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Abstract— In a first paper we studied system theoretic prop-
erties of patterned systems and solved classical control synthesis
problems with the added requirement to preserve the system
pattern. In this second paper we study canonical patterns: rings,
chains, and trees, and we give examples drawn from multiagent
systems, cellular chemistry, and control of diffusion processes.

I. I NTRODUCTION

In the first paper [4] of a two-part series we introduced
and studied a new class of linear control systems called
patterned systems. Mathematically, this class has the property
that the state, input and output transformations of the linear
state space model are all functions of a common base
transformation. The motivation for studying such systems is
their interpretation as a collection of identical subsystems
with a pattern of interaction between subsystems that is
imprinted by the base transformation.

The control of systems made up of identical subsystems
connected in a pattern appears and reappears in the control
literature as researchers have come across real applications
with notable structural features. Most commonly the pattern
is spatial in nature, consequently these systems are often
referred to asspatially interconnected. A rich source of
applications is systems described by a lumped approximation
of partial differential equations such as smart materials.
As [1] observed, advancements in the design of Micro-
Electro-Mechanical (MEM) parts suggest that controlling
such systems by means of an array of identical miniature
sensors and actuators is an increasingly realistic model. A
mature application of a lumped approximation of a PDE’s is
the cross-directional control of sheet and film processes, such
as paper-making, steel rolling and plastic extrusion. In the
multi-agent area, applications include evenly spaced convoys
and geometric pattern formation. In the field of large-scale
systems, decentralized control of systems with symmetri-
cally interconnected identical subsystems has applications in
multimachine power systems and parallel networks of units
in a plant, such as pumps or reactors. Finally, building up
complex systems by repetition of simple components has
useful parallels to biological systems.

Many of the examples listed above are complex systems
that are made of a large number of simple subsystems
with simple patterns of interaction. This suggests that a
useful starting point is to examine the most elementary
patterns. Examples of some elementary patterns of identical
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Fig. 1. Patterns: (a) chains, (b) rings, and (c) trees.

subsystems are depicted in Fig. 1, where each circle repre-
sents a subsystem, and arrows represent interactions between
subsystems. These patterns are notable because they have
physical interpretations. In this paper we consider ring, chain,
and tree patterns useful in engineering design. Then we give
examples of control of such systems, using the theory devel-
oped in the companion paper [4]. These examples include the
most typical application areas in multiagent systems, cellular
chemistry, and control of PDE’s.

II. PATTERNS

A. Rings

The topology of a ring system consists of a closed chain
of identical subsystems that interact in a repeated pattern.
It is a common, simple pattern found in natural and man-
made systems. Mathematically, ring systems can be referred
to as circulant systems, because the matrices in a state space
model of a ring have a circulant, or more generally block
circulant, form.

1) Circulants: Circulant matrices are square matrices of
the form

C = circ (c1, c2, . . . , cn) =











c1 c2 · · · cn

cn c1 cn−1

...
. . .

c2 c3 c1











.

(1)
The set of circulantn × n matrices is denoted byCn. We
now explore some additional properties of circulant matrices.
First, we define theshift operator as a circulant permutation
matrix given byΠ := circ (0, 1, 0, . . . , 0). Every circulant
matrix can be expressed as a function ofΠ. From the general
form of a circulant matrix shown in (1), it is easily seen that
C is given by

C = c1I + c2Π + · · · + cnΠn−1.

Thus, circulant matrices form the patterned classF(Π), and
we can alternately refer to them asΠ-patterned matrices.



2) Symmetric Circulants: Consider now the subclass of
symmetric circulant matrices. A circulant matrix,C, is
termedsymmetric if CT = C. ThenC has the form















c0 c1 c2 c1

c1 c0 c2

. . .
c2 c0 c1

c1 c2 c1 c0















.

An appropriate base matrix for the symmetric circulant class
is any matrix whose eigenvectors are the Fourier vectors
(hence a circulant matrix) and whose spectrum has the form
{λ1, λ2, . . . , λ2, λ1}, where eigenvaluesλ1, . . . , λn+1

2

are
distinct for oddn, or λ1, . . . , λn

2
+1 are distinct for evenn.

