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Abstract— In a first paper we studied system theoretic prop-
erties of patterned systems and solved classical control sthesis

bt
problems with the added requirement to preserve the system O p\‘
pattern. In this second paper we study canonical patterns:ings,
chains, and trees, and we give examples drawn from multiagen g % @ @ 6% 8\()
systems, cellular chemistry, and control of diffusion proesses.
@ (b) (©)
I. INTRODUCTION

In the first paper [4] of a two-part series we introduced Fig. 1. Pattemns: (a) chains, (b) rings, and (c) trees.
and studied a new class of linear control systems called
patterned systems. Mathematically, this class has theepiop
that the state, input and output transformations of thealine subsystems are depicted in Fig. 1, where each circle repre-
state space model are all functions of a common basents a subsystem, and arrows represent interactionsdsetwe
transformation. The motivation for studying such systesis isubsystems. These patterns are notable because they have
their interpretation as a collection of identical subsyse physical interpretations. In this paper we consider rimgje,
with a pattern of interaction between subsystems that ind tree patterns useful in engineering design. Then we give
imprinted by the base transformation. examples of control of such systems, using the theory devel-

The control of systems made up of identical subsysteneped in the companion paper [4]. These examples include the
connected in a pattern appears and reappears in the contralst typical application areas in multiagent systemsptzl|
literature as researchers have come across real applisatichemistry, and control of PDE’s.
with notable structural features. Most commonly the patter
is spatial in nature, consequently these systems are often Il. PATTERNS
referred to asspatially interconnected. A rich source of A. Rings

applications is systems described by a lumped approximatio 1 topology of a ring system consists of a closed chain

of partial differential equations such as smart materialgy jqentical subsystems that interact in a repeated pattern
As [1] observed, advancements in the design of MiCrog js 5 common, simple pattern found in natural and man-
Electro-Mechanical (MEM) parts suggest that controlling,» e systems. Mathematically, ring systems can be referred
such systems by means of an array of identical miniatuig 55 circulant systems, because the matrices in a state spac

sensors and actuators is an increasingly realistic model. Aodel of a fing have a circulant, or more generally block
mature application of a lumped approximation of a PDE’S iSiujant. form

the cross-directional control of sheet and film processed) s 1) Circulants: Circulant matrices are square matrices of
as paper-making, steel rolling and plastic extrusion. I& ththe form
multi-agent area, applications include evenly spaced agswv

and geometric pattern formation. In the field of large-scale G 2 o e
systems, decentralized control of systems with symmetri-  _ . | o a Cn—1
. . . o = circ (¢1,¢2,...,¢n) = . )

cally interconnected identical subsystems has applicstiio : )
multimachine power systems and parallel networks of units cs 3 1
in a plant, such as pumps or reactors. Finally, building up (1)
complex systems by repetition of simple components haghe set of circulant: x n matrices is denoted bg,. We
useful parallels to biological systems. now explore some additional properties of circulant masic

Many of the examples listed above are complex systenisrst, we define thehift operator as a circulant permutation
that are made of a large number of simple subsystenmsatrix given byII := circ (0, 1,0,...,0). Every circulant

with simple patterns of interaction. This suggests that matrix can be expressed as a functioilofFrom the general
useful starting point is to examine the most elementarform of a circulant matrix shown in (1), it is easily seen that
patterns. Examples of some elementary patterns of idéntidd is given by
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2) Symmetric Circulants: Consider now the subclass of where the internal 2-state model of each subsystem is itself
symmetric circulant matrices. A circulant matrix,C, is circulant. This can be viewed as a two layer hierarchy of

termedsymmetric if CT = C. ThenC has the form circulant systems. The general model of this hierarchy is
given by
Ccop C1 Cy C1
¢ Co Ca ap ay | by b1 |co

ai ag | b1 by |1 co
Co C1 ag aj bo bl
C1 Co | a1 aop b1 b()
bp b1 |co c1|ag a1
An appropriate base matrix for the symmetric circulantglas by by |1 co|lar ao
is any matrix whose eigenvectors are the Fourier vectors

(hence a circulant matrix) and whose spectrum has the for\%:]ere Alsa bI.OCk cm;ulant m.atnx af 2 circulant blocks.
e base matrix for this class is the Kronecker tensor prioduc

