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Abstract—The paper studies stability of a class of
discrete-time switched systems under arbitrary switching
in which each subsystem has a different equilibrium. We
extend the concept of a common quadratic Lyapunov func-
tion in order to characterize asymptotic stability of a set
that contains all the equilibria. The results are applied to
a model of visuomotor adaptation to analyze boundedness
of solutions when the visual error measurement is intermit-
tent.

Index Terms— Switched systems, hybrid systems, Lya-
punov methods

I. INTRODUCTION

A
switched system consists of a family of dynamic sub-

systems and a switching signal that activates one system

at each (discrete or continuous) time. Switched systems have

been extensively studied under the assumption that there is a

single equilibrium shared by all the subsystems [9]. More re-

cently researchers have begun investigating switched systems

with multiple equilibria due to their relevance in applications

such as walking robots [16], [21], aerial robots [4], planning

multiple robotic arms [5], power management in wireless

networks [1], and modeling of non-spiking neurons [12]. Our

interest arises from the application of regulator theory to

certain problems of neuroscience [3], [6], [7] in which the error

measurement driving disturbance rejection arrives from the

environment and can be intermittent. Intermittency of the error

signal results in switching between subsystems with different

equilibria.

Stability of switched systems with multiple equilibria ap-

pears to have been first formulated in [2]. They developed

a Lyapunov-based analysis method for continuous-time non-

linear systems to show that trajectories globally converge

to a set containing all equilibria, so long as the switching

signal satisfies a dwell-time constraint. The method of [2] was

extended to switched systems with multiple invariant sets in

[4]. Using the same set construction as in [2], the authors

in [16] showed that for discrete-time systems with a dwell-

time constraint, there exists a set containing all equilibria

such that if initial conditions start in this set, then solutions

remain in a larger set. Continuous and discrete-time switched

Date of Submission. Supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

Dept. of Electrical and Computer Engineering, University of Toronto,
Toronto ON Canada (e-mail: broucke@control.utoronto.ca).

systems with disturbances were studied in [21]. The authors

show the ultimate boundedness of solutions under bounded

disturbances assuming each subsystem is globally input-to-

state stable. They also provide a practical stability result

when the equilibria of the subsystems are locally exponentially

stable. In both cases, an average dwell-time constraint is im-

posed on the switching signal. Finally, several related studies

examine particular classes of switched systems. Continuous-

time nonlinear systems in which the equilibrium, but not

the vector field, is switched were considered in [13], while

continuous and discrete-time positive linear switched systems

were analyzed in [10], [11] respectively.

Most prior work on systems with multiple equilibria as-

sumes the switching signal satisfies a dwell-time constraint.

While this assumption is reasonable in applications such as

walking robots where time must pass between transitions

between gaits, the assumption is less relevant in neuroscience

applications in which switching arises from exogenous, inter-

mittent measurements. This paper provides the first stability

results, to our knowledge, for discrete-time nonlinear systems

with multiple equilibria without imposing a dwell-time con-

straint. The concept of a common quadratic Lyapunov function

is extended to systems with multiple equilibria. Starting from

the same set construction as in [2], we show the existence of a

positively invariant set containing all equilibria. Then we use

a slightly different construction to obtain a (possibly larger)

positively invariant set that is also globally asymptotically

stable. Both results do not assume any dwell-time constraints.

The results are applied to a model of visuomotor adaptation,

showing that solutions remain bounded under intermittent

measurements [7].

II. PROBLEM FORMULATION

Let N be a positive integer, and define the index set P :=
{1, . . . , N}. Consider the family of discrete-time systems

x(k + 1) = fp(x(k)) p ∈ P . (1)

where x ∈ R
n and fp : Rn → R

n is continuous. We assume

for each p ∈ P there exists a unique fixed point x⋆p ∈ R
n

such that x⋆p = f(x⋆p). In the sequel we associate the system

x(k + 1) = fp(x(k)) with its index p. A map σ : Z+
0 → P

is called a switching signal for (1). We denote by {s1, s2, ... :
si > 0} the switching times; that is, σ(si) 6= σ(si − 1) for all

i ∈ Z
+, and σ(k) = σ(k − 1), otherwise. Associated with a



switching signal σ is an integer τd ≥ 1 called the dwell-time,

corresponding to the minimum number of steps between two

successive switches in σ; that is, σ(si + k) = σ(si) for all

k < τd. A switched system is given by

x(k + 1) = fσ(k)(x(k)) , (2)

where σ : Z+
0 → P is any switching signal for (1).