A base matrix with these properties is

Σ =

















0 1 0 1

1 0
. . . 0

. . .
. . . 1

0 1 0 1
1 0 1 0

















,

where Σ = Π + ΠT. Clearly, Σ is itself sym-
metric circulant, and we find that its eigenvalues are
{

2, ω + ωn−1, ω2 + ωn−2, . . . , ω2 + ωn−2, ω + ωn−1
}

, as
expected.

3) Factor Circulants: Factor circulants are not a sub-class
of circulants; they are a generalization of the circulant form.
Consider the matrix















c0 c1 cn−2 cn−1

ϕcn−1 c0 cn−2

. . .
ϕc2 c0 c1

ϕc1 ϕc2 ϕcn−1 c0















.

It is called aϕ-circulant or, more broadly, afactor circulant
matrix. Factor circulants are a sub-class of Toeplitz matrices,
and given someϕ it is easily observed that everyϕ-circulant
matrix is a function of the base matrix

Π(ϕ) =















0 1 0 · · · 0
0 0 1 · · · 0

...
. . .

...
0 0 0 1
ϕ 0 0 · · · 0















,

so factor circulants are patterned matrices. A notable class of
factor circulants are theΠ(−1)-patterned orskew-circulants
matrices.

4) Hierarchies of Circulants: Block patterned systems,
where each subsystem has its own multi-state internal model,
generally do not fit directly into the framework that we have
presented, and they are an area of future research. However,
certain hierarchies of patterns can be modeled as simple
patterned systems. One example that has been identified is a
hierarchy of circulant systems. For example, consider three
subsystems that are connected in a circulant pattern, and

where the internal 2-state model of each subsystem is itself
circulant. This can be viewed as a two layer hierarchy of
circulant systems. The general model of this hierarchy is
given by

ẋ = Ax =

















a0 a1 b0 b1 c0 c1

a1 a0 b1 b0 c1 c0

c0 c1 a0 a1 b0 b1

c1 c0 a1 a0 b1 b0

b0 b1 c0 c1 a0 a1

b1 b0 c1 c0 a1 a0

















x,

where A is a block circulant matrix of2×2 circulant blocks.
The base matrix for this class is the Kronecker tensor product
of two shift operators given by

H = Π3 ⊗ Π2 =

















0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0

















.

Then we haveA = a0I+b0H+c0H
2 +a1H

3 +b1H
4 +c1H

5.

B. Chains

Open chains of identical subsystems are modeled by
Toeplitz matrices. Numerous applications of open chain
systems exist, including vehicle convoys, mass transit lines,
serpentine manipulators, cross-directional control of contin-
uous processes such as papermaking, and lumped approx-
imations of PDE’s. Despite the simple structure of open
chains, proving the existence of Toeplitz controllers to solve
control problems for general Toeplitz systems is difficult
because Toeplitz matrices do not form a patterned class
with a single base pattern. However, if a long chain can
be reasonably approximated as having infinite length, then
certain control problems are actually simplified. For example,
Brockett and Willems [2] showed that the optimal control of
infinite Toeplitz systems has an infinite Toeplitz form. While
the optimal control of finite-dimensional Toeplitz systems
is not generally Toeplitz, there is a method for arriving at
the optimal control of symmetric Toeplitz systems through
a conversion to a circulant form [7]. An example in the
context of pole placement is given below. Although Toeplitz
systems do not form a patterned class, the special case of
upper (or lower) triangular Toeplitz matrices is patterned,
which corresponds to open chains with the property that
interconnections between subsystems are in one direction
only.

1) Uni-directional Chains: A uni-directional chain de-
scribes a pattern where each subsystem only interacts with
neigbouring systems ahead of it (or behind it) in a chain.
Figure 2 shows an example of a chain of length four and
all the possible levels of interaction that might be presentin
one direction. Assuming subsystems have one state, an arrow
from subsystemi to subsytemj denotes that the dynamics
of j are impacted by the state ofi. When all these levels
of interaction are summed together we obtain the general
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Fig. 2. Levels of interaction for a chain of four identical subsystems

matrix form of a triangular Toeplitz matrix

Z =

















z0 0 0
z1 z0 0 0
...

