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Abstract— We introduce and study a new class of linear have a wealth of interesting relationships with the class
control systems called patterned systems. Mathematicallthis  of subspaces invariant under tis@ift operator Important
class has the property that the state, input and output trans g, hsnaces like the controllable subspace and the observabl
formations of the linear state space model are all function®f S . . . o
a common base transformation. The motivation for studying subspace fall within this C_Iass. This greatly S|mpllf|es_ .the
such systems arises from their interpretation as a colleasn  Study of control problems like pole placement and stabiliza
of identical subsystems with a pattern of interaction betwen tion when it is desired that the controller be circulant as
subsystems that is imprinted by the base transformation. Te  well. In this paper these ideas about circulant systems are
significance of patterned systems as a distinct class is thiitey — aytanded to a broader family that includes all systems with
may provide a template for the development of a more unified . . .
framework for dealing with systems, typically distributed, state, input and output tran_sformatlons that are functmfns
which consist of subsystems interacting via a fixed pattern. @ commorbase transformationWe call the members of this

family patterned linear systems
In this first paper of a two part series, we study funda-
. INTRODUCTION mental properties of patterned maps and their relatiosgbip

We introduce and study a new class of linear contratertain invariant subspaces. Using this foundation, wieviol
systems called patterned systems. Mathematically, thisscl classical developments to build system theoretic propedf
has the property that the state, input and output transfqpatterned linear systems. Finally we study the classicrobnt
mations of the linear state space model are all functions sf/nthesis problems [6]. A significant outcome of this stugly i
a common base transformation. The motivation for studyintpat if a general controller exists to solve any of the stddie
such systems is their interpretation as a collection oftideh  control synthesis problems, then a patterned feedbactsexis
subsystems with a pattern of interaction between subsgstein the second paper we study specific patterns - rings, chains
that is imprinted by the base transformation. The signifiean and trees - which give relevance to the class of patterned
of patterned systems as a distinct class is that they maystems.
provide a template for the development of a more unified
framework for dealing with systems, typically distributed
which consist of subsystems interacting via a fixed pattern. We assume that the reader is already familiar with the tools

Complex systems that are made of a large number &f geometric control theory [1], [6]. Lek” and ) be finite-
simple subsystems with simple patterns of interactioneariglimensional vector spaces. We consiliieear mapsfrom X
frequently in natural and engineering systems. Such systei® V., denoted by bold capital letters, such'Bs X — ).
arise particularly out of models which are lumped approxiThe plain capital, T, denotes a matrix representation of the
mations of partial differential equations (p.d.e.s). Onehs MapT. Let T : X — X be an endomorphism. Lei,(T)
application concerns ring systems, which can be modeldtgnote the eigenspace @f associated with eigenvaluk.
as circulant or block-circulant systems. These systems afée Jordan subspaces ®fare given by
worthy of special mention because they provide a metaphor
for pa):ternepd systems. In [2] circulant :yrsjtems arisingmf?o Jis(T) = span (v, git, iz, - ipiy 1)+
control of systems modeled by discretized partial difféiedn where each eigenvectof; spawns the Jordan chain.
equations are studied from a control perspective. The keyLet V and W be subspaces such th&at=V @& W. Map
insight is that all circulant (or block circulant) matricase Qy : X — X denotes the projection ol alongW, Ny :
diagonalized (or block diagonalized) by a common matrix.X — V denotes the natural projection, asgy : V — X

The starting point of our investigation was a study oflenotes the insertion of in X'. Useful relations are that
circulant systems from a geometric approach, based onMySy = I, andNyySy = 0. Given aT-invariant subspace
hypothesis that circulant systems have deeper structtoptip V C &, if there also exists a subspag® C X such that
erties beyond diagonalization. The essence of the geametd = V @ W and W is T-invariant, then we call a T-
approach is to describe properties of the system in terndecouplingsubspace. The restriction & to V is denoted
of subspaces, and then to express conditions for controlley Ty : V — V and is given byT'y, = NyTSy. Similarly,
synthesis in terms of these subspaces [6]. Circulant neatricdefineTyy : YW — W, the restriction ofT to W, by Ty =

Ny TSw.
e o T e, S oo, Let VW be T-decoupling subspaces such thete
W = X. Suppose the minimal polynomial (m.p.) df,
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Engineering Research Council of Canada (NSERC). 1 (s), has been factored ag(s) = 1~ (s)y*(s) such that

II. BACKGROUND



X~ (T) = Kerypy™ (T), X7(T) = Ker ¢ ™ (T), and X~ (T) {T|(3to,....tn—1 ER) T =tol +t;M+ ... +t,_ M1}
and X (T) are the stable and unstable subspace&of We call a matrixT € F(M) an M-patternedmatrix.