Definition 1: We say the continuous function V : Rn → R

with the form V (x) = x⊺Px is a common quadratic Lyapunov

function of (1) if P ∈ R
n×n is symmetric, positive definite,

and for each p ∈ P , Vp(x) := V (x − x⋆p) is an exponential

Lyapunov function for system p ∈ P ; that is, there exist two

class K∞ maps χp,1 and χp,2 and 0 < ǫp < 1 such that for

all x ∈ R
n

χp,1(‖x− x⋆p‖) ≤ Vp(x) ≤ χp,2(‖x− x⋆p‖) (3a)

Vp(fp(x)) ≤ ǫpVp(x) . (3b)

Problem 1: Consider the switched system (2) with common

quadratic Lyapunov function. We want to show there exists a

compact set Ω containing all equilibria {x⋆p} such that Ω is

positively invariant and globally asymptotically stable under

the switched dynamics (2) with any switching signal σ.

III. STABILITY WITH DWELL TIME

In this section we review existing results from [2], [16], as

these provide a foundation for our new results. Consider the

family of discrete-time systems (1) and suppose each system

p ∈ P has an exponential Lyapunov function. Define

ǫ := max
p∈P

{ǫi} . (4)

Let c > 0. For each p ∈ P , define the sublevel set

Ωp(c) := {x ∈ R
n | Vp(x) ≤ c} , (5)

and define their union

Ω(c) :=
⋃

p∈P
Ωp(c) . (6)

Next we define constants

ωp(c) := max
x∈Ω(c)

Vp(x) (7a)

ωmax(c) := max
p∈P

ωp(c) (7b)

ωmin(c) := min
p∈P

ωp(c) . (7c)

Finally, define the sets

Mp(c) := {x ∈ R
n | Vp(x) ≤ ωp(c)} , (8)

and

M(c) :=
⋃

p∈P
Mp(c) ,M0(c) :=

⋂

p∈P
Mp(c) . (9)

The set Mp(c) is the smallest sublevel set of Vp that contains

the set Ω(c). Figure 1 shows an example with two subsystems.

Remark 1: (i) By (3) each Vp is radially unbounded, so

the sublevel sets Ωp(c) and Mp(c) are compact. It fol-

lows that Ω(c), M(c) and M0(c) are compact. Moreover,

the continuous function Vp attains its maximum on Ω(c),
implying that ωp(c) is well-defined.

Fig. 1: The sets Ωp & Mp for a second order switched system

with two subsystems.

(ii) For each c > 0, Ω(c) ⊂ M0(c). For if y ∈ Ω(c), then for

each p ∈ P , Vp(y) ≤ ωp(c) = maxx∈Ω(c) Vp(x). Thus,

y ∈ Mp(c) for each p, so y ∈ M0(c).

(iii) By definition of Ω(c), ωp(c) ≥ c for each p ∈ P , and

ωmin(c), ωmax(c) ≥ c.

(iv) By (ii), for all c > 0, M0(c) 6= ∅. Also M(c) is

connected since it is the union of connected sets whose

intersection M0(c) is non-empty. ⊳

The main result in the literature regards positive invariance

of M(c) under any switching signal that satisfies a lower

bound on the dwell-time assuming solutions start in M0(c).

Theorem 1 ([16]): Consider the family of discrete-time

systems (1), each with a unique fixed point x⋆p, p ∈ P . Let

Vp : R
n → R be an exponential Lyapunov function for system

p ∈ P . Suppose that for every c > 0, there exists µ(c) > 1
such that for all p, q ∈ P and x ∈ R

n \ Ω(c),

Vp(x)

Vq(x)
≤ µ(c) . (10)

Then for any initial condition x(0) ∈ M0(c) and any switch-

ing signal σ with dwell-time τd satisfying

τd ≥
log(µ(c)ωmax(c)

ωmin(c)
)

log(1
ǫ
)

, (11)

the solution of (2) starting at x(0) satisfies x(k) ∈ M(c) for

all k ≥ 0.