. . .
. . .

zn−2
. . . z0

zn−1 zn−2 · · · z1 z0

















, (2)

and by inspection it is easily seen that triangular Toeplitz
matrices are actually a sub-class of factor circulants, where
the factor is zero.

Now, let X be an n-dimensional vector space and let
T : X → X be some transformation. If there existsk
such thatTk = 0, thenT is callednilpotent. Consider the
transformation represented in the natural basis by

N =











0 0
1 0

. . .
. . .

0 1 0











, N ∈ R
n×n.

It is easily shown thatNn = 0, so N is nilpotent and we
call N the fundamental nilpotent matrix. It is easily shown
that every lower triangular Toeplitz matrix is a function of
N. Examining the general form (2), Z is given by

Z = z0I + z1N + z2N
2 + · · · + zn−1N

n−1.

The matrix N is already in Jordan form (transposed), and
its properties reveal some interesting limitations of uni-
directional chains. Since N consists of a single Jordan
block, its spectrum is a set ofn zeros and it has only one
eigenvector. Thus, an N-patterned spectrum consists ofn

identical real eigenvalues, and given a triangular Toeplitz
system, all the system poles must be moved together if
the pattern is to be preserved. This implies that triangular
Toeplitz systems are either completely controllable or not
patterned controllable at all.

Consider a slight modification to the triangular Toeplitz
model to allow the first subsystem in the chain, referred to
as the leader subsystem, to have different local dynamics
and interactions from the rest of the chain. We define the
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Fig. 3. Levels of interaction for a three level symmetric tree of identical
subsystems

following base pattern

NL =











1 0
1 0

. . .
. . .

0 1 0











, NL ∈ R
5×5.

Let n = 5. Then an arbitrary polynomial ofNL has the form












⋆ 0 0
⋆ z0 0 0
⋆ z1 z0

⋆ z2 z1 z0

z4 z3 z2 z1 z0













.

The elementsz0 throughz4 can be set arbitrarily, but the
elements denoted by⋆ are dependent on the choice ofzi.
The pattern implies a trade-off between the interactions of
the leader subsystem and those of its followers. In this way,
one can propose a number of base matrices that are variations
on the fundamental nilpotent matrix and which impose a uni-
directional chain pattern on a system.

C. Trees

Consider the typical structure of an organizational hierar-
chy, such as a military chain of command. At the top is a
single individual leader, and the leader has some number
of direct reports. Then each of these sub-leaders in turn
has a number of individuals reporting to them, and so forth
down the chain of command. Graphically such a structure
resembles a tree. Tree structures appear to be less studied
in the control literature than rings or chains, thus the class
seems particularly fruitful for further investigation.

1) Uni-directional Trees: A uni-directional tree describes
a pattern where each subsystem only interacts with the layers
above (or below it) in a hierarchy. Two examples of trees
with identical subsystems are depicted in Figures 3 and 4,
along with all the possible levels of interaction that mightbe
present in one direction. Consider first the system in Figure
3. Assuming subsystems each have one state, when the levels
are summed together we obtain the system model

ẋ = A1x =

2

6

6

6

6

6

6

6

4

a0 0 0 0 0 0 0
a1 a0 0 0 0 0 0
a1 0 a0 0 0 0 0
a2 a1 0 a0 0 0 0
a2 a1 0 0 a0 0 0
a2 0 a1 0 0 a0 0
a2 0 a1 0 0 0 a0

3

7

7

7

7

7

7

7

5

x.



The matrixA1 is in the family of triangular matrices, but
we are not aware of an established name for this particular
structure. A suggestion is to call it the 1-2-2 tree class. All
1-2-2 trees can be generated by the base matrix

H1 =





















0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0





















,

such that
A1 = a0I + a1H1 + a2H

2
1 .