{1, A\2,..., A2, \1}, where eigenvalues\;, ..., A.11 are . .
distinct for oddn, or Ay, .. Sy Anyq are distinct for evem. of two shift operators given by
A base matrix with these properties is 0 0|0 1]0 O
0 1 0 1 0 0|1 0[O0 O
HelLom— |0 0[0 001
1 0 . 0 TEETE T L0 00 010
= ] , 0 1{0 0[]0 O
0 101 1 00 010 O
1 0 1 0 ThenwehaveA:aOI+bOH+COH2+a1H3+b1H4—|—c1H5.
where ¥ = 1II + IIT. Clearly, ¥ is itself sym- B. Chains
m2etr|c C';Elilan;’ anflﬁwe f|n2d th?l;ts e'gﬁﬂ‘{a'“es are Open chains of identical subsystems are modeled by
({axbuéc—reu(; Wi et et W, as Toeplitz matrices. Numerous applications of open chain

. . systems exist, including vehicle convoys, mass transislin
3) Factor Circulants: Factor circulants are not a sub-class y 9 y

of circulants; they are a generalization of the circulamirfo serpentine manipulators, cross-directional control oftien
.  NEY 9 uous processes such as papermaking, and lumped approx-
Consider the matrix

imations of PDE’s. Despite the simple structure of open
o 1 Cn—2 Cp—1 chains, proving the existence of Toeplitz controllers ttvaso
PCn-1  Co Cn—2 control problems for general Toeplitz systems is difficult
because Toeplitz matrices do not form a patterned class
with a single base pattern. However, if a long chain can
be reasonably approximated as having infinite length, then
certain control problems are actually simplified. For ex@amp
Itis called ap-circulant or, more broadly, dactor circulant  Brockett and Willems [2] showed that the optimal control of
matrix. Factor circulants are a sub-class of Toeplitz me#i  infinite Toeplitz systems has an infinite Toeplitz form. Véhil
and given some it is easily observed that evepycirculant  the optimal control of finite-dimensional Toeplitz systems

PpC2 Co C1
6] 26 PCn—1 Co

matrix is a function of the base matrix is not generally Toeplitz, there is a method for arriving at
0 1.0 --- 0 the optimal control of symmetric Toeplitz systems through

oo 1 -+ 0 a conversion to a circulant form [7]. An example in the

M, = . S context of pole placement is given below. Although Toeplitz

' : systems do not form a patterned class, the special case of
000 1 upper (or lower) triangular Toeplitz matrices is patterned
¢ 00 -0 which corresponds to open chains with the property that
so factor circulants are patterned matrices. A notablesalés interconnections between subsystems are in one direction
factor circulants are thél_,)-patterned orskew-circulants only.
matrices. 1) Uni-directional Chains: A uni-directional chain de-

4) Hierarchies of Circulants. Block patterned systems, scribes a pattern where each subsystem only interacts with
where each subsystem has its own multi-state internal modekigbouring systems ahead of it (or behind it) in a chain.
generally do not fit directly into the framework that we havd-igure 2 shows an example of a chain of length four and
presented, and they are an area of future research. Howeatthe possible levels of interaction that might be present
certain hierarchies of patterns can be modeled as simpdae direction. Assuming subsystems have one state, an arrow
patterned systems. One example that has been identified if@m subsystem to subsytem; denotes that the dynamics
hierarchy of circulant systems. For example, considerethref j are impacted by the state of When all these levels
subsystems that are connected in a circulant pattern, aaflinteraction are summed together we obtain the general
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Fig. 2. Levels of interaction for a chain of four identicalbsystems Fig. 3. Levels of interaction for a three level symmetriceti@ identical
o subsystems
following base pattern
(1 0
matrix form of a triangular Toeplitz matrix 1 0
. 0 0 N, = o , Np, € R*5,
21 20 0 0 |0 1 0
7 = ' ' , (2) Letn = 5. Then an arbitrary polynomial df;, has the form
y poly
Zn—2 20 I * 0 0
Zn—1 Rn—2 Z1 20 * 20 0 0
and by inspection it is easily seen that triangular Toeplitz oA %
matrices are actually a sub-class of factor circulants,revhe *oZ2oAa A
the factor is zero. L7 & %2 A %

The elementsy, throughz, can be set arbitrarily, but the
Now, let X be ann-dimensional vector space and letelements denoted by are dependent on the choice of
T : ¥ — X be some transformation. If there exists The pattern implies a trade-off between the interactions of
such thatT* = 0, thenT is callednilpotent. Consider the the leader subsystem and those of its followers. In this way,
transformation represented in the natural basis by one can propose a humber of base matrices that are variations
on the fundamental nilpotent matrix and which impose a uni-