Similarly, let¢,(s) be the m.p. ofT'y, and suppose it has  Fact 3.1: Given T, R € F(M) thenTR = RT.

been also been factored as(s) = v, (s)1y(s) such that  Given M € R"*", let then eigenvalues of M be denoted
V= (Ty) = Keryp~(Ty), V7 (Ty) = Kerp*(Ty). The py (M) = {6,,0,...,6,}. Note that the spectrum is
following result summarizes useful properties of stabld ansymmetric with respect to the real axis since M is real. Define

unstable subspaces. a symmetric subset
Lemma 2.1 ([6]):Let T : X — X be a linear map and
let V,WW C X be T-decoupling subspaces, i. &) c V, {m1, s pum} C o(M) (1)

TW C W, andV@W = X. Then we have (iNy X+ (T) =

__ ' - such that each distinct eigenvalue is repeated enlyimes
V*H(Ty); and (i) X (T) c Vif and only if o (Tyy) C C.

_ ) in the subset, where; is the geometric multiplicity of the
Weodenote the set of all'-decoupling subspaces ¥ gjgenvalue. Then, associated with each eigenvaltis the

by ©°(T; X). Similarly, for anyV C X, not necessar- sl multiplicity p;. There exists a Jordan transformation

ily a T-invariant subspace, we denote the set of Bl () g\;ch that)—IMQ = J. where J is the Jordan form of M.

decoupling subspaces containedirby D°(T; V); that is, Suppose we are given an arbitrary matrix and a base

<& . H 1 1 1 -
.y < @ (T;V)if Y c V YV is T-invariant, andy has arT pattern M. We can determine whether or not the matrix is
invariant complement itk’. (Note that the complement neEdM-patterned

not be in).) We also denote the set of dll-decoupling . nxn .
subspaces in¥ containingV by ©.,(T;V). Decoupling Theorem 3.2:Given T € R**", thenT € (M) if and

subspaces are closely linked to Jordan subspaces. only if
Lemma 2.2 ([3]): Every Jordan subspace & is a T- (1) Q7'TQ = diag (Hy, Ho, ..., H,,),
decoupling subspace, and eveéBRtdecoupling subspace is hi his -+ hg
the sum of Jordan subspacesBf o b
Lemma 2.3:Let V;,V, C X be T-invariant subspaces, L hi1 .
and letJ C V; + V> be a Jordan subspace @f. Then whereH; = 0 b » hij € C,
JcViorJcCVs. 0 0 hzl

We say that a subspad#® is thesupremunof ©°(T;V), o _ -
denotedV® = sup D°(T; V), if V° € D°(T;V) and given (Q)V{Zlv"g} € {l,...m} if piy = fu, then
V' e ©°(T;V), thenV’ C V°. Analogously, we say that hiy; = hiyj,¥3 =1,...,min(p;,, p;,) and
a subspac@/, is the infimumof ©,(T;V), denotedV, = (3)V {ir,io} € {1,...,m} if p;, = ps, then
inf D,(T; V), if V, € Do(T; V) and given)’ € D,(T; V), _ o )

/ . . _ hilj —hizj,Vj—1,...,m1n(pi],pi2).
thenV, C V'. Existence and uniqueness of a supremal ele . )
Suppose we are given an arbitrary spectrunmofalues

ment of©°(T; V) and an infimal element @, (T; V) relies oo L
on the fact tha°(T; V) and . (T: V) have the structure and an objective to construct an M-patterned matrix with the
’ o jven spectrum. The next result presents the conditionsmund

of a lattice under the operations of subspace addition argqj. h this | iol
subspace intersection. which This 1S possible.