Next we consider the system in Figure 4, which models
a more lopsided tree. When the levels are summed together
we obtain the system model

ẋ = A2x =

























a0 0 0 0 0 0 0 0
a1 a0 0 0 0 0 0 0
a1 0 a0 0 0 0 0 0
a1 0 0 a0 0 0 0 0
a2 a1 0 0 a0 0 0 0
a2 0 a1 0 0 a0 0 0
a3 0 a2 0 0 a1 a0 0
a3 0 a2 0 0 a1 0 a0

























x.

Despite the lack of symmetry in the layers of the tree, there
exists a base matrix that generates this class of matrices.
Define

H2 =

























0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0

























,

then
A2 = a0I + a1H2 + a2H

2
2 + a3H

3
2 .

As with uni-directional chains, variations on these tree struc-
tures can be experimented with to allow some subsystems to
be different from others. Bi-directional trees are not gen-
erally patterned, consequently they present a more difficult
problem, in analogy with bi-directional chains.

III. I LLUSTRATIVE EXAMPLES

We present several examples of patterned systems with
associated stabilization problems. These basic examples are
not at the level of true applications; rather they are intended
to convey the breadth of research areas that touch on pat-
terned systems and to illustrate the meaning of our theoretical
results.

A. Multi-agent Consensus

A multi-agent system consists of several subsystems that
act autonomously, and an extensively studied multi-agent
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Fig. 4. Levels of interaction for a four level asymmetric tree of identical
subsystems

objective is consensus. The consensus problem is an output
stabilization by measurement feedback problem. Consensus
can be achieved if there exists a measurement feedback
controller u = Ky, such thatz → 0 as t → ∞, where
variablez defines the global consensus objective. A general
K assumes full communication between agents. It is desirable
to impose structural constraints on K to limit communication.
We illustrate with an example.

We are givenn identical robots and the global objective of
rendezvous. Suppose the measurements taken by each robot
must be identical up to indices, and identical local controllers
(up to indices) must be distributed. What measurements
are required for local controllers to exist? The robots are
modeled as integrators:ẋi = ui for i = 1, . . . , n. Combine
the n robot subsystems together to obtain

ẋ =











0 0 · · · 0
0 0 0
...

. . .
0 0 0











x +











1 0 · · · 0
0 1 0
...

. . .
0 0 1











u.

We restrict the measurement matrix C to take on a circulant
pattern, so that each robot takes the same measurements up
to indices, giving

y = Cx =











c0 c1 · · · cn−1

cn−1 c0 cn−2

...
. . .

c1 c2 c0











x.

but we do not specify C up front. Rendezvous is achieved
when all the robots converge to a common position, which
can also be expressed as the relative positions of all robots
stabilizing to zero. A suitable global objective model is

z = Dx =











−1 1 · · · 0 0
0 −1 0 0

...
...

1 0 · · · 0 −1











x.

Thus we have a circulant system where{A, B, C, D} ∈
F(Π). The control problem is to findu = Ky, K ∈ F(Π)
such thatz → 0 as t → ∞. By the results of [4], there
exists a solution to this Patterned Output Stabilization by
Measurement Feedback Problem if and only if there exists
a solution to the Patterned Restricted Regulator Problem.
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Fig. 5. Graphs of different sensor formations for multi-robot consensus:
(a) unconnected graph, and (b) connected graph

A solution to the Patterned RRP exists if and only if
X+(A)∩NM ⊂ KerD andX+(A) ⊂ C+V⋆. For the given
system, we haveX+(A) = R

n, NM = KerC, (C is still
undefined),KerD = span {(1, 1, . . . , 1)}, C = ImB = R

n,
and V∗ = KerD. Then a suitable controller will exist
provided that

R
n ∩ NM ⊂ span {(1, 1, . . . , 1)} ,

and R
n ⊂ R

n + span {(1, 1, . . . , 1)} .

Clearly, the second condition holds. The first condition
imposes constraints onNM . If we choose the measurement
model

y = Cx =











−1 1 0 0
0 −1 · · · 0 0

...
...

1 0 · · · 0 −1











x,

thenNM = (1, 1, . . . , 1) and the first condition also holds. In
this case, we conclude that a circulant controller to achieve
consensus exists. One solution would be the decentralized
controlleru = y.

