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Abstract— We introduce and study a new class of linear
control systems called patterned systems. Mathematically, this
class has the property that the state, input and output trans-
formations of the linear state space model are all functionsof
a common base transformation. The motivation for studying
such systems arises from their interpretation as a collection
of identical subsystems with a pattern of interaction between
subsystems that is imprinted by the base transformation. The
significance of patterned systems as a distinct class is thatthey
may provide a template for the development of a more unified
framework for dealing with systems, typically distributed,
which consist of subsystems interacting via a fixed pattern.

I. I NTRODUCTION

We introduce and study a new class of linear control
systems called patterned systems. Mathematically, this class
has the property that the state, input and output transfor-
mations of the linear state space model are all functions of
a common base transformation. The motivation for studying
such systems is their interpretation as a collection of identical
subsystems with a pattern of interaction between subsystems
that is imprinted by the base transformation. The significance
of patterned systems as a distinct class is that they may
provide a template for the development of a more unified
framework for dealing with systems, typically distributed,
which consist of subsystems interacting via a fixed pattern.

Complex systems that are made of a large number of
simple subsystems with simple patterns of interaction arise
frequently in natural and engineering systems. Such systems
arise particularly out of models which are lumped approxi-
mations of partial differential equations (p.d.e.s). One such
application concerns ring systems, which can be modeled
as circulant or block-circulant systems. These systems are
worthy of special mention because they provide a metaphor
for patterned systems. In [2] circulant systems arising from
control of systems modeled by discretized partial differential
equations are studied from a control perspective. The key
insight is that all circulant (or block circulant) matricesare
diagonalized (or block diagonalized) by a common matrix.

The starting point of our investigation was a study of
circulant systems from a geometric approach, based on a
hypothesis that circulant systems have deeper structural prop-
erties beyond diagonalization. The essence of the geometric
approach is to describe properties of the system in terms
of subspaces, and then to express conditions for controller
synthesis in terms of these subspaces [6]. Circulant matrices
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have a wealth of interesting relationships with the class
of subspaces invariant under theshift operator. Important
subspaces like the controllable subspace and the observable
subspace fall within this class. This greatly simplifies the
study of control problems like pole placement and stabiliza-
tion when it is desired that the controller be circulant as
well. In this paper these ideas about circulant systems are
extended to a broader family that includes all systems with
state, input and output transformations that are functionsof
a commonbase transformation. We call the members of this
family patterned linear systems.

In this first paper of a two part series, we study funda-
mental properties of patterned maps and their relationships to
certain invariant subspaces. Using this foundation, we follow
classical developments to build system theoretic properties of
patterned linear systems. Finally we study the classic control
synthesis problems [6]. A significant outcome of this study is
that if a general controller exists to solve any of the studied
control synthesis problems, then a patterned feedback exists.
In the second paper we study specific patterns - rings, chains,
and trees - which give relevance to the class of patterned
systems.

II. BACKGROUND

We assume that the reader is already familiar with the tools
of geometric control theory [1], [6]. LetX andY be finite-
dimensional vector spaces. We considerlinear mapsfrom X
to Y, denoted by bold capital letters, such asT : X → Y.
The plain capital, T, denotes a matrix representation of the
mapT. Let T : X → X be an endomorphism. LetSλ(T)
denote the eigenspace ofT associated with eigenvalueλ.
The Jordan subspaces ofT are given by

Jij(T) = span (vij , gi1, gi2, . . . , gi(pij−1)) ,

where each eigenvectorvij spawns the Jordan chain.
Let V andW be subspaces such thatX = V ⊕W . Map

QV : X → X denotes the projection onV alongW , NV :
X → V denotes the natural projection, andSV : V → X
denotes the insertion ofV in X . Useful relations are that
NVSV = IV andNWSV = 0. Given aT-invariant subspace
V ⊂ X , if there also exists a subspaceW ⊂ X such that
X = V ⊕ W and W is T-invariant, then we callV a T-
decouplingsubspace. The restriction ofT to V is denoted
by TV : V → V and is given byTV = NVTSV . Similarly,
defineTW : W → W , the restriction ofT to W , by TW =
NWTSW .