(1) 0 0 directional chain pattern on a system.
N = , N e R,
I C. Trees
0 1 0

Consider the typical structure of an organizational hierar

It is easily shown thalN" = 0, so N is nilpotent and we chy, such as a military chain of command. At the top is a
call N the fundamental nilpotent matrix. It is easily shown sjngle individual leader, and the leader has some number
that every lower triangular Toeplitz matrix is a function ofof direct reports. Then each of these sub-leaders in turn
N. Examining the general form (2), Z is given by has a number of individuals reporting to them, and so forth
down the chain of command. Graphically such a structure
resembles a tree. Tree structures appear to be less studied
The matrix N is already in Jordan form (transposed), anih the control literature than rings or chains, thus the slas
its properties reveal some interesting limitations of uniseems particularly fruitful for further investigation.
directional chains. Since N consists of a single Jordan 1) Uni-directional Trees: A uni-directional tree describes
block, its spectrum is a set of zeros and it has only one a pattern where each subsystem only interacts with thedayer
eigenvector. Thus, an N-patterned spectrum consists of 2800Ve (or below it) in a hierarchy. Two examples of trees

with identical subsystems are depicted in Figures 3 and 4,

identical real eigenvalues, and given a triangular Tozpmalong with all the possible levels of interaction that migkt

system, all the system poles must be moved together gtesent in one direction. Consider first the system in Figure
the pattern is to be preserved. This implies that triangul@®. Assuming subsystems each have one state, when the levels
Toeplitz systems are either completely controllable or ndire summed together we obtain the system model

patterned controllable at all.

Z =zl + 21N 4+ 2oN? 4+ -+ . 4 2z, N1,

a O O O O 0 O
al aop 0 0 0 0 0
Consider a slight modification to the triangular Toeplitz . a0 ‘BO 0 8 8 8
model to allow the first subsystem in the chain, referred to ~ * = % = Zz Zi 0 %0 @ 0 0 v
as the leader subsystem, to have different local dynamics a2 0 a 0 0 as O
0O 0 O

and interactions from the rest of the chain. We define the az 0 a1



The matrix A; is in the family of triangular matrices, but
we are not aware of an established name for this particular
structure. A suggestion is to call it the 1-2-2 tree clasg. Al
1-2-2 trees can be generated by the base matrix

[0 0 000 0 0]
1 00 0 0 0 O
1 00 0 0 0 O (@ (b) (c) (d)

H={01 0 0 0 0 0 {,

0O 1 0 0 0 0 0 Fig. 4. Levels of interaction for a four level asymmetricetref identical
001000 0 subsystems

1001 0 0 0 0|

such that S )
Ay = aol + a1 H; + aoH2. objective is consensus. The consensus problem is an output

stabilization by measurement feedback problem. Consensus

Next we consider the system in Figure 4, which modelgan be achieved if there exists a measurement feedback
a more lopsided tree. When the levels are summed togeth@ntroller » = Ky, such thatz — 0 as¢ — oo, where

we obtain the system model variable > defines the global consensus objective. A general
Tap 0 0 0 0 0 0 0] K assumes full communication between agents. It is degrabl
@ a 0 0 0 0 0 0 to impose structural constraints on K to limit communicatio
@ 0 a 0O 0 0 0 0 We illustrate with an example.
. aa 0 0 a O 0 0 0 We are givem identical robots and the global objective of
&= Agw = @ ap 0 0 a O 0 o0 |7 rendezvous. Suppose the measurements taken by each robot
as 0 a 0 0 a 0 0 must be identical up to indices, and identical local coters|
as 0 as 0 0 a ap O (up to indices) must be distributed. What measurements
as 0 az 0 0 a 0 ag are required for local controllers to exist? The robots are

modeled as integrators; = u; for i = 1,...,n. Combine

Despite the lack of symmetry in the layers of the tree, therﬂ\wn robot subsystems together to obtain

exists a base matrix that generates this class of matrices.

- A 0 0 0 0 1 0
0000O0O0TO OO P S .
1 0 000 0 0 O : :
1 0 000 0 0 O 0 0 0 0 0 1
1 . . .