Suppose we choose instead a measurement model where
a robot measures its relative distance to the robot two places
ahead, given by

y = Cx =











−1 0 1 0 0 0
0 −1 0 −1 · · · 0 0

...
...

0 1 0 0 · · · 0 −1











x.

Then NM = (1, 1, . . . , 1) if n is odd, but NM =
span {(1, 0, 1, 0, . . . , 1, 0), (0, 1, 0, 1, . . . , 0, 1)} if n is even.
In the first scenario, a controller exists; whereas, in the
second, the conditions of the Patterned RRP are not met.
The conclusions from this example can also be interpreted
in terms of graph theory results on consensus.

B. Cellular Chemistry

Turing [6] proposed that, for the purposes of studying
cellular chemical reactions, one simple and illustrative ar-
rangement of cells is a ring. Given a ring ofn identical
cells, letxi denote the concentration of chemicalX in cell

i. Turing’s model is given by

dxi(t)

dt
= αxi(t) + βui(t) + κ (xi+1(t) − 2xi(t) + xi−1(t))

= κ
(

xi+1(t) + (
α

κ
− 2)xi(t) + xi−1(t)

)

+ βui(t),

for i = 1, . . . , n. Let α = 2, β = −1 andκ = 0.5. Consider
the concentration of chemicalU to be a controlled input in
each cell. Then the cellular ring system has the circulant state
space model

ẋi(t) =

2

6

6

4

1 0.5 0 · · · 0.5
0.5 1 0.5 0

...
0.5 0 0 · · · 1

3

7

7

5

xi(t) − Iui(t).

Observe that this system is unstable. We assume that the
cell concentrations are measurable, and the objective is to
find a state feedback controlleru(t) = Fx(t) that brings
the concentrations into equilibrium. We can express this
objective asz(t) → 0 as t → ∞, where

z(t) = Dx(t) =











−1 1 0 0
0 −1 · · · 0 0

...
...

1 0 · · · 0 −1











x(t), D ∈ C.

This is the Patterned OSP, which, by the results of [4], is
solvable if and only ifX+(A) ⊂ C+V⋆. SinceC = ImB =
R

n, the problem has a solution.

C. Discretized Partial Differential Equations

We consider a simple example of how a symmetric
Toeplitz system can be converted to a patterned circulant
system for the purposes of computing a controller. Letx(t, d)
be a continuous function of two variables, defined over an
interval 0 < d < l. A lumped approximation to the multi-
dimensional function is a set ofn + 1 continuous functions
x0(t), x1(t), . . . , xn(t) that samplex(t, d) at regular spac-
ings along the intervald. Let the space between sample
functions beh := l

n
, then xi(t) = x(t, ih). If the partial

derivatives in time and space are appropriately approximated
(using finite differences), one obtains a discretization ofthe
PDE. For example, consider the diffusion process

∂x(t, d)

∂t
= k

∂2x(t, d)

∂d2
, (3)

wherex is the process variable andd is a spatial variable.
When the process variable is temperature, this PDE is called
the heat equation. Assume the model holds over an interval
0 < d < l, and assume boundary conditions on the process
of x(t, 0) = x(t, l) = 0 for all time. Suppose we control
the diffusion process by addingn− 1 control inputs that act
on the derivative of the process variable and that are spaced
evenly along the spatial extent. There are also sensors of the
process variable at each controller location. Then, using the
finite difference method, we obtained the discretized model

dxi(t)

dt
=

k

h2
(xi+1(t) − 2xi(t) + xi−1(t)) + ui(t),



i = 1, . . . , n− 1 and the boundary conditionsx0(t) = 0 and
xn(t) = 0 for all time.

In matrix form this system has A and B matrices which are
symmetric and Toeplitz. Brockett and Willems [3] showed
that one way to find a near Toeplitz state feedback F such that
u(t) = Fx(t) achieves a desired trajectoryx(t) is to model
the Toeplitz system by a larger circulant system. A circulant
solution can be easily reduced to a solution for the Toeplitz
system. The expanded circulant system is constructed by
creating a mirror image of the original system and then
connecting it to the original system at the boundary points.
Consider the expanded circulant system

ẋ =
k

h2
circ (−2, 1, 0, · · · , 0, 1)x + Iu

wherex ∈ R
2n−1 andu ∈ R

2n−1. Let the initial statesxi(0)
in the extended system equal the initial statesxi(0) in the
original Toeplitz system fori = 1, . . . , n−1. Further, assume
that x2n−i(0) = −xi(0) for i = 1, . . . , n− 1. Then we have
the following result.

