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Abstract— In this paper, we investigate the synthesis of piece-
wise affine feedback controllers to address the problem of safe
and robust controller design in robotics based on high-level
controls specifications. The methodology is based on formulating
the problem as a collection of reach control problems on a
polytopic state space. Reach control has so far only been
developed in theory and has not been tested experimentally on
a real system before. Using a quadrocopter as our experimental
platform, we show that these theoretical tools can achieve fast,
albeit safe and robust maneuvers. In contrast to most traditional
control techniques, the reach control approach does not require
a predefined open-loop reference trajectory or spacial path.
Experimental results on a quadrocopter show the effectiveness
and robustness of this control approach. In a proof-of-concept
demonstration, the reach controller is implemented in one
translational direction while the other degrees of freedom are
stabilized by separate controllers.

I. INTRODUCTION

This paper proposes a novel framework for control of
complex robotic maneuvers that simultaneously impose re-
quirements of safety, fast response, and a desired sequence
of events. We apply the framework to a simple side-to-
side maneuver on a quadrocopter in order to expose the
main features of the framework. The framework is based on
using hybrid systems, event-based switching, and solving a
collection of so-called reach control problems (RCP). The
RCP has an extensive theoretical development, see [10]–
[13], [15], but it has been completely lacking in experimental
validation. The primary goal of this paper is to illustrate, for
the first time on a real system, the various strengths offered
by the reach control approach.

Because our main application is quadrocopter maneuvering,
we give an overview of current approaches, particularly plac-
ing our reach control approach within this literature. There
are two predominant methods for control of quadrocopter
maneuvers: timed trajectory tracking and path following. In
timed trajectory tracking, an open-loop reference trajectory as
a function of time is predefined. Then a controller that sta-
bilizes the system to the trajectory is designed. For example,
in [3], an impressive collection of aggressive quadrocopter
maneuvers is featured using this approach. Timed trajectory
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tracking is the most common method in the literature [1]–[3].
On the other hand, difficulties arise in finding the open-loop
reference trajectory. For example, in [1] it is first geomet-
rically specified using splines, and then time parameterized
so that the resulting reference trajectory is feasible. Also,
while timed trajectory tracking can provide high-performance
maneuvers, due to the open-loop nature of the reference
signals, any additional unaccounted disturbances can quickly
deteriorate performance.

In path following, a 3D spatial (untimed) path is specified
in output space. Then an output stabilization method is used
to keep the system on the path. Recent applications of path
following to quadrocopter maneuvering include [5]–[7]. The
benefit of this method compared to timed trajectory tracking
is better control of transients: when the system deviates from
the path, it must only steer back to the path rather than to a
specific point in time. The difficulty in this method is again
finding paths feasible for the dynamics and constraints.

In our approach, it is not required to generate a feasible
timed trajectory or path. Rather, control specifications are
given that restrict the dynamics to a feasible region of the
state space. Further, these specifications inform on how the
state must evolve in that region. The region is then partitioned
into smaller regions (in our case simplices) and a feedback
controller is designed for each region to guarantee correct
evolution of the state. As such, our method has several
significant advantages: 1) we bypass the construction of a
reference trajectory or path; 2) we obtain feedback controllers,
not open-loop controls; 3) we obtain controllers for the entire
feasible region of operation, not only a neighborhood of
a path; 4) we explicitly account for safety constraints and
actuator limits. The main difficulty of our method (as it is
implemented right now) is its application to high-dimensional
systems, where the required state-space partitioning becomes
more involved. In the future, advanced computational tools
may be adopted from other fields to address this problem.
On the other hand, this paper shows that high-order models
can be reduced to simpler models with no degradation of
performance. For related methods to our approach see [8],
[9]. Reach control has never been applied on a real system
before. This work presents a proof-of-concept of its practical
applicability.

II. METHODOLOGY

In this section, we briefly outline the reach control method-
ology, which allows us to define high-level controls specifi-
cations, and results in safe and robust system behavior.