Let V ,W be T-decoupling subspaces such thatV ⊕
W = X . Suppose the minimal polynomial (m.p.) ofT,
ψ(s), has been factored asψ(s) = ψ−(s)ψ+(s) such that



X−(T) = Kerψ−(T), X+(T) = Kerψ+(T), andX−(T)
and X+(T) are the stable and unstable subspaces ofT.
Similarly, let ψV(s) be the m.p. ofTV and suppose it has
been also been factored asψV(s) = ψ−

V (s)ψ+
V (s) such that

V−(TV) = Kerψ−(TV ), V+(TV ) = Kerψ+(TV ). The
following result summarizes useful properties of stable and
unstable subspaces.

Lemma 2.1 ([6]): Let T : X → X be a linear map and
let V ,W ⊂ X be T-decoupling subspaces, i.e.TV ⊂ V ,
TW ⊂ W , andV⊕W = X . Then we have (i)NVX+(T) =
V+(TV); and (ii)X+(T) ⊂ V if and only if σ(TW ) ⊂ C−.

We denote the set of allT-decoupling subspaces inX
by D⋄(T;X ). Similarly, for any V ⊂ X , not necessar-
ily a T-invariant subspace, we denote the set of allT-
decoupling subspaces contained inV by D⋄(T;V); that is,
Y ∈ D⋄(T;V) if Y ⊂ V , Y is T-invariant, andY has anT-
invariant complement inX . (Note that the complement need
not be inV .) We also denote the set of allT-decoupling
subspaces inX containing V by D⋄(T;V). Decoupling
subspaces are closely linked to Jordan subspaces.

Lemma 2.2 ([3]): Every Jordan subspace ofT is a T-
decoupling subspace, and everyT-decoupling subspace is
the sum of Jordan subspaces ofT.

Lemma 2.3:Let V1,V2 ⊂ X be T-invariant subspaces,
and letJ ⊂ V1 + V2 be a Jordan subspace ofT. Then
J ⊂ V1 or J ⊂ V2.

We say that a subspaceV⋄ is thesupremumof D⋄(T;V),
denotedV⋄ = supD⋄(T;V), if V⋄ ∈ D⋄(T;V) and given
V ′ ∈ D⋄(T;V), then V ′ ⊂ V⋄. Analogously, we say that
a subspaceV⋄ is the infimumof D⋄(T;V), denotedV⋄ =
inf D⋄(T;V), if V⋄ ∈ D⋄(T;V) and givenV ′ ∈ D⋄(T;V),
thenV⋄ ⊂ V ′. Existence and uniqueness of a supremal ele-
ment ofD⋄(T;V) and an infimal element ofD⋄(T;V) relies
on the fact thatD⋄(T;V) andD⋄(T;V) have the structure
of a lattice under the operations of subspace addition and
subspace intersection.

Lemma 2.4:Given V ⊂ X , the setsD⋄(T;V) and
D⋄(T;V) are each closed under the operations of subspace
addition and subspace intersection.

Lemma 2.5:Let V1,V2 ⊂ X be T-invariant subspaces,
and letV⋄

1 := supD⋄(T;V1), V⋄
2 := supD⋄(T;V2), and

(V1 + V2)
⋄ := supD⋄(T;V1 + V2). Then (V1 + V2)

⋄ =
V⋄

1 + V⋄
2 .

III. PATTERNED L INEAR MAPS

Let t0, t1, . . . , tk ∈ R and consider the polynomialρ(s) =
t0 + t1s + t2s

2 + t3s
3 + . . . + tks

k. The argument of the
polynomial can be extended to become a matrix as follows.
Let M be ann× n real matrix. Thenρ(M) is defined by

ρ(M) := t0I + t1M + t2M
2 + t3M

3 + . . .+ tkMk.

Given T = ρ(M), then ρ(s) is called a representer of
T with respect to M, and it is generally not unique.
By Cayley-Hamilton theorem, our discussion will be
confined toρ(M) of order equal to, or less than,n − 1.
We define the set of all matrices that are polynomial
functions of a givenbase matrixM ∈ Rn×n by F(M) :=

{

T | (∃ t0, . . . , tn−1 ∈ R) T = t0I + t1M + . . .+ tn−1M
n−1

}

.
We call a matrixT ∈ F(M) an M-patternedmatrix.