Lemma 2.4:Given V C X, the sets®°(T;V) and Lemma 3.3:Let € = {A1,A2,..., A}, Ai € C. Suppose

9, (T; V) are each closed under the operations of subspal €léments of can be reordered so thatdf = ; then

addition and subspace intersection. Ai = Aj, and if §; = 9; then \; = ;. Then there exists

Lemma 2.5:Let V;,V» C X be T-invariant subspaces, | € 8(M), such thai(T) = £. _
and letV? := sup@°(T; V1), V§ = sup®°(T;V,), and A Spectrum that can be reordered in the manner of Lemma

(V1 + V2)° := sup@°(T;V; + Va). Then (Vy + Vo) = 3.3 is anM-patterned spectrum
Ve 4+ VS, Lemma 3.4:Given T,R € §(M) and a scalanx € R,
then{aT, T + R, TR} € (M), andT~! € F(M) assuming
. PATTERNED LINEAR MAPS T-! exists. Moreover, givero(T) = {r,...,7,} and
Lettg,t1,...,tr € R and consider the polynomials) = o(R) = {o1,...,0n}, both ordered relative to the eigen-
to + t1s + tas® + t3s® + ... + tis*. The argument of the values of M, theno(aT) = {ar,...,ar,}, o(T +R) =
polynomial can be extended to become a matrix as follow$s + o1,...,7 + 0n}, o(TR) = {m01,...,7non}, and

Let M be ann x n real matrix. Therp(M) is defined by  o(T ) = {1/n,..., /5. }.
Next, consider a linear mapl : X — X. We define the

p(M) :=tol + ;M + toM? + t3M? + ...+t MF. set of linear maps
Given T = p(M), then p(s) is called arepresenter of FM) :={T | Bto,...,tn—1 ER)
T with respect toM, and it is generally not unique. T = tol + iM + ...+ o M" '}

By Cayley-Hamilton theorem, our discussion will be

confined top(M) of order equal to, or less tham, — 1. We call a mapT : ¥ — X, T € F(M) an M-patterned
We define the set of all matrices that are polynomiahap We now present some important relationships between
functions of a giverbase matrixM € R™*" by (M) := M-patterned maps anilI-invariant subspaces.



Fact 3.5: Let V C X. If V is M-invariant, then) is T- and ), respectively. IfA,B,C € F(M) with respect to
invariant for everyT € §(M). someM : X — X, then (C,A,B) is termed anM-
Conversely, is dr-invariant subspace alwaysl-invariant? patterned systerar simply apatterned systenObserve that
The answer is not generally. The eigenvectorshdf are for patterned systems; = m = p, thus X ~ U ~ ).
all eigenvectors ofT; however, T may have additional Also, the open loop poles of the system formMdnpatterned
eigenvectors that are not eigenvectorshdf Fortunately, it spectrum. In this section we examine the system theoretic
is possible to identify certaiff-invariant subspaces, useful properties of patterned systems.
in a control theory context, that are aldd-invariant. A. Controllability

Lemma 3.6:Let T € F(M) and letp(s) be a polyno- )
mial. ThenKer p(T) andIm p(T) are M-invariant andT"’- Thecontrollable subspacef a system is denoted 8 Let

invariant for everyI’ € §(M). B = ImB. For patterned systems it is immediately observed

Lemma 3.7:Let T e §(M). Then the following sub- NatC = B, andC is M-invariant.
spaces areM-invariant and T-invariant: (i) the stable Definition 4.1: The patterned controllable subspacde-

and unstable subspace¥: (T) and X*(T), and (ii) the notedC,,, is the largesiM-decoupling subspace contained

eigenspacessS, (T), ) T). Also, the spectral subs acesiN C- Thatis,Cas := sup D°(M; C).
ong aPeM—dééoaplinZ o(T) P P Lemma 4.1:Let (A,B) be an M-patterned pair. Then

Suppose we are given &-decoupling subspadé. Then Car = {0} + AE;B»SA(B) and itsM-invariant complement
there exists aM-invariant complementV, such that¥ = A#0

. . . : D is So(B).
YV @& W. SinceV is M-invariant, t_he restriction oM to V, Lemma 4.2:The M-patterned paif A, B) is controllable
denotedM,, : V — V, can be defined b, := Ny,MS,,. . .
- - : if and only if Cpy = X
Similarly, the restriction ofM to W can be defined by . .
: . In addition to the case whefA, B) is controllable,C and