Formula (11) is equivalent to the statement that µ(c)ǫτd is

bounded above by ωmin(c)/ωmax(c). Then by (10), it can be

shown that at switching times si, the state x(si) can not be

outside the set M0(c). Between switching times, the Lyapunov

function of the current subsystem will decrease, thus keeping

the state x(k) inside the set M(c).

Example 1: When the dwell time requirement is violated,

then the previous result fails. Consider the discrete-time

switched system

x(k + 1) =

{

A1x(k) + b1 k is even

A2x(k) + b2 k is odd ,
(12)



where x(k) ∈ R
2, and

A1 =

[

0.9 1

0 0.9

]

, A2 =

[

0.9 0

1 0.9

]

, b1 =

[

0.1
0

]

, b2 =

[

0

0.1

]

.

The equilibria are x⋆1 = (1, 0) and x⋆2 = (0, 1). Letting y(k) =
x(2k), the switching rule implies y evolves as

y(k + 1) = A2A1y(k) +A2b1 + b2 .

Since σ(A2A1) = {0.28, 2.34}, y(k) and x(k) will grow

unbounded even though each subsystem is stable. ⊳

IV. EXISTENCE OF A POSITIVELY INVARIANT SET

Consider again the switched system (2). Suppose that V :
R
n → R is a common quadratic Lyapunov function of (2).

For any c > 0, let ǫ, ωp(c) , ωmax(c) and ωmin(c) as well as

the sets Ωp(c), Ω(c), Mp(c) and M0(c) be defined as above

with Vp(x) = V (x − x⋆p), p ∈ P . To show the existence

of a positively invariant set containing all equilibria, we first

show that assumption (10) of an upper bound on the ratio

Vi(x)/Vj(x) may be removed.

Lemma 2: Consider the switched system (2) with common

quadratic Lyapunov function V such that Vp(x) = V (x− x⋆p)
for each p ∈ P . Let c > 0. The following supremum exists:

µ(c) := sup
i,j∈P,x∈Rn\Ω(c)

Vi(x)

Vj(x)
. (13)

Moreover, limc→∞ µ(c) = 1.

Proof: Consider any pair i, j ∈ P and any x ∈ R
n. We

have

Vi(x) = (x− x⋆i )
⊺P (x− x⋆i )

= (x− x⋆j + x⋆j − x⋆i )
⊺P (x− x⋆j + x⋆j − x⋆i )

= (x− x⋆j )
⊺P (x− x⋆j ) + 2(x⋆j − x⋆i )

⊺P (x− x⋆j )

+ (x⋆j − x⋆i )
⊺P (x⋆j − x⋆i ) .

Since P is symmetric positive definite, ‖P‖ =
√

λmax(P ⊺P ) = λmax(P ), where λmax(P ) is the maximum

eigenvalue of P . Using the Cauchy Schwarz inequality, we

have

(x⋆j − x⋆i )
⊺P (x− x⋆j ) ≤ ‖x⋆j − x⋆i ‖ ‖P (x− x⋆j )‖

≤ λmax(P )‖x⋆j − x⋆i ‖ ‖x− x⋆j‖ .

Then we have

Vi(x) ≤ Vj(x) + 2λmax(P )‖x⋆j − x⋆i ‖ ‖x− x⋆j‖
+ (x⋆j − x⋆i )

⊺P (x⋆j − x⋆i ) .