Fact 3.1: Given T,R ∈ F(M) thenTR = RT.
Given M ∈ Rn×n, let then eigenvalues of M be denoted

by σ(M) = {δ1, δ2 . . . , δn}. Note that the spectrum is
symmetric with respect to the real axis since M is real. Define
a symmetric subset

{µ1, . . . , µm} ⊂ σ(M) (1)

such that each distinct eigenvalue is repeated onlymi times
in the subset, wheremi is the geometric multiplicity of the
eigenvalue. Then, associated with each eigenvalueµi is the
partial multiplicity pi. There exists a Jordan transformation
Ω such thatΩ−1MΩ = J, where J is the Jordan form of M.

Suppose we are given an arbitrary matrix and a base
pattern M. We can determine whether or not the matrix is
M-patterned.

Theorem 3.2:Given T ∈ Rn×n, then T ∈ F(M) if and
only if

(1) Ω−1TΩ = diag (H1,H2, . . . ,Hm),

whereHi =













hi1 hi2 · · · hipi

hi1
. . .

...

0
. . . hi2

0 0 hi1













, hij ∈ C,

(2) ∀ {i1, i2} ∈ {1, . . . ,m} if µi1 = µ̄i2 then

hi1j = h̄i2j , ∀j = 1, . . . ,min(pi1 , pi2) and

(3) ∀ {i1, i2} ∈ {1, . . . ,m} if µi1 = µi2 then

hi1j = hi2j , ∀j = 1, . . . ,min(pi1 , pi2).

Suppose we are given an arbitrary spectrum ofn values
and an objective to construct an M-patterned matrix with the
given spectrum. The next result presents the conditions under
which this is possible.

Lemma 3.3:Let L = {λ1, λ2, . . . , λn} , λi ∈ C. Suppose
the elements ofL can be reordered so that ifδi = δ̄j then
λi = λ̄j , and if δi = δj then λi = λj . Then there exists
T ∈ F(M), such thatσ(T) = L.
A spectrum that can be reordered in the manner of Lemma
3.3 is anM-patterned spectrum.

Lemma 3.4:Given T,R ∈ F(M) and a scalarα ∈ R,
then{αT,T + R,TR} ∈ F(M), andT−1 ∈ F(M) assuming
T−1 exists. Moreover, givenσ(T) = {τ1, . . . , τn} and
σ(R) = {̺1, . . . , ̺n}, both ordered relative to the eigen-
values of M, thenσ(αT) = {ατ1, . . . , ατn}, σ(T + R) =
{τ1 + ̺1, . . . , τn + ̺n}, σ(TR) = {τ1̺1, . . . , τn̺n}, and
σ(T−1) = {1/τ1, . . . , 1/τn}.

Next, consider a linear mapM : X → X . We define the
set of linear maps

F(M) := {T | (∃ t0, . . . , tn−1 ∈ R)

T = t0I + t1M + . . . + tn−1M
n−1

¯

.

We call a mapT : X → X , T ∈ F(M) an M-patterned
map. We now present some important relationships between
M-patterned maps andM-invariant subspaces.



Fact 3.5: Let V ⊂ X . If V is M-invariant, thenV is T-
invariant for everyT ∈ F(M).
Conversely, is aT-invariant subspace alwaysM-invariant?
The answer is not generally. The eigenvectors ofM are
all eigenvectors ofT; however, T may have additional
eigenvectors that are not eigenvectors ofM. Fortunately, it
is possible to identify certainT-invariant subspaces, useful
in a control theory context, that are alsoM-invariant.

Lemma 3.6:Let T ∈ F(M) and let ρ(s) be a polyno-
mial. ThenKer ρ(T) and Im ρ(T) areM-invariant andT′-
invariant for everyT′ ∈ F(M).

Lemma 3.7:Let T ∈ F(M). Then the following sub-
spaces areM-invariant and T-invariant: (i) the stable
and unstable subspaces:X−(T) and X+(T), and (ii) the
eigenspaces:Sλ(T), λ ∈ σ(T). Also, the spectral subspaces
of T areM-decoupling.