A. System Model and Control Specifications

We assume that the system is modeled as a finite-
dimensional, dynamical system, with possibly nonlinear dy-
namics:

˙̃s = f̃(s̃, ũ), (1)

where s̃ ∈ Rn is the state and ũ ∈ Rnu is the control input.
The objective of the controller is defined in terms of

high-level safety and event specifications. In particular, the
approach can handle the following types of specifications:

a) Safety and Liveness: Safety and liveness constraints
define the region in the state space that the system is allowed
to visit. Safety constraints limit the dynamics to a safe
regime of operation. Liveness constraints enforce fast, lively
response. Our framework requires that the feasible region be
a polytope P , as shown in Figure 4.

b) Desired Temporal Sequence: This specification de-
scribes the overall sequence of events or the overall motion
of the system. A set of target states to be reached by the
system must be defined. For more complex maneuvers, a
sequence of target sets may be defined, and can be formalized
by using automata from discrete event systems [20]. For
example, Figures 4 and 5 show that the system must traverse
the polytope P clockwise by moving through a sequence of
triangles Si, i = 1, 2, . . . .

The specifications above can handle complex tasks, but can
be computationally difficult for high-dimensional systems;
a higher-level control architecture may help to decouple
the complexity and will be illustrated in our quadrocopter
example.

To summarize, the control specifications require determin-
ing a polytope, which describes the allowable states and a
sequence of target sets. Given this data, the objective is to
find a controller that ensures the states of the robotic system
remain in the polytope while reaching the correct sequence
of target sets. For a related example on complex control
specifications in the context of reach control, see [16].

B. Triangulation of the Polytope

To drive any initial state starting in P to a target state
while remaining in P can be difficult. To systematize the
design, we triangulate P into a set of simplices and we specify
a controller on each simplex, see Figure 5. Informally, the
polytope is partitioned into triangles.

Formally, an n-dimensional simplex, S := co{v0, . . . , vn},
is the convex hull of (n + 1) affinely independent points in
Rn; it is the generalization of a triangle. A facet of a simplex
is a boundary face of dimension (n−1). A triangulation is a
partition of a set P ⊂ Rn into np simplices and is denoted as
T = {S1, . . . ,Snp

}, see [19]. Then T satisfies the properties:
(i) T = S1 ∪ . . . ∪ Snp and

(ii) Si ∩ Sj , i 6= j, is a lower-dimensional simplex of both
Si and Sj or the empty set for all i, j ∈ {1, . . . , np}.

Once a triangulation of P has been specified, the next step
of the design is to identify a sequence of simplices to be
visited in order to be able to reach the target states.
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Fig. 1. Two-dimensional simplex and related terminology.

Using the sequence of simplices, exit facets for each
simplex are designated. The trajectories starting in the given
simplex may only exit the simplex through the exit facets,
while the remaining facets act as restricted facets.

On each simplex, it is assumed that the dynamics of the
system are affine, having the form

ṡ = As+Bu+ a, (2)

where s ∈ Rn, u ∈ Rnu , and the matrices have appropriate
dimensions. If the dynamics (1) are nonlinear, they may
be linearized about some point in the simplex to yield the
form (2).

C. Control Design via the Reach Control Problem

Finally, controllers are designed for each simplex based on
the reach control problem (RCP). This method ensures that
closed-loop trajectories flow through the designated exit facets
without crossing the restricted facets. The reach control prob-
lem formulation, its theoretical developments, and conditions
for solvability are discussed in [10]–[13], [15].

Below we summarize the procedure for determining a
controller over an arbitrary simplex in our triangulation; see
Figure 1 for a 2D example.

We define In = {0, 1, . . . , n} to be the index set for the
(n+1) vertices of the simplex. The coordinates of each vertex
are denoted as vi ∈ Rn, i ∈ In. For each of the vertices, vi,
we must pick a corresponding ui ∈ Rnu . Each facet, Fi, of
the simplex is indexed by the vertex index that it does not
contain, and each facet has an associated normal vector hi to
describe its orientation, see Figure 1. We assume that there
is at least one restricted facet, and index the restricted facets
using Ir ⊂ In.

To solve RCP on a given simplex, we must select controls
ui at the vertices vi to satisfy the so-called invariance
conditions [12]; that is,

(∀i ∈ In)(∀j ∈ Ir\{i}) hj · (Avi +Bui + a) ≤ 0. (3)

This condition encodes that the velocity vector at each vertex
points in the right direction so that trajectories leave the
simplex through an exit facet while avoiding crossing the
restricted facets. The feasibility of the inequalities in (3) can
be easily checked numerically via a linear program. If they
are not feasible, then RCP is not solvable and the choice of



restricted and exit facets must be modified. If they are feasible,
then for a feasible choice of ui, i ∈ In, it can be shown that
one can construct an affine feedback to be used over the entire
simplex, see [10]. The affine feedback controller has the form

u(t) = Kcs(t) + gc, (4)

where Kc and gc are obtained using

[
K>c
g>c

]
=

v
>
0 1
...

