enters a sufficiently small ε-neighborhood of P and

it enters S+ or S−, it remains there. Hence, we have three

cases: (a) ŵ(k) eventually enters S+ and stays there; (b)

ŵ(k) eventually enters S− and stays there; or (c) ŵ(k)
eventually remains in L.

Theorem 11: Consider the system (20). Suppose A, F ,

and F + BGKw are Schur stable, and B,G, F,Kw > 0.

For each initial condition, the solution of (20) converges to

one of three exponentially stable equilibria.

Proof: We consider each of the cases (a)-(c). (a,b) If

ŵ eventually remains in S±, (20) becomes

x(k + 1) = Ax(k)±Bū (24a)

ŵ(k + 1) = Fŵ(k)±BGū + c1 . (24b)

Since A and F are Schur stable, the equilibrium of (24) is

exponentially stable.
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Fig. 4: Savings using model (17) with (19a).

0 50 100 150
Reach Index

-30

-20

-10

0

10

20

30
Disturbance
Hand angle

0 10 20 30 40 50 60
Reach Index

0

5

10

15

20

25

30

35

H
an

d 
A

ng
le

 (
de

g)
Learning
Unlearning

Fig. 5: Anterograde interference using model (17) with (19a).
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Fig. 6: Spontaneous recovery using model (17) with (19a).

(c) If the state ŵ eventually remains in L, the dynamics

of (20) can now be expressed as

x(k + 1) = Ax(k) +B(Ke+Kwŵ(k)) (25a)

ŵ(k + 1) = (F +BGKw)ŵ(k) +BGKe+ c1. (25b)

Since A and F + BGKw are Schur stable, the equilibrium

of (25) is exponentially stable.

B. Simulations

First we verify that the model (17), with (17g) replaced

by (19a), recovers the six standard behaviors of visuomotor

adaptation. The parameter values are A = 0, B = 1, S = 1,

F = 0.9, G = 0.1, ψ = 1, K = 0.25, and Kw = 0.9.

Figures 4-6 show the results for savings, anterograde interfer-

ence, and spontaneous recovery, respectively; the other three

behaviors are not shown. When comparing to Figures 1-3,

we observe the behavior is qualitatively the same, except for

the steady-state value of the hand angle within blocks of

trials. Using the modified controller (17g), we observe that

a steady-state error persists due to the choice Kw < 1.

Second, we consider experiments that compare the rate of

decay to zero of the hand angle during a washout block and
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Fig. 7: No visual error v.s. washout trials.

a no visual error block [10]. Figure 7 shows the results using

model the (17), recovering the findings of [10].

Finally, we consider the non-zero error clamp experiments

reported in [20], [9]. In these experiments, the cursor is

presented at a fixed, non-zero angle e unrelated to the

subject’s movement, but the subject is instructed to ignore

the cursor. In this case, we posit the subject switches to

a feedforward strategy (19b) with uf (k) = 0. This motor

command represents an ideal (but non-robust) remembered

strategy to reach to a target at r(k) = 0. We further posit

the subject is unable to disable the component uim(k) in the

motor command, as it corresponds to a subconscious (so-

called implicit) brain process.

Experimental results exhibit nonlinear effects which are

difficult to reproduce with a linear controller. Also, they

consistently show that whether the response is saturated

depends on the size of the clamped error value e. For

small clamp values e = {0, 1, 1.75, 3.5}, the response varied

proportionately to the clamp value. For large values e =
{6, 10, 15, 45}, the hand angle saturates at around 20◦. Our

stability analysis (with K = 0) tells us that the closed-loop

system in the saturated case when the subject ignores the

cursor is stable. Results are depicted in Figures 8-9 for an

experiment with 10 baseline trials, 70 error clamp trials, 5
no cursor trials, and 5 washout trials. The saturation function

is σ(u) = u tanh(u/10) with u = 20. These simulations

recover the experimental results obtained in [20], [9].

V. CONCLUSION

We presented a regulator design for discrete-time LTI

systems with a known plant and unknown exosystem, and

we derived from it a model of visuomotor adaptation that

recovers the standard behaviors of visuomotor adaptation.

Motivated by a desire to provide neuroscientists with a

more comprehensive model, we incorporated several brain

strategies to manage unavailability of the visual error, we

analyzed stability of the modified model, and we showed

the model recovers new nonlinear behaviors discovered in

recent experiments.

A next step is to model long-term adaptation, thus remov-

ing the assumption that the plant parameters are known. A

deeper study of regulator theory under intermittent measure-

ments targeted to neuroscience applications is also warranted.
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