Suppose we are given anM-decoupling subspaceV . Then
there exists anM-invariant complementW , such thatX =
V ⊕W . SinceV is M-invariant, the restriction ofM to V ,
denotedMV : V → V , can be defined byMV := NVMSV .
Similarly, the restriction ofM to W can be defined by
MW := NWMSW . The next lemma contains the important
result that the restriction of anM-patterned mapT to an
M-invariant (orM-decoupling) subspace is itself patterned,
and the pattern is induced by the restriction ofM to the
subspace.

Lemma 3.8:Let T ∈ F(M). Then the restriction ofT to
V is given byTV = NVTSV and moreoverTV ∈ F(MV).
Given anM-patterned map, it is possible to create a decom-
posed matrix representation of the map, which splits into the
restrictions toV and toW .

Theorem 3.9 (First Decomposition Theorem):Let T ∈
F(M). There exists a coordinate transformationR : X → X
such that the representation ofT in the new coordinates is
given by

R−1TR =

»

TV 0
0 TW

–

, TV ∈ F(MV), TW ∈ F(MW).

The spectrum splits intoσ(T) = σ(TV) ⊎ σ(TW ).
The previous result shows how anM-patterned map can

be decoupled into smaller maps that are each a function of
M restricted to an invariant subspace. Now consider the
opposite problem. We are given a map that is a function
of M restricted to a subspace. The map can be lifted into
the larger spaceX , and we give a sufficient condition under
which it will be M-patterned.

Lemma 3.10:Let T1 ∈ F(MV). Define a mapT : X →
X by T := SVT1NV . If σ(MV) ∩ σ(MW ) = Ø, then
T ∈ F(M).

IV. SYSTEM PROPERTIES

Consider the control system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

wherex(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. We denote
the state space, input space, and output space byX , U

and Y, respectively. IfA,B,C ∈ F(M) with respect to
some M : X → X , then (C,A,B) is termed anM-
patterned systemor simply apatterned system. Observe that
for patterned systems,n = m = p, thus X ≃ U ≃ Y.
Also, the open loop poles of the system form anM-patterned
spectrum. In this section we examine the system theoretic
properties of patterned systems.

A. Controllability

Thecontrollable subspaceof a system is denoted byC. Let
B = ImB. For patterned systems it is immediately observed
that C = B, andC is M-invariant.

Definition 4.1: The patterned controllable subspace, de-
notedCM , is the largestM-decoupling subspace contained
in C. That is,CM := supD⋄(M; C).

Lemma 4.1:Let (A,B) be an M-patterned pair. Then
CM = {0}+

∑

λ∈σ(B),
λ 6=0

Sλ(B) and itsM-invariant complement

is S0(B).
Lemma 4.2:TheM-patterned pair(A,B) is controllable

if and only if CM = X .
In addition to the case when(A,B) is controllable,C and
CM also coincide whenS0(B) = Ker (B), which is to
say that there are no generalized eigenvectors associated
with the zero eigenvalue ofB. Instead when(A,B) is not
controllable, thenC andCM may differ.

B. Pole Placement

It is well known that the spectrum ofσ(A + BF) can be
arbitrarily assigned to any symmetric set of poles by choice
of F : X → U if and only if (A,B) is controllable. For a
patterned system, the question arises of what possible poles
can be achieved by a choice of patterned state feedback.

Theorem 4.3:The M-patterned pair(A,B) is control-
lable if and only if, for everyM-patterned spectrumL,
there exists a mapF : X → U with F ∈ F(M) such that
σ(A + BF) = L.

We conclude that if we are limited to patterned state
feedback, then the poles of anM-patterned system can
only be placed in anM-patterned spectrum. This is not
a severe limitation on pole placement, since stableM-
patterned spectra can be chosen for anyM.

C. Controllable Decomposition

Suppose we have a patterned system that is not fully
controllable, i.e.C 6= X . We show that it is possible to
decouple the system into two patterned subsystems, one that
is controllable and one that is completely uncontrollable by
a patterned state feedback. SinceCM is M-decoupling there
exists anM-invariant subspaceR such thatCM ⊕ R = X .
Let SCM

, NCM
, SR, andNR be the relevant insertion and

projection maps, and let the restrictions ofM to CM and
to R be denoted byMCM

andMR. Before we present the
decomposition, we note the following useful lemma.