Hy; = 0 (1) 8 8 8 8 8 8 , We restrict the measurement matrix C to take on a circulant
00100000 pattern, so that each robot takes the same measurements up
0000010 0 to indices, giving

(000000 10 0] co €1 ot et
Cn—1 (&4) Cn—2
then , ; y=Czx = r
Ay = aol + a1Hy + aoHj + azHj .
C1 C2 Co

As with uni-directional chains, variations on these treacst
tures can be experimented with to allow some subsystemshuot we do not specify C up front. Rendezvous is achieved
be different from others. Bi-directional trees are not genwhen all the robots converge to a common position, which
erally patterned, consequently they present a more difficutan also be expressed as the relative positions of all robots

problem, in analogy with bi-directional chains. stabilizing to zero. A suitable global objective model is
[1l. | LLUSTRATIVE EXAMPLES -1 1 --- 0 O
We present several examples of patterned systems with 0 -1 0 0
. . ) z=Dx = . . xT.
associated stabilization problems. These basic exampes a : :
not at the level of true applications; rather they are inéshd 1 0o --- 0 -1

to convey the breadth of research areas that touch on pat- )
terned systems and to illustrate the meaning of our themileti ThUS We have a circulant system whefé,B,C,D} ¢

results. $(IT). The control problem is to find. = Ky, K € F(II)
. such thatz — 0 ast — oo. By the results of [4], there
A. Multi-agent Consensus exists a solution to this Patterned Output Stabilization by

A multi-agent system consists of several subsystems thteasurement Feedback Problem if and only if there exists
act autonomously, and an extensively studied multi-ageat solution to the Patterned Restricted Regulator Problem.



i. Turing’s model is given by
dt

= ax; (t) + 61141 (t) + K (IiJrl(t) — 2ZCZ (t) + Iifl(t))
= (21 () + (5 = Dat) + 21 (0)) + Buat),
(@ (b) fori=1,...,n. Leta =2, 3 =—1 andx = 0.5. Consider

the concentration of chemical to be a controlled input in
each cell. Then the cellular ring system has the circulané st

Fig. 5. Graphs of different sensor formations for multi-@blzonsensus:

(a) unconnected graph, and (b) connected graph space model
1 05 0 .-+ 05
05 1 05 0
‘Z'L(t) = . ‘Z'L(t) — Iul(t)
A solution to the Patterned RRP exists if and only if 05 0 0 ... 1

XT(A)NNy € KerD andX™(A) C C+V*. For the given _ _
system, we havet*(A) = R”, Ny = KerC, (C is still Observe that this system is unstable. We assume that the

undefined)Ker D = span {(1,1 1)}, C=ImB =R" cell concentrations are measurable, and the objective is to
and V* = KerD. Then a suitable controller will exist find @ state feedback controller(t) = Fx(t) that brings
provided that the concentrations into equilibrium. We can express this
objective asz(t) — 0 ast — oo, where
R™ NNy Cspan {(1,1,...,1)}, 11 0 0
and R" CR" +span {(1,1,...,1)}. 0 -1 -~ 0 0
Clearly, the second condition holds. The first condition®(t) = Dz (t) = : : z(t), Ded
imposes constraints al’;,. If we choose the measurement 1 0 .. 0 -1
model
1 0 0 This is the Patterned OSP, which, by the results of [4], is
0 -1 00 solvable if and only if¥*(A) c C+V*. SinceC =ImB =
y = Cr = . R™, the problem has a solution.
r 0 - 0 -1 C. Discretized Partial Differential Equations
thenAy, = (1,1,...,1) and the first condition also holds. In . We consider a simple example of how a symmetric

this case, we conclude that a circulant controller to aghievioeplitz system can be converted to a patterned circulant

consensus exists. One solution would be the decentralizegstem for the purposes of computing a controller.(t d)

controlleru = y. be a continuous function of two variables, defined over an
Suppose we choose instead a measurement model whigrigrval 0 < d < [. A lumped approximation to the multi-

a robot measures its relative distance to the robot two placéimensional function is a set of + 1 continuous functions

ahead, given by xo(t),x1(t),...,z,(t) that samplex(t,d) at regular spac-

ings along the intervall. Let the space between sample

-0 1o 00 functions beh := L, thenz;(t) = z(t,ih). If the partial
y=Cz = ¢ -1 0 -1 .- 0 0 . derivatives in time and space are appropriately approxachat
‘ : : (using finite differences), one obtains a discretizatiorhef
0 1 0 0 - 0 —1 PDE. For example, consider the diffusion process
Then Ny, = (1,1,...,1) if n is odd, but N3y = Ox(t, d) _ k82x(t,d) 3)
span {(1,0,1,0,...,1,0),(0,1,0,1,...,0,1)} if n is even. ot ad?