...
v>n 1


−1 u

>
0
...
u>n

 . (5)

The final step is to check that the closed-loop system, ṡ =
(A + BKc)s + (a + Bgc), contains no equilibrium in the
simplex. If so, then RCP is solved over the simplex. For a
more detailed discussion on the design of RCP controllers,
see [14].

In summary, the resulting control law over P is a piecewise
affine feedback with switching between controllers occurring
at the boundaries between contiguous simplices.

III. APPLICATION TO A QUADROCOPTER MANEUVER

We follow the methodology described earlier to design a
controller for executing a simple side-to-side quadrocopter
maneuver. Due to the complexity of the quadrocopter system,
our overall control strategy relies on a standard quadrocopter
control architecture, depicted in Figure 3, that decouples the
various degrees of freedom, see Section III-A. One degree of
freedom, corresponding to the design of the Reach Controller
in Figure 3, is responsible for controlling the side-to-side
motion aspect of the maneuver and is the main point of
focus in this paper. The remainder of the control architecture
is standard and ensures that the quadrocopter executes the
side-to-side motion while stabilizing the remaining degrees
of freedom.

A. Quadrocopter Model

The quadrocopter model is ubiquitous in the literature;
see, for example, [2], [3] or Chapter 4 of [4]; we refer the
reader to those references for details. The vehicle dynamics
are described by six degrees of freedom and are nonlinear. The
translational position (x, y, z) is measured in the inertial coor-
dinate system O as shown in Figure 2. The vehicle attitude is
defined by the body-fixed frame V and is represented by the
ZY X-Euler angles, yaw, pitch, and roll, (ψ, θ, φ). The full
state of the vehicle additionally includes the translational and
rotational velocities of the body frame, (ẋ, ẏ, ż) represented
in O and (p, q, r) represented in V , respectively.

In our control architecture (Figure 3), we assume that the
full state of the vehicle is measured. An onboard controller
takes the desired pitch angle θd, roll angle φd, angular body
velocity around the body’s z-axis rd, and vertical velocity of
the vehicle żd as inputs and calculates the required motor
forces Fi,d, i ∈ {1, 2, 3, 4}. In our experiment, the on-
board controller is an unmodifiable blackbox. In the offboard
controller, a standard, nonlinear tracking controller (as, for
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Fig. 2. The inertial and quadrocopter body-fixed frames O and V . The
quadrocopter is actuated by varying the thrusts Fi, i ∈ {1, 2, 3, 4}, produced
by each motor. This results in changes to its body rotation rates, (p, q, r),
and vertical acceleration, which then causes a change to the quadrocopter’s
position and attitude.
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Fig. 3. The control architecture.

example, proposed in [3]) is used for stabilizing the y- and
z-coordinates of the vehicle as well as the yaw. We use the
Reach Controller for the x-direction.

We assume that the nonlinear controller successfully stabi-
lizes the vehicle at yd(t) = ydes, zd(t) = zdes, and ψd(t) = 0,
ydes, zdes ∈ R, and provides the onboard controller inputs
φd(t), rd(t), and żd(t). The equations governing the x- and
z-motion of the vehicle are then given by

ẍ(t) = f(t) sin (θ(t)) (6)
z̈(t) = f(t) cos (θ(t))− g, (7)

where g is the gravitational constant and f(t) is the collective
thrust normalized by the vehicle mass m,

f(t) =
1

m

4∑
i=1

Fi(t), (8)

with motor forces Fi, i ∈ {1, 2, 3, 4}, see Figures 2 and 3.
Since z(t) = zdes implies z̈(t) = 0, equation (7) gives

f(t) = g/ cos (θ(t)), and with (6) we have

ẍ(t) = g tan (θ(t)) := u(t) ⇔ θ(t) = tan−1
(
u(t)

g

)
. (9)

To summarize this analysis, if we can define an ẍ profile,
then with u(t) = ẍ(t) and (9) this will produce a desired
pitch angle signal θd(t) to be input for the onboard controller
(see again Figure 3). The signal u(t) will be constructed via
the reach control methodology outlined earlier and this will
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yield a feedback u(t) = u(x(t), ẋ(t)).
This approach can be extended to three dimensions: simi-

larly as above, each direction can be formulated as a single- or
double-integrator, linear system. The challenge is in partition-
ing the state space. A recent method for complexity reduction
involves working in output space [17].