Lemma 4.4:Let (A,B) be an M-patterned pair. Then
σ(MCM

) ∩ σ(MR) = Ø.
Theorem 4.5 (Second Decomposition Theorem):Let

(A,B) be anM-patterned pair. There exists a coordinate



transformationR : X → X for the state and input spaces
(U ≃ X ), which decouples the system into two subsystems,
(A1,B1) and (A2,B2), such that

(1) pair (A1,B1) is MCM
-patterned and controllable,

(2) pair (A2,B2) is MR-patterned,

(3) σ(A) = σ(A1) ⊎ σ(A2),

(4) σ(A2) is unaffected by patterned state feedback

in the classF(MR),

(5) B2 = 0 if CM = C.

D. Stabilizability

A system, or equivalently the pair(A,B), is stabilizable
if there existsF : X → U such thatσ(A + BF) ⊂ C−.
A system is stabilizable if and only ifX+(A) ⊂ C. For a
patterned system, the question arises of whether the system
can be stabilized with a patterned state feedback. We begin
with a useful preliminary result.

Lemma 4.6:Given an M-patterned pair (A,B), if
X+(A) ⊂ C, thenX+(A) ⊂ CM .

Theorem 4.7 (Patterned Stabilizability):Given an M-
patterned system(A,B), there exists a patterned state
feedback F : X → U with F ∈ F(M) such that
σ(A + BF) ⊂ C− if and only if X+(A) ⊂ C.

E. Observability

Theunobservable subspaceof a system is denoted byN .
By a duality argument, for patterned systemsN = KerC,
andN is M-invariant.

Definition 4.2: Thepatterned unobservable subspace, de-
notedNM , is smallestM-decoupling subspace containing
N . That is,NM := inf D⋄(M; N ).

Lemma 4.8:Let (C,A) be an M-patterned pair. Then
NM = S0(C) and its M-invariant complement is{0} +

∑

λ∈σ(C),
λ 6=0

Sλ(C).

Lemma 4.9:The M-patterned pair(C,A) is observable
if and only if NM = 0.
In addition to the case when(C,A) is observable,N and
NM also coincide whenS0(C) = KerC, which is to say
that there are no generalized eigenvectors associated withthe
zero eigenvalue ofC. Instead when(C,A) is not observable,
thenN andNM may differ.

F. Observable Decomposition

Suppose we have a patterned system that is not fully
observable, i.e.N 6= 0. We show that it is possible to
decouple the system into two patterned subsystems, one
that is observable and one that is patterned unobservable,
meaning that the poles of the subsystem cannot be moved
by any patterned measurement feedback. SinceNM is M-
decoupling, there exists anM-invariant subspaceR such that
NM ⊕R = X . Let SNM

, NNM
, SR, andNR be the relevant

insertion and projection maps, and let the restrictions ofM

to NM and toR be denote byMNM
andMR. We present

a supporting lemma, followed by the decomposition.

Lemma 4.10:Let (C,A) be anM-patterned pair. Then
σ(MNM

) ∩ σ(MR) = Ø.
Theorem 4.11 (Third Decomposition Theorem):Let

(C,A) be anM-patterned pair. There exists a coordinate
transformationR : X → X for the state and output spaces
(Y ≃ X ), which decouples the system into two subsystems,
(C1,A1) and (C2,A2), such that

(1) pair (C1,A1) is MR-patterned and observable

(2) pair (C2,A2) is MNM
-patterned

(3) σ(A) = σ(A1) ⊎ σ(A2)

(4) σ(A2) is unaffected by patterned measurement feedback

in the classF(MR)

(5) C2 = 0 if NM = N .

G. Detectability

A system, or equivalently the pair(C,A), is detectableif
and only ifX−(A) ⊃ N . If a system is detectable, then it is
possible to dynamically estimate any unstable states of the
system from the outputs. In the case of a patterned system,
we show that the unstable states can be recovered with a
patterned static model. First, we have a useful lemma.