M,y := NyyMS,y. The next lemma contains the important o e

_ Cyr also coincide whenSy(B) = Ker (B), which is to
result that the restriction of ab-patterned mayil’ fo an say that there are no generalized eigenvectors associated
M-invariant (orM-decoupling) subspace is itself patterned Y 9 g

o . Wwith the zero eigenvalue dB. Instead wher(A,B) is not
and the pattern is induced by the restrictiondf to the controllable, therC andCyy may differ.

subspace.
Lemma 3.8:Let T € §(M). Then the restriction o to  B. Pole Placement
Vis given byTy, = Ny TSy, and moreoveTy, € F(My). It is well known that the spectrum ef(A + BF) can be

Given anM-patterned map, it is possible to create a decomurbitrarily assigned to any symmetric set of poles by choice
posed matrix representation of the map, which splits inéo thof F : X — ¢/ if and only if (A, B) is controllable. For a
restrictions to) and toWV. patterned system, the question arises of what possible pole

Theorem 3.9 (First Decomposition Theoreniet T € ¢an pe achieved by a choice of patterned state feedback
F(M). There exists a coordinate transformatRn X — X ) ) ; ) o
such'that the representation @ in the new coordinates is | "eorem 4.3:The M-pattemed pair(A, B) is control

given by lable if and only if, for everyM-patterned spectrunt,
there exists a maj' : X — U with F € §(M) such that
R™'TR = { TOV TO } ,Ty € F(My), Tw € F(Mw). o(A +BF) = £.
W We conclude that if we are limited to patterned state
The spectrum splits inte(T) = o(Ty) W o(Tw). feedback, then the poles of aMl-patterned system can

The previous result shows how avi-patterned map can only be placed in arlM-patterned spectrum. This is not
be decoupled into smaller maps that are each a function af severe limitation on pole placement, since stabke
M restricted to an invariant subspace. Now consider thgatterned spectra can be chosen for Afy
opposite problem. We are given a map that is a functio&
of M restricted to a subspace. The map can be lifted into’

the larger spacé’, and we give a sufficient condition under SUPPose we have a patterned system that is not fully
which it will be M-patterned. controllable, i.e.C # X. We show that it is possible to

Lemma 3.10:Let T; € §(My). Define a magl : X — decouple the system into two patterned subsystems, one that
X by T := SyT Ny. If o(My) N o(My) = @, then is controllable and one that is completely uncontrollabte b
T € §(M). ' a patterned state feedback. Siribg is M-decoupling there

exists anM-invariant subspac® such thatC; @ R = X.

IV. SYSTEM PROPERTIES Let S¢,,, N¢,,» Sk, andNx be the relevant insertion and
projection maps, and let the restrictions Bf to C,; and
to R be denoted byM.,, and M. Before we present the

i(t) = Az(t) + Bu(t) decomposition, we note the following useful lemma.

y(t) = Ca(t) Lemma 4.4:Let (A,B) be anM-patterned pair. Then

’ oc(Mgc,,) No(Mg) = @.

wherez(t) € R™, u(t) € R™, andy(t) € RP. We denote  Theorem 4.5 (Second Decomposition Theorehe)
the state space, input space, and output spacetby/ (A,B) be anM-patterned pair. There exists a coordinate

Controllable Decomposition

Consider the control system



transformationR : X — X for the state and input spaces Lemma 4.10:Let (C, A) be anM-patterned pair. Then
(U ~ X), which decouples the system into two subsystems;(My,,) No(Mz) = @.

(A1,B1) and (A2, B,), such that Theorem 4.11 (Third Decomposition Theorerhjt

(C,A) be anM-patterned pair. There exists a coordinate

(1) pair (A1, By) is M, -patterned and controllable - ormationR : ¥ — A for the state and output spaces

(2) pair (A2, B2) is Mz-patterned (Y ~ &), which decouples the system into two subsystems,
(3)o(A) =0(A1) W o(Az), (C1,A;) and(Caz, Ay), such that
(4) o(A») is unaffected by patterned state feedback

)
(1) pair (Cq, A1) is M -patterned and observable
in the class3(Mr), (2) pair (Ca, Ay) is My, -patterned
(5)Ba=01if Cyy =C. (3)o(A) =0c(A1) W o(As)
D. Stabilizability (4) o(Az2) is unaffected by patterned measurement feedback