In the first scenario, a controller exists; whereas, in th@&herex is the process variable antlis a spatial variable.

second, the conditions of the Patterned RRP are not m&Vhen the process variable is temperature, this PDE is called

The conclusions from this example can also be interpretete heat equation. Assume the model holds over an interval

in terms of graph theory results on consensus. 0 < d < I, and assume boundary conditions on the process
of z(¢,0) = «(¢t,l) = 0 for all time. Suppose we control
the diffusion process by adding— 1 control inputs that act

B. Cellular Chemistry on the derivative of th_e process variable and that are spaced
evenly along the spatial extent. There are also sensorsof th

Turing [6] proposed that, for the purposes of studyingfrocess variable at each controller location. Then, udieg t
cellular chemical reactions, one simple and illustrative a inite difference method, we obtained the discretized model

rangement of cells is a ring. Given a ring of identical dz;(t) k
. o = — (i1 (t) — 224(t i1 (t (1),
cells, letx; denote the concentration of chemicalin cell dt h? (wit1(8) = 203(t) + @i (1)) + wilt)




i=1,...,n—1 and the boundary conditions(t) = 0 and in anyX-patterned spectrum if and onlyif*(A.) C C. The
2, (t) = 0 for all time. controllable subspace of the patterned systermmif3., so
In matrix form this system has A and B matrices which arelearly C = X and the conditiont* (A.) C C holds. Let
symmetric and Toeplitz. Brockett and Willems [3] showed .
trz/at one way to find z near Toeplitz state feedbac[k]F such that T = ¢irc (=4, ~0.65,1.5,0.65,1,0.65,1.5, ~0.65).
u(t) = Fz(t) achieves a desired trajectoryt) is to model It can be shown that
the Toeplitz system by a larger circulant system. A circtilan 5 3 4
solution can be easily reduced to a solution for the Toeplitz Fe = —101+0.058% 4 0.055%7 4 0.098%7 4 0.084%
system. The expanded circulant system is constructed by +0.13%° 4+ 0.069%° — 0.0082%7,
creating_ a mirror imagg of the original system and t.heP:onfirming thatF, € 3(X). We obtaino(A, + B.F,) —
connecting it to the original system at the boundary pomt%

Consider the expanded circulant system 0, -8, ~8, ~10, ~10, ~10, ~10, —8}, which meets our pole
P Y placement criteria. Since we have found a symmetric cir-

culant solution to the extended problem, we will meet the
conditions of Proposition 3.1. The corresponding solufion

wherez € R2"~1 andu € R2"~. Let the initial states;;(0) {0 the original Toeplitz system is

k
T = ﬁcirc(—Q,l,O,--- ,0,1)x + Tu

in the extended system equal the initial statgd) in the _55 —1.29 0.5
original Toeplitz system foi = 1, ..., n—1. Further, assume F=1| —-1.29 5 —1.29
thatzs,;(0) = —2;(0) fori = 1,...,n— 1. Then we have 05 —1.29 —55

the following result.

Proposition 3.1 ([3]): If () uo(t) = un(t) = 0: (b) us(?) Then the closed loop system becomes

in the extended system is applied ag¢) in the original -95 0.71 0.5
system fori = 0,1,...,n; and (C)ugn—;(t) = —u;(t) for z(t)y=1| 071 =9 071 | z(t),
i =1,...,n—1, thenzo(t) = z,(t) = 0, z;(t) is the 0.5 0.71 —9.5

same for both systems for=1,...,n— 1, andza,_;(t) =

whereo(A+BF) = {—8, —10, —10}, as desired. Notice that
the solution F that we have found is not exactly Toeplitz, but
Mear Toeplitz, as desired.

—x;(t), fori=1,...,n— 1.

Now we apply the method to a pole placement proble
for the diffusion process (3) witlk = 2 over the interval
0 < d < 4. Let the spacing between lumped approximations IV. CONCLUSION

along the interval be 1, them = 4. This discretizes the PDE  \ye have introduced a new class of linear control systems

into three differential equations. Assuming that 3 diseretcg|led patterned linear systems. The contribution is iringi
controllers are spaced evenly along the interval, the &p&@t 1y jtiple patterns under the umbrella of a general theory.

are given by Examination of applications is left to future research; how
4 92 0 1 0 0 ever, the range of practical applications can be signifigant
i(t) = 2 _4 2 lz®)+ |0 1 0 |u(), enlarged if the theory is extended to block patterned system

0 2 —4 00 1 Other future research ideas include linear combinations of

] » patterned systems and infinite-dimensional systems.
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