Because P is symmetric, λmin(P )‖x − x⋆j‖2 ≤ Vj(x), or

equivalently ‖x− x⋆j‖ ≤
√

Vj(x)/λmin(P ). Thus, we get

Vi(x) ≤ Vj(x) + αij

√

Vj(x) + βij ,

where

αij := 2
λmax(P )
√

λmin(P )
‖x⋆j − x⋆i ‖ ≥ 0 ,

and βij := (x⋆j − x⋆i )
⊺P (x⋆j − x⋆i ) ≥ 0. Define the constants

α := maxi,j∈P αij and β := maxi,j∈P βij . We conclude that

for any pair i, j ∈ P and any x ∈ R
n,

Vi(x) ≤ Vj(x) + α
√

Vj(x) + β . (14)

Now for any x ∈ R
n \ Ω(c), Vj(x) > c. Combining with

(14), we have

Vi(x)

Vj(x)
≤ 1 +

α√
c
+
β

c
. (15)

For each i, j ∈ P , there exists x̄ ∈ R
n\Ω(c) such that x−x⋆i =

κ(x − x⋆j ) with κ ≥ 1 (x lies on the line joining x⋆i and x⋆j ,

extending beyond the bounded set Ω(c)). By the definition of

Vp, this implies

Vi(x)

Vj(x)
=

(x− x⋆i )
⊺P (x− x⋆i )

(x− x⋆j )
⊺P (x̄− x∗j )

= κ2 ≥ 1 . (16)

Combining (15) and (16) and taking the supremum over every

x ∈ R
n \ Ω(c), we obtain

1 ≤ sup
x∈Rn\Ω(c)

Vi(x)

Vj(x)
≤ 1 +

α√
c
+
β

c
. (17)

We conclude the supremum µ(c) exists. Moreover, by taking

the limit at c→ ∞, we obtain lim
c→∞

µ(c) = 1.

Lemma 3: Consider the switched system (2) with common

quadratic Lyapunov function V such that Vp(x) = V (x− x⋆p)
for each p ∈ P . Let c > 0, and consider ωmax(c) and ωmin(c)
defined in (7). We have

lim
c→∞

ωmax(c)

ωmin(c)
= 1 .

Proof: Let i ∈ P and select any xc ∈ argmax
x∈Ω(c)

Vi(x);

that is Vi(xc) = ωi(c). Since xc ∈ Ω(c), we know xc ∈ Ωj(c)
for some j ∈ P . Notice that since xc ∈ Ωj(c), Vj(xc) ≤ c.
Then applying (14), we find

ωi(c) = Vi(xc) ≤ Vj(xc) + α
√

Vj(xc) + β ≤ c+ α
√
c+ β ,

(18)

where α, β ≥ 0 are defined in the proof of Lemma 2. By

Remark 1(iii), ωmin(c) ≥ c, which combining with (18) yields

1 ≤ ωi(c)

ωmin(c)
≤ 1 +

α√
c
+
β

c
.

Taking the maximum over i ∈ P , we have

1 ≤ ωmax(c)

ωmin(c)
≤ 1 +

α√
c
+
β

c
. (19)

Finally, by evaluating the limit as c → ∞, the result is

obtained.

The next result establishes the existence of a positively

invariant set containing all equilibria of the switched system.

Theorem 4: Consider the switched system (2) with common

quadratic Lyapunov function V . There exists c⋆ > 0 such that

M0(c⋆) is positively invariant under the switched dynamics

(2) with any switching signal σ.



Proof: By combining Lemmas 2 and 3, we have

lim
c→∞

µ(c)
ωmax(c)

ωmin(c)
= 1 . (20)

Recall ǫ defined in (4). By (20), there exists c⋆ > 0 sufficiently

large such that

ǫµ(c⋆) <
ωmin(c

⋆)

ωmax(c⋆)
. (21)

Consider an arbitrary switching signal σ : Z
+
0 → P .

Suppose x(k) ∈ M0(c⋆). We want to show that x(k + 1) ∈
M0(c⋆). Suppose by way of contradiction that x(k + 1) /∈
M0(c⋆). By Remark 1(ii), Ω(c⋆) ⊂ M0(c⋆), so x(k + 1) /∈
Ω(c⋆). Then we can apply (13) and (3b) to obtain that for all

p ∈ P ,

Vp(x(k + 1)) ≤ µ(c⋆)Vσ(k)(x(k + 1)) ≤ ǫµ(c⋆)Vσ(k)(x(k)) .
(22)

Because x(k) ∈ M0(c⋆), then x(k) ∈ Mp(c
⋆) for all p ∈ P .