A system, or equivalently the pajiA, B), is stabilizable in the class3(Mr)
if there existsF : X — U such thato(A+BF) c C~. (5)Cy=0if Nyy =N.
A system is stabilizable if and only i**(A) c C. For a .
patterned system, the question arises of whether the syst&in Détectability
can be stabilized with a patterned state feedback. We beghsystem, or equivalently the paiC, A), is detectableif

with a useful preliminary result. and only if ¥~ (A) D V. If a system is detectable, then it is
Lemma 4.6:Given an M-patterned pair (A,B), if possible to dynamically estimate any unstable states of the
XT(A) CC, thenX¥T(A) C Cuy. system from the outputs. In the case of a patterned system,

Theorem 4.7 (Patterned Stabilizabilitylsiven an M- we show that the unstable states can be recovered with a
patterned system A, B), there exists a patterned statepatterned static model. First, we have a useful lemma.
feedback F : X — U with F € F(M) such that Lemma 4.12:Given anM-patterned pai{C, A), if V' C

o(A +BF) c C™ if and only if ¥*(A) C C. X7 (A), thenNy € X~ (A).
- By Theorem 4.11 aiM-patterned system can be decomposed
E. Observability to separate out arMp-patterned observable subsystem,

The unobservable subspacd a system is denoted by. denoted by(C;,A;). Since KerC; = 0, the matrix C;
By a duality argument, for patterned systes= Ker C, is invertible, andC;! is Mg-patterned by Lemma 3.4.
and A/ is M-invariant. Thus, the observable states can be exactly recovered by
Definition 4.2: The patterned unobservable subspade- the patterned static model; = Cj'y;. By assumption
noted NV}, is smallestM-decoupling subspace containingX~(A) D N, which implies X~ (A) D Ny by Lemma
N. That is,Ny; := inf D,(M; N). 4.12. EquivalentyX*(A) C R, so by Lemma 2.1(ii),
Lemma 4.8:Let (C,A) be anM-patterned pair. Then o (Az) C C™. Thus, when a patterned system is detectable,
Ny = So(C) and its M-invariant complement i§0} +  all the patterned unobservable states are stable, making it
> SA\(C). unnecessary to estimate them since they can generally be
A assumed to be zero.
Lemma 4.9:The M-patterned paiC, A) is observable
if and only if N3 = 0.
In addition to the case whefC, A) is observableN' and With the fundamental patterned system properties estab-
Ny also coincide wherS,(C) = Ker C, which is to say lished in the previous section, we consider several classic
that there are no generalized eigenvectors associatedheith control synthesis questions for patterned systems. The ob-
zero eigenvalue of. Instead wheriC, A) is not observable, jective is to determine conditions for the existence of a

V. CONTROL SYNTHESIS

then N and NV, may differ. patterned feedback solution. Remarkably, it emerges lieat t
N necessary and sufficient conditions for the existence of any
F. Observable Decomposition feedback solving these synthesis problems are also negessa

Suppose we have a patterned system that is not fulgnd sufficient for a patterned feedback.
observable, i.e N # O_. We show that it is possible to A Measurement Feedback
decouple the system into two patterned subsystems, oné _ _
that is observable and one that is patterned unobservable¥Ve are given a linear system

meaning that the poles of the subsystem cannot be moved #(t) = Az(t) + Bu(t)
by any patterned measurement feedback. Sikige is M-
decoupling, there exists avi-invariant subspac® such that y(t) = Ca(t),

Nu@R = X. LetSy,,, Ny,,, Sr, andNr be the relevant where z(t) € R", u(t) € R™, andy(t) € RP. The mea-
insertion and projection maps, and let the restriction®bf syrement feedback problem (MFP) is to find a measurement
to M and toR be denote byM ,, andMz. We present feedbacku(t) = Ky(t) such thatz(t) — 0 ast — co. A
a supporting lemma, followed by the decomposition. geometric statement of the problem is to fikd: Y — U