Lemma 4.12:Given anM-patterned pair(C,A), if N ⊂
X−(A), thenNM ⊂ X−(A).
By Theorem 4.11 anM-patterned system can be decomposed
to separate out anMR-patterned observable subsystem,
denoted by(C1,A1). Since KerC1 = 0, the matrix C1

is invertible, andC−1
1 is MR-patterned by Lemma 3.4.

Thus, the observable states can be exactly recovered by
the patterned static modelx1 = C−1

1 y1. By assumption
X−(A) ⊃ N , which impliesX−(A) ⊃ NM by Lemma
4.12. EquivalentlyX+(A) ⊂ R, so by Lemma 2.1(ii),
σ (A2) ⊂ C−. Thus, when a patterned system is detectable,
all the patterned unobservable states are stable, making it
unnecessary to estimate them since they can generally be
assumed to be zero.

V. CONTROL SYNTHESIS

With the fundamental patterned system properties estab-
lished in the previous section, we consider several classic
control synthesis questions for patterned systems. The ob-
jective is to determine conditions for the existence of a
patterned feedback solution. Remarkably, it emerges that the
necessary and sufficient conditions for the existence of any
feedback solving these synthesis problems are also necessary
and sufficient for a patterned feedback.

A. Measurement Feedback

We are given a linear system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t),

wherex(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. The mea-
surement feedback problem (MFP) is to find a measurement
feedbacku(t) = Ky(t) such thatx(t) → 0 as t → ∞. A
geometric statement of the problem is to findK : Y → U



such thatσ(A + BKC) ⊂ C−. Stabilizing a system using
measurement feedback appears to be only a minor variation
of stabilization by full state feedback and one anticipatesa
similarly elegant solution. Unfortunately such an assumption
is mistaken, for the problem of stabilization (and more
generally pole-placement) by static measurement feedback
is very difficult. Finding testable necessary and sufficient
conditions for a general solution has been an open problem
in control theory for almost forty years despite considerable
effort, and remains unsolved today. The dynamic MFP, i.e.
the use of an observer, is generally considerably simpler
than the static MFP. However, in the context of distributed
systems, it is not evident how a single observer can be
distributed to multiple subsystems. Thus, the static MFP is
of particular interest for distributed systems. In the geometric
framework, the clearest results on the MFP were derived in
the seventies.

Theorem 5.1 ([5]): There existsK : Y → U such that
σ(A + BKC) ⊂ C− only if X+(A) ⊂ C andX−(A) ⊃ N .
Soon afterwards, Li [4] described a sufficient condition for
MFP.

Theorem 5.2 ([4]): Given a controllable and observable
triple (C,A,B), there existsK : Y → U such that
σ(A + BKC) ⊂ C− if

(X+(A)∩〈A | KerC〉)∩(X+(AT)∩〈AT | KerBT〉) = 0.
(2)

The sufficiency of the first part of the condition,(X+(A) ∩
〈A | KerC〉) = 0, can be derived by reformulating the
problem as finding a state feedbackF : X → U with the
restriction KerF ⊃ 〈A | KerC〉 on the feedback matrix.
Observe that〈A | KerC〉 denotes the smallestA-invariant
subspace containingKerC. In general, the hierarchy of the
subspaces is given by〈A | KerC〉 ⊃ KerC ⊃ N . In
the special case whereKerC is A-invariant, however, the
subspaces above are all equal. Since Li’s sufficient condition
requires that the system is observable, it is a given that
X+(A) ∩ N = 0; therefore, (2) is always met for the
special case. Patterned systems are one class of system
where Li’s sufficient condition is always true. We show that
the necessary condition of Theorem 5.1 becomes both a
necessary and sufficient condition for patterned systems.

Theorem 5.3:Given an M-patterned triple(C,A,B),
there exists a patterned measurement feedbackK : Y → U ,
K ∈ F(M), such thatσ(A + BKC) ⊂ C− if and only if
X+(A) ⊂ C andX−(A) ⊃ N .