In particular, x(k) ∈ Mσ(k)(c
⋆). By definition of Mp(c

⋆),
this implies

Vσ(k)(x(k)) ≤ ωσ(k)(c
⋆) . (23)

Finally, applying (21) and (23) to (22), we obtain ∀p ∈ P

Vp(x(k + 1)) ≤ ωmin(c
⋆)

ωmax(c⋆)
ωσ(k)(c

⋆) ≤ ωmin(c
⋆) ≤ ωp(c

⋆) .

That is, x(k + 1) ∈ Mp(c
⋆) for all p ∈ P , so x(k + 1) ∈

M0(c⋆), a contradiction.

Remark 2: An estimate of c⋆ may be obtained from the

foregoing derivations. First we select

1 +
α√
c⋆

+
β

c⋆
<

√

1

ǫ
. (24)

Then using (17) and (19), we have µ(c⋆)ωmax(c
⋆)

ωmin(c⋆)
≤

(

1 + α√
c⋆

+ β
c⋆

)2

< 1
ǫ
. Hence, (21) is satisfied . ⊳

V. GLOBAL ASYMPTOTIC STABILITY

The previous section constructed a positively invariant set

containing all equilibria. Now we use a somewhat different

construction to obtain a (possibly larger) positively invariant

set that is also globally asymptotically stable. Consider again

the switched system (2) with a common quadratic Lyapunov

function V and Vp(x) = V (x−x⋆p), p ∈ P . For any c > 0, let

ωp(c), ωmax(c), Ωp(c) and Ω(c) be as above. For each p ∈ P ,

define the set

Np(c) := {x ∈ R
n | Vp(x) ≤ ωmax(c)} , (25)

and the intersection

N 0(c) :=
⋂

p∈P
Np(c) . (26)

Let Vmax(x) := max
p∈P

{Vp(x)} and define its sublevel set

Ωmax(c) := {x ∈ R
n | Vmax(x) ≤ c} . (27)

Remark 3: We note several properties of these new sets.

(i) In contrast to M0(c), the set N 0(c) is a sublevel set of

the maximum function Vmax. That is, for each c > 0,

N 0(c) = Ωmax(ωmax(c)).
(ii) By (3) each Vp is a continuous radially unbounded

function, so Vmax(x) is also continuous and radially

unbounded. Hence, Ωmax(c) and N 0(c) are compact.

(iii) Analogous to Remark 1(ii), for each c > 0, Ω(c) ⊂
N 0(c).

(iv) By Lemma 3, ωmin(c) and hence ωp(c), p ∈ P approach

ωmax(c) as c increases. Hence, the set M0(c) approaches

N 0(c) for increasing values of c.
(v) In the case of only two subsystems, namely N = 2, we

have N 0(c) = M0(c) for each c > 0. This follows

because ω1(c) = ω2(c) = ωmax(c), by a symmetry

argument. ⊳
The following is the main result on existence of a globally

asymptotically stable set.

Theorem 5: Consider the switched system (2) with com-

mon quadratic Lyapunov function V . Let c⋆ > 0 be as in

Theorem 4. Then N 0(c⋆) is positively invariant and globally

asymptotically stable under (2) with any switching signal σ.

Proof: Let σ : Z+
0 → P be an arbitrary switching signal.

From (21)

µ(c⋆) <
ωmin(c

⋆)

ǫωmax(c⋆)
≤ 1

ǫ
. (28)

First, we show that for all p ∈ P , if fp(x) /∈ N 0(c⋆) =
Ωmax(ωmax(c

⋆)), then Vmax(fp(x)) < Vmax(x). To that end,

fix p ∈ P and x ∈ R
n such that fp(x) /∈ N 0(c⋆). By

Remark 3(iii), Ω(c⋆) ⊂ N 0(c⋆), so fp(x) /∈ Ω(c⋆). By (13),

we have

Vq(fp(x)) = Vq(fp(x))
Vp(fp(x))

Vp(fp(x))
≤ µ(c⋆)Vp(fp(x)) ,

for all q ∈ P . By (3), Vp(fp(x)) ≤ ǫpVp(x), and by (28),

µ(c⋆) < 1
ǫ
. Thus,

Vq(fp(x)) ≤ µ(c⋆)ǫpVp(x) < Vp(x) ,

for all q ∈ P . Then we have

Vmax(fp(x)) = max
q∈P

Vq(fp(x)) < Vp(x)

≤ max
q∈P

Vq(x) = Vmax(x) .