such thato(A + BKC) C C~. Stabilizing a system using at the outputz(¢). Equivalently, Y™ (A + BF) C KerD.
measurement feedback appears to be only a minor variatidhe solution to the OSP requires the notion of controlled
of stabilization by full state feedback and one anticipates invariant subspaces. A subspate ¢ X is said to be
similarly elegant solution. Unfortunately such an assuompt controlled invariantif there exists a maf : X — U/ such
is mistaken, for the problem of stabilization (and morehat(A + BF)V C V. LetJ(A, B; X') denote the set of all
generally pole-placement) by static measurement feedbactntrolled invariant subspaces iti. Similarly, for anyV C
is very difficult. Finding testable necessary and sufficient’, let 3(A, B; V) denote the set of all controlled invariant
conditions for a general solution has been an open problesnbspaces iw. It is well-known that OSP is solvable if and
in control theory for almost forty years despite considégab only if X (A) C C+V* whereV* := sup J(A, B; Ker D)
effort, and remains unsolved today. The dynamic MFP, i.¢6]. In order to solve the patterned version of the problem,
the use of an observer, is generally considerably simplernew subspace is introduced.
than the static MFP. However, in the context of distributed Definition 5.1: We define V° to be the largestM-
systems, it is not evident how a single observer can h#ecoupling subspace contained W*. That is, V°* :=
distributed to multiple subsystems. Thus, the static MFP isip ©°(M; V*).
of particular interest for distributed systems. In the getin Lemma 5.4:Given anM-patterned triple(D, A, B), if
framework, the clearest results on the MFP were derived if™(A) C C + V*, thenXT(A) C Cys + V°.
the seventies. Theorem 5.5:Given an M-patterned triple(D, A, B),

Theorem 5.1 ([5]): There existsK : J — U such that there exists a patterned state feedbfitk X — U, F €
o(A+BKC) c C onlyif ¥*(A) c CandX~(A) DN. F(M), such that¥+(A +BF) C KerD if and only if
Soon afterwards, Li [4] described a sufficient condition fort+(A) c C + V*.
MFP.

Theorem 5.2 ([4]): Given a controllable and observableC. Disturbance Decoupling
triple (C,A,B), there existsK : )Y — U such that We are given a linear system

o(A +BKC) c C if .
#(t) = Az (t) + Bu(t) + Hw(t)

(XT(A)N(A | Ker C)N(XT(AT)N(AT | Ker BT)) :((2)j +(t) = Da(t)
The sufficiency of the first part of the conditiopy *(A)n  where z(t) € R", u(t) € R™, w(t) € R" and z(t) €
(A |KerC)) = 0, can be derived by reformulating the R?. The signalw(t) has been introduced to represent a
problem as finding a state feedbaEk: X — U/ with the disturbance to the system. Suppose that the disturbance is
restriction Ker F O (A | Ker C) on the feedback matrix. not directly measured, and furthermore, that we have no
Observe thatA | Ker C) denotes the smallesk-invariant information on its characteristics. If the outpuft) is the
subspace containinger C. In general, the hierarchy of the signal of interest, then one method to compensate for the
subspaces is given byA | KerC) > KerC > A. In unknown disturbance is to find a state feedba@k = Fx(t)
the special case wheiger C is A-invariant, however, the such thatw(t) has no influence on(t) at any time. Then
subspaces above are all equal. Since Li's sufficient canditi the controlled system is said to lusturbance decoupled
requires that the system is observable, it is a given th&efine’” = Im H. A geometric statement of the disturbance
XT(A) NN = 0; therefore, (2) is always met for the decoupling problem (DDP) is to find a state feedbatk
special case. Patterned systems are one class of sys#&m— U such that(A + BF | H) C KerD. It is well-
where Li's sufficient condition is always true. We show thaknown that DDP is solvable if and only #* 5 H, where
the necessary condition of Theorem 5.1 becomes both)d :=supJ(A, B; Ker D). The necessity of this condition
necessary and sufficient condition for patterned systems. is clear, because for afysuch that A + BF | H) C Ker D

Theorem 5.3:Given an M-patterned triple(C, A,B), Wwe have(A +BF | H) € J(A, B; KerD) by definition
there exists a patterned measurement feedbacky — ¢/, and H C (A +BF |H) C V*. The condition is also
K € §(M), such thats(A + BKC) ¢ C~ if and only if shown to be sufficient by observing that# > H then

X*T(A)cCandX~(A)DN. (A+BF |H) C V* C KerD.
o Theorem 5.6:Given anM-patterned triplé D, A, B) and
B. Output Stabilization a subspacé{ C X, there exists a patterned state feedback
We are given a linear system F: X - U, FeFM), suchthatA + BF | H) C KerD

if and only if V* D H.
#(t) = Ax(t) + Bu(t) Y

z(t) = Dx(t), D. Regulation
wherez(t) € R™, u(t) € R™, andz(t) € R?. The output 'V @re given a linear system
stabilization problem (OSP) is to find a state feedbagh = i(t) = Az(t) + Bu(t)