B. Output Stabilization

We are given a linear system

ẋ(t) = Ax(t) + Bu(t)

z(t) = Dx(t),

wherex(t) ∈ Rn, u(t) ∈ Rm, and z(t) ∈ Rq. The output
stabilization problem (OSP) is to find a state feedbacku(t) =
Fx(t) such thatz(t) → 0 as t → ∞. The problem can be
restated in more geometric terms as finding a state feedback
F : X → U that makes the unstable subspace unobservable

at the outputz(t). Equivalently,X+(A + BF) ⊂ KerD.
The solution to the OSP requires the notion of controlled
invariant subspaces. A subspaceV ⊂ X is said to be
controlled invariantif there exists a mapF : X → U such
that (A + BF)V ⊂ V . Let I(A, B; X ) denote the set of all
controlled invariant subspaces inX . Similarly, for anyV ⊂
X , let I(A, B; V) denote the set of all controlled invariant
subspaces inV . It is well-known that OSP is solvable if and
only if X+(A) ⊂ C+V⋆ whereV⋆ := supI(A, B; KerD)
[6]. In order to solve the patterned version of the problem,
a new subspace is introduced.

Definition 5.1: We define V⋄ to be the largestM-
decoupling subspace contained inV⋆. That is, V⋄ :=
sup D⋄(M; V⋆).

Lemma 5.4:Given anM-patterned triple(D,A,B), if
X+(A) ⊂ C + V⋆, thenX+(A) ⊂ CM + V⋄.

Theorem 5.5:Given an M-patterned triple(D,A,B),
there exists a patterned state feedbackF : X → U , F ∈
F(M), such thatX+(A + BF) ⊂ KerD if and only if
X+(A) ⊂ C + V⋆.

C. Disturbance Decoupling

We are given a linear system

ẋ(t) = Ax(t) + Bu(t) + Hw(t)

z(t) = Dx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, w(t) ∈ Rr and z(t) ∈
Rq. The signalw(t) has been introduced to represent a
disturbance to the system. Suppose that the disturbance is
not directly measured, and furthermore, that we have no
information on its characteristics. If the outputz(t) is the
signal of interest, then one method to compensate for the
unknown disturbance is to find a state feedbacku(t) = Fx(t)
such thatw(t) has no influence onz(t) at any time. Then
the controlled system is said to bedisturbance decoupled.
DefineH = ImH. A geometric statement of the disturbance
decoupling problem (DDP) is to find a state feedbackF :
X → U such that〈A + BF | H〉 ⊂ KerD. It is well-
known that DDP is solvable if and only ifV⋆ ⊃ H, where
V⋆ := supI(A, B; KerD). The necessity of this condition
is clear, because for anyF such that〈A + BF | H〉 ⊂ KerD
we have〈A + BF | H〉 ∈ I(A, B; KerD) by definition
and H ⊂ 〈A + BF | H〉 ⊂ V⋆. The condition is also
shown to be sufficient by observing that ifV⋆ ⊃ H then
〈A + BF | H〉 ⊂ V⋆ ⊂ KerD.

Theorem 5.6:Given anM-patterned triple(D,A,B) and
a subspaceH ⊂ X , there exists a patterned state feedback
F : X → U , F ∈ F(M), such that〈A + BF | H〉 ⊂ KerD
if and only if V⋆ ⊃ H.

D. Regulation

We are given a linear system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

z(t) = Dx(t)



where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, z(t) ∈ Rq.
The output stabilization by measurement feedback problem
(OSMFP) is to find a measurement feedbacku(t) = Ky(t)
such thatz(t) → 0 as t → ∞. An equivalent geometric
statement of the problem is to findK : Y → U such
that X+(A + BKC) ⊂ KerD. Output stabilization by
measurement feedback is a regulation problem. The static
feedback case presented above is closely related to the
Restricted Regulator Problem (RRP), where the latter is
formulated as output stabilization by state feedback with a
restriction placed on the form of the state feedback in orderto
capture the condition that only certain states are measurable.

Problem 5.1 (Restricted Regulator Problem (RRP)):
Given a subspaceL ⊂ X with AL ⊂ L, find a state
feedbackF : X → U such that

KerF ⊃ L

X+(A + BF) ⊂ KerD.