This proves that for all p ∈ P ,

fp(x) /∈ N 0(c⋆) =⇒ Vmax(fp(x)) < Vmax(x) . (29)

Second we show that for every p ∈ P , if x /∈ N 0(c⋆) then

Vmax(fp(x)) < Vmax(x). Fix p ∈ P and let x /∈ N 0(c⋆). If

fp(x) /∈ N 0(c⋆), then we are done. If fp(x) ∈ N 0(c⋆), then

Vmax(fp(x)) ≤ ωmax(c
⋆). Since x /∈ N 0(c⋆), we also know

Vmax(x) > ωmax(c
⋆). Therefore, Vmax(fp(x)) < Vmax(x).

This proves that for all p ∈ P ,

x /∈ N 0(c⋆) =⇒ Vmax(fp(x)) < Vmax(x) . (30)

The rest of the proof has three parts: (i) positive invariance of

N 0(c⋆); (ii) global attractivity of N 0(c⋆); and (iii) stability of

N 0(c⋆).



(i) We show that for each ω ≥ ωmax(c
⋆), Ωmax(ω) is

positively invariant. Let x(k) ∈ Ωmax(ω) and x(k + 1) /∈
Ωmax(ω). Then Vmax(x(k)) ≤ ω. Since Ωmax(ωmax(c

⋆)) ⊆
Ωmax(ω), then x(k+1) /∈ Ωmax(ωmax(c

⋆)). By Remark 3(i)

and (29), Vmax(x(k+1)) < Vmax(x(k)) ≤ ω, a contradiction.

This proves the positive invariance of the set Ωmax(ω) and in

particular N 0(c⋆).
(ii) To prove attractivity of N 0(c⋆), we show that for all

x(0) ∈ R
n, the point-to-set distance d(x(k),N 0(c⋆)) → 0 as

k → ∞. Let x0 ∈ R
n and x(0) = x0. If there exists k0 ≥ 0

such that x(k0) ∈ N 0(c⋆), then by part (i), d(x(k),N 0(c⋆)) =
0 for all k ≥ k0. Suppose no such k0 ≥ 0 exists. Using

(30), x(k) /∈ N 0(c⋆) implies Vmax(x(k + 1)) < Vmax(x(k))
for all k ≥ 0. Therefore, Vmax(x(k)) is monotonically

decreasing and bounded from below. Therefore Vmax(x(k))
converges to some ω as k → ∞. We claim ω = ωmax(c

⋆).
Suppose not. Let ω0 = Vmax(x0). Since x0 /∈ N 0(c⋆), then

ω0 > ωmax(c
⋆). By Remark 3(ii), Vmax(x) is continuous and

radially unbounded, so Ωmax(w0) is compact. By part (i),

Ωmax(ω0) is positively invariant. Defining the compact set

W := {x ∈ R
n | ω ≤ Vmax(x) ≤ ω0}, we have x(k) ∈ W

for all k ≥ 0. Since ∆Vmax,p(x) := Vmax(fp(x))− Vmax(x)
is a continuous function, it attains its maximum on W . Let

αp := maxx∈W ∆Vmax,p(x) and α := maxp∈P αp. Since

x ∈ W implies x /∈ N 0(c⋆), then by (30) we know that α < 0.

Then we compute Vmax(x(k+1)) = ω0+
∑k

j=0 Vmax(x(j+
1))− Vmax(x(j)) ≤ ω0 + (k + 1)α. This calculation implies

Then Vmax(x(k)) eventually decreases below ωmax(c
⋆), a

contradiction. Thus, ω = ωmax(c
⋆) and Vmax(x(k)) →

ωmax(c
⋆) as k → ∞. We conclude d(x(k),N 0(c⋆)) → 0

as k → ∞.