Fz(t) such thatz(t) — 0 ast — oo. The problem can be (t) = Ca(t)
restated in more geometric terms as finding a state feedback v\ =
F : X — U that makes the unstable subspace unobservable z(t) = Da(t)



where z(t) € R", u(t) € R™, y(t) € RP, z(t) € R?. by measurement feedback. To find sufficient and necessary
The output stabilization by measurement feedback probleaonditions is not generally solved at this time. Ultimataly
(OSMFP) is to find a measurement feedbagk) = Ky(¢) is the same static Measurement Feedback Problem described
such thatz(t) — 0 ast — oco. An equivalent geometric previously, and it is a longstanding open problem in control
statement of the problem is to finK : ) — U such The general solution to the RRP relies on finding a
that ¥*(A + BKC) c KerD. Output stabilization by maximal element, denoted by™, of a rather structurally
measurement feedback is a regulation problem. The statomplex family of subspaces (refer to [6]). There exists a
feedback case presented above is closely related to thienpler condition that applies under the sufficient conoditi
Restricted Regulator Problem (RRP), where the latter ihat VM = V*, whereV* := sup J(A, B; Ker D).

formulated as output stabilization by state feedback with a Corollary 5.7 ([6]): SupposeA (L N KerD) C KerD.
restriction placed on the form of the state feedback in cimler Then the RRP is solvable if and only ¥ (A)NL C Ker D
capture the condition that only certain states are mealuraband ¥ (A) c C + V*.

Problem 5.1 (Restricted Regulator Problem (RRP)): Now we return to the problem for patterned systems.
Given a subspac&€ C X with AL C £, find a state Given anM-patterned triple(C, A, B) and an output map
feedbackF : X — U such that D: X - Z, D < §M), the OSMP problem is to find a

patterned measurement feedbdk Y — U, K € F(M),
KerF 5 L such thatt* (A + BKC) C Ker D. For patterned systems,
XT(A +BF) C KerD. the appropriatel to choose is the patterned unobservable

The subspace provides a geometric way to capture thesubspaceVy,. Itis A-invariant by Fact 3.5, so we can show
information structure in the problem. This is because th&at solving the patterned OSMF is exactly equivalent to
conditionKer F O £ effectively characterizes which statessolving the following restricted regulator problem.

can be employed by the state feedback. A key condition in Theorem 5.8:Given anM-patterned paifA, B), and an
the statement of the RRP is thd&tmust be anA-invariant output mapD : X — Z, D € §(M), there exists a
subspace; this condition makes the problem tractable. TRatterned state feedbadk : X — U, F € §(M), such
choice of£ can be understood a little better by decomposingiat Ker F 5 Ny and X* (A + BF) € Ker D if and only
the dynamics of the system. Singis A-invariant there If X7 (A) NNy C KerD and X*(A) C C + V*, where
exists a coordinate transformati@: X — X, such thatin V* =supJ(A, B; KerD).

the new coordinates the matrix pdik, B) becomes Assume that the conditions to solve the Patterned RRP are
met for a given system. Then there exists a patterned state

(RflAR, Rle) - ({ AOI iQ ] , { gl D ) feedbackF : X — U, F € F(M), such thater F > N D
3 2 Ker C. It follows that there exists a measurement feedback

This separates the dynamics on and 6ff The condition K :) — U that solves the equatidiC = F. Furthermore,
KerF O £ implies that in new coordinatds= [ 0 F, |, K € §(M), and we have that’*(A + BKC) C KerD.

and Conversely, ifKer F 2 Ker C then there exists no solution
o K to KC=F. And, if F ¢ §(M) then any solutionK
R N Id not b ber of(M). We draw the followi
0 As+ByF, |- would not be a member aF(M). We draw the following
conclusion.

The idea is to choos€ such that all the states off, or at Corollary 5.9: There exists a solution to the Patterned
least estimates of them, are available to be used as feedbaglsMFP if and only if there exists a solution to the Patterned
Then the dynamics of the available states can be controllggkp.

separately from those ofl. If an observer is employed, one

could use/, the unobservable subspace, Assince it is REFERENCES
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culty is that now the RRP is more stringent than the original

problem, and the solution to the RRP represents only suf-

ficient, but not necessary, conditions for output stahilara