The subspaceL provides a geometric way to capture the
information structure in the problem. This is because the
condition KerF ⊃ L effectively characterizes which states
can be employed by the state feedback. A key condition in
the statement of the RRP is thatL must be anA-invariant
subspace; this condition makes the problem tractable. The
choice ofL can be understood a little better by decomposing
the dynamics of the system. SinceL is A-invariant there
exists a coordinate transformationR : X → X , such that in
the new coordinates the matrix pair(A,B) becomes

(

R−1AR,R−1B
)

=

([

A1 A2

0 A3

]

,

[

B1

B2

])

.

This separates the dynamics on and offL. The condition
KerF ⊃ L implies that in new coordinates̃F =

[

0 F2

]

,
and

Ã + B̃F̃ =

[

A1 A2 + B1F2

0 A3 + B2F2

]

.

The idea is to chooseL such that all the states offL, or at
least estimates of them, are available to be used as feedback.
Then the dynamics of the available states can be controlled
separately from those onL. If an observer is employed, one
could useN , the unobservable subspace, asL since it is
alwaysA-invariant. However, OSMFP calls for only static
measurement feedback, rather than an observer. To obtain a
solution, a necessary criterion isL ⊃ KerC.

There is a special case,KerC = N , corresponding
to all the observable states being recoverable by a simple
transformation of the measurements. ThenKerC is A-
invariant and could be used asL, which implies that the RRP
is exactly equivalent to the original Output Stabilizationby
Measurement Feedback Problem. In the case whereKerC 6=
N , KerC is notA-invariant and a larger subspace must be
chosen forL, generally the smallestA-invariant subspace
containingKerC, which is 〈A | KerC〉. The subtle diffi-
culty is that now the RRP is more stringent than the original
problem, and the solution to the RRP represents only suf-
ficient, but not necessary, conditions for output stabilization

by measurement feedback. To find sufficient and necessary
conditions is not generally solved at this time. Ultimatelyit
is the same static Measurement Feedback Problem described
previously, and it is a longstanding open problem in control.

The general solution to the RRP relies on finding a
maximal element, denoted byVM, of a rather structurally
complex family of subspaces (refer to [6]). There exists a
simpler condition that applies under the sufficient condition
thatVM = V⋆, whereV⋆ := supI(A, B; KerD).

Corollary 5.7 ([6]): SupposeA(L ∩ KerD) ⊂ KerD.
Then the RRP is solvable if and only ifX+(A)∩L ⊂ KerD
andX+(A) ⊂ C + V⋆.

Now we return to the problem for patterned systems.
Given anM-patterned triple(C,A,B) and an output map
D : X → Z, D ∈ F(M), the OSMP problem is to find a
patterned measurement feedbackK : Y → U , K ∈ F(M),
such thatX+(A + BKC) ⊂ KerD. For patterned systems,
the appropriateL to choose is the patterned unobservable
subspaceNM . It is A-invariant by Fact 3.5, so we can show
that solving the patterned OSMF is exactly equivalent to
solving the following restricted regulator problem.

Theorem 5.8:Given anM-patterned pair(A,B), and an
output mapD : X → Z, D ∈ F(M), there exists a
patterned state feedbackF : X → U , F ∈ F(M), such
that KerF ⊃ NM andX+(A + BF) ⊂ KerD if and only
if X+(A) ∩ NM ⊂ KerD andX+(A) ⊂ C + V⋆, where
V⋆ = supI(A, B; KerD).
Assume that the conditions to solve the Patterned RRP are
met for a given system. Then there exists a patterned state
feedbackF : X → U , F ∈ F(M), such thatKerF ⊃ NM ⊃
KerC. It follows that there exists a measurement feedback
K : Y → U that solves the equationKC = F. Furthermore,
K ∈ F(M), and we have thatX+(A + BKC) ⊂ KerD.
Conversely, ifKerF + KerC then there exists no solution
K to KC = F. And, if F /∈ F(M) then any solutionK
would not be a member ofF(M). We draw the following
conclusion.

Corollary 5.9: There exists a solution to the Patterned
OSMFP if and only if there exists a solution to the Patterned
RRP.
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