(iii) To prove stability of N 0(c⋆), we show that for

every r > 0 there exists δ > 0 such that if x(0) ∈
Bδ(N 0(c⋆)), the δ-neighborhood of N 0(c⋆), then x(k) ∈
Br(N 0(c⋆)) for all k ≥ 0. Fix r > 0 and let ω0 =
minx∈∂Br(N 0(c⋆)) Vmax(x). Choose ω ∈ (ωmax(c

⋆), ω0). It

follows that N 0(c⋆) ⊂ Ωmax(ω) ⊂ Br(N 0(c⋆)). Moreover,

the set Ωmax(ω) is positively invariant by part (i). By the

continuity of Vmax(x) and compactness of N 0(c⋆), there

exists δ > 0 such that Bδ(N 0(c⋆)) ⊂ Ωmax(ω). Then we have

x(0) ∈ Bδ(N 0(c⋆)) ⊂ Ωmax(ω) implies x(k) ∈ Ωmax(ω) ⊂
Br(N 0(c⋆)) for all k ≥ 0, as desired.

VI. APPLICATIONS

A. Numerical Example

First, we apply the results to a first-order nonlinear switched

system. Consider (2) with x ∈ R, P = {1, 2}, f1(x) = (1 +
x2)−1 and f2(x) = x2(1+x2)−1. Each subsystem has a single

equilibrium point x⋆1 = 0.6823, and x⋆2 = 0. Let V (x) = x2

and Vi(x) = V (x−x⋆i ), i ∈ P . It can be shown that V1(x) and

V2(x) satisfy (3) with ǫ1 = 0.5 and ǫ2 = 0.3. Hence, V (x)
is a common quadratic Lyapunov function and by Theorem 5

and Remark 3(v) there exists c⋆ > 0 such that the compact

set M0(c⋆) is positively invariant and globally asymptotically

stable under (2) with any switching signal σ. By Remark 2, we

can choose c⋆ = 13.5 to satisfy (24). Then, we have Ω1(c
⋆) =

[−2.99 4.36], Ω2(c
⋆) = [−3.67 3.67], ω1(c

⋆) = ω2(c
⋆) =

18.98, M1(c
⋆) = [−3.67 5.04], M2(c

⋆) = [−4.36 4.36]
and M0(c⋆) = [−3.67 4.36].

B. Visuomotor Adaptation

Visuomotor adaptation is a subconscious brain process

taking place over repetitive trials and elicited by a visual

error closely following the execution of a movement. It is

intended to calibrate over a lifetime the mapping between

what is seen and how to move. In [6] we showed that the

dynamic properties of visuomotor adaptation are consistent

with a computational model based on disturbance rejection of

constant disturbances. The computational model was further

developed in [7], where we considered new neuroscience

experiments whose theme is to study the effect of removal

of the visual error during sets of trials of a particular body

movement such as fast arm reaches [8], [20], [14].

The new experiments show that after steady-state is reached

with a non-zero disturbance in an experiment such as fast arm

reaches, the continued observation of a zero or small visual

error is a flag to the brain to “keep the internal model charged

up”. Instead, if after reaching steady-state with a non-zero

disturbance, the visual error is removed, then the subject makes

movements that suggest an internal model is dissipating its

estimate of the disturbance at an exponential rate. Consider

the model of visuomotor adaptation proposed in [7]:

x(k + 1) = Ax(k) +Bu(k) (31a)

e(k) = −x(k)− d (31b)

w0(k + 1) = Fw0(k) + FGe(k) (31c)

w1(k + 1) = Fw1(k)−Ge(k) (31d)

w2(k + 1) = Fw2(k)−Gu(k) (31e)

ŵ(k) = w0(k) +Ge(k) +Aw1(k)−Bw2(k) (31f)

u(k) = Ke(k) +
ψ

B
ŵ(k) , (31g)

where x(k) ∈ R is the position of a single degree of freedom

of the body at the end of the k-th trial; e(k) is a visual error

at the end of the k-th trial between the observed body position

and a reference position at zero; d ∈ R is an unknown constant

disturbance imposed on the subject’s visual perception, and

wi ∈ R, i ∈ {1, 2, 3} are the filter states of the internal model.