B. Control Specifications

In the next step of our methodology, we state the control
specifications, which result in a polytope and a sequence of
target sets, see Figure 4.

a) Safety Specifications: To remain within the bound-
aries of the room, we require |x| ≤ dmax, see Figure 4.
The maximum speed limitation imposes |ẋ| ≤ vmax. For
a safe turnaround, we impose a deceleration requirement
close to the room’s boundaries; for compatibility with the
RCP approach we use linear inequalities. We define a safe,
minimum deceleration, asaf , and obtain the following linear
inequalities: |x− ẋ/asaf | ≤ dmax, where we choose asaf =
−vmax/(dmax−dthres+daccel) < 0, see Figure 4. For safety
to be ensured, all three inequalities must be simultaneously
satisfied at all times:
(S1) Position: |x| ≤ dmax.
(S2) Speed: |ẋ| ≤ vmax.
(S3) Deceleration: |x− ẋ/asaf | ≤ dmax.

b) Liveness Specifications: The liveness specifications
ensure that the quadrocopter moves with sufficient speed
when cruising between the ends of the room. Using our
parameters as defined in Figure 4, we first define the in-
equality |ẋ| ≥ vmin, which says the speed should be above
the minimum. Next we define |x − ẋ/aliv| ≥ dthres, and
|x+ ẋ/aliv| ≥ dthres, with aliv = −vmin/daccel < 0. These
inequalities describe how the quadrocopter should accelerate
from zero speed to the minimum speed and decelerate from
the minimum speed to zero speed, respectively. For liveness
to be ensured, any of the three inequalities must be satisfied
at all times:
(L1) Speed: |ẋ| ≥ vmin.

(L2) Acceleration: |x− ẋ/aliv| ≥ dthres.
(L3) Deceleration: |x+ ẋ/aliv| ≥ dthres.

c) Desired Temporal Sequence: We decompose this
side-to-side maneuver into two opposing discrete modes: one
in which the quadrocopter is moving from left to right,
referred to as the L2R; and one in which the quadrocopter is
moving from right to left, denoted by R2L. For the L2R and
R2L modes respectively, we define target sets to be reached
in order to transition to the opposite mode:

Bright = {(x, ẋ) | x ∈ [dthres, dmax], ẋ = 0}, (10)
Bleft = {(x, ẋ) | x ∈ [−dmax,−dthres], ẋ = 0}. (11)

The sets are shown in Figure 4 (green lines). Assuming that
the initial mode is L2R, the sequence of target sets to be
crossed by the system trajectory is:
(T1) Bright, Bleft, Bright, Bleft, . . . .

For the experiment, we fix the values of the polytope
parameters in Figure 4 to: dmax = 2.5 m, dthres = 1.5 m,
daccel = 0.3 m, vmax = 2 m/s, and vmin = 0.6 m/s.

C. Triangulation and Exit Facets

Our triangulation is shown in Figure 5. The vertices of
the triangulation are uniquely labeled as v̂i, i ∈ Iv :=
{1, . . . , 16}. The simplices are uniquely labeled as Si, i ∈
Is := {1, . . . , 20}. Although automated procedures for tri-
angulating and solving RCP in conjunction are considered
in [18], here the triangulation was naively generated by
manually partitioning P into simplices.

Next, to define the sequence of simplices to be visited,
for each simplex we choose its restricted and exit facets.
This information is also encoded in Figure 5 via the red
dashed lines. For the L2R mode, the facets were chosen so
as to ensure that the resulting closed-loop vector field causes
trajectories to reach the set Bright. Due to symmetry, the R2L
can be implemented trivially using the L2R mode’s design.

We remark that we also triangulated the non-liveness region
(the orange region in Figure 5) in order to improve the
robustness of our design. In the case that the