Proposition 3.1 ([3]): If (a) u0(t) = un(t) = 0; (b) ui(t)
in the extended system is applied asui(t) in the original
system fori = 0, 1, . . . , n; and (c)u2n−i(t) = −ui(t) for
i = 1, . . . , n − 1, then x0(t) = xn(t) = 0, xi(t) is the
same for both systems fori = 1, . . . , n− 1, andx2n−i(t) =
−xi(t), for i = 1, . . . , n − 1.

Now we apply the method to a pole placement problem
for the diffusion process (3) withk = 2 over the interval
0 < d < 4. Let the spacing between lumped approximations
along the interval be 1, thenn = 4. This discretizes the PDE
into three differential equations. Assuming that 3 discrete
controllers are spaced evenly along the interval, the equations
are given by

ẋ(t) =





−4 2 0
2 −4 2
0 2 −4



x(t) +





1 0 0
0 1 0
0 0 1



u(t),

with assumed boundary conditionsx0(t) = x4(t) = 0 for
all time. The poles of the system,{−1.17,−4,−6.83}, are
already stable but it is desirable to place the poles furtherinto
the left half plane in order to increase the speed at which
the process variable converges to the boundary conditions.
Suppose our objective is to find a feedbacku(t) = Fx(t)
to place the poles at{−8,−10,−10}. Using the state space
extension method, we create the symmetric circulant8 × 8
system

ẋe(t) =circ (−4, 2, 0, 0, 0, 0, 0, 2)xe(t) + Iue(t).

Note that the poles of the extended systems are
{0,−1.17,−1.17,−4,−4,−6.83,−6.83,−8}, which con-
sists of the spectrum of the original system, duplicated once,
and two additional poles at 0 and−8. These additional poles
are immaterial, because they will disappear when we convert
back to the original system.

It is known that symmetric circulant systems areΣ-
patterned systems; therefore, by the results of [4], there exists
a symmetric circulant feedbackFe ∈ F(Σ) to place the poles

in anyΣ-patterned spectrum if and only ifX+(Ae) ⊂ C. The
controllable subspace of the patterned system isImBe, so
clearly C = X and the conditionX+(Ae) ⊂ C holds. Let

Fe := circ (−4,−0.65, 1.5, 0.65, 1, 0.65, 1.5,−0.65).

It can be shown that

Fe = −10I + 0.058Σ + 0.055Σ2 + 0.098Σ3 + 0.084Σ4

+ 0.13Σ5 + 0.069Σ6 − 0.0082Σ7,

confirming thatFe ∈ F(Σ). We obtainσ(Ae + BeFe) =
{0,−8,−8,−10,−10,−10,−10,−8}, which meets our pole
placement criteria. Since we have found a symmetric cir-
culant solution to the extended problem, we will meet the
conditions of Proposition 3.1. The corresponding solutionF
to the original Toeplitz system is

F =





−5.5 −1.29 0.5
−1.29 −5 −1.29

0.5 −1.29 −5.5



 .

Then the closed loop system becomes

ẋ(t) =





−9.5 0.71 0.5
0.71 −9 0.71
0.5 0.71 −9.5



x(t),

whereσ(A+BF) = {−8,−10,−10}, as desired. Notice that
the solution F that we have found is not exactly Toeplitz, but
near Toeplitz, as desired.

IV. CONCLUSION

We have introduced a new class of linear control systems
called patterned linear systems. The contribution is in uniting
multiple patterns under the umbrella of a general theory.
Examination of applications is left to future research; how-
ever, the range of practical applications can be significantly
enlarged if the theory is extended to block patterned systems.
Other future research ideas include linear combinations of
patterned systems and infinite-dimensional systems.
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