The controller u consists of a stabilizing error feedbackKe(k)
and a term ψ

B
ŵ(k) to cancel the disturbance (filtered through

the plant). Nominal parameters values to recover the dynamic

properties of visuomotor adaptation are A = 0, B = 1, F =
0.9, G = 0.1, ψ = 1−F

G
, K = 0.25; see [7] for details.

When there is no error signal, then the filters (31c) and

(31d) are stable, but the filter (31e) (that accounts for the

internal model principle) is not. To make this filter and thus the

overall system stable when there is no error measurement, we

proposed a switching mechanism in [7] to remove u(k) from

(31e) when the error is not available at the end of trial k. The

result is a switched system consisting of two exponentially

stable subsystems each with a different equilibrium. The

switched system is given by

y(k + 1) = Aσ(k)y(k) + bσ(k) , (32)



where y(k) = (x(k), w0(k), w1(k), w2(k)),

A1 =







A−BK − ψG ψ ψA −ψB
−FG F 0 0
G 0 F 0

G(K +GψB−1) −GψB−1
−GAψB−1 1






,

A2 =







A ψ ψA −ψB
0 F 0 0
0 0 F 0
0 0 0 F






, b1 =







−(BK + ψG)
−FG
G

G(K +GψB−1)






d ,

b2 = 0 , and σ : Z+
0 → {1, 2}.

This switching model accounts for experiments in which

a dwell time constraint is present; for example, Figure 2 in

[8]. We could not make any deductions about boundedness of

solutions with arbitrary switching due to the lack of available

theoretical results, despite the fact that experiments clearly

show that the brain is able to handle rapid on and off

switching of the internal model; see Figure 2 of [20] where

the imposition of a certain noise distribution on the error

measurement appears to cause rapid changes in the subject’s

response.
To apply our new stability results, we must identify a

common quadratic Lyapunov function. Standard conditions for
existence of a common quadratic Lyapunov function include
that A1 and A2 commute [17]; or that A1 and A2 are si-
multaneously triangularizable [15]. Neither of these sufficient
conditions applies in our problem, so instead we seek a
numerical solution. Using nominal parameter values we have

A1 =







−0.35 1 0 −1
−0.09 0.9 0 0
0.1 0 0.9 0

0.035 −0.1 0 1






, A2 =







0 1 0 −1
0 0.9 0 0
0 0 0.9 0
0 0 0 0.9






.

A common quadratic Lyapunov function can be efficiently

found by solving the LMIs: P − A⊺

i PAi > 0, i ∈ {1, 2}
for some positive definite P ∈ R

4. A solution is given by

P =









2.2 −1.2 0.1 1.6
−1.2 10.3 0.6 −3.1
0.1 0.6 7.3 0.7
1.6 −3.1 0.7 9.2









.

Hence, the function V (y) := y⊺Py is a common quadratic

Lyapunov function of (32). By Theorem 5 and Remark 3(v)

there exists c⋆ > 0 such that the compact set M0(c⋆) is

positively invariant and globally asymptotically stable under

(32) with any switching signal σ. Finally, a robustness analysis

was carried out to account for plant parameter uncertainty, but

the details are omitted.

VII. CONCLUSION

We presented two stability results for discrete-time switched

systems with multiple equilibria, extending the available meth-

ods in the literature [2], [16]. The first result uses a common

quadratic Lyapunov function to find a compact, positively

invariant set containing all equilibria under arbitrary switching

signals. The second result provides a possibly larger com-

pact superset that is both positively invariant and globally

asymptotically stable. The results were applied to a model

of visuomotor adaptation to show boundedness of solutions

despite intermittent measurements.

Immediate extensions are to study the case of a not neces-

sarily quadratic, common Lyapunov function and to relax the

assumption of a unique equilibrium for each subsystem by

allowing for multiple invariant sets. Construction of common

Lyapunov functions for switched nonlinear systems whose

subsystems share certain structure is an area that warrants

further development; see [9], [18], [19]. Finally, a more

comprehensive theory of stability of regulators with rapid

on/off switching of internal models is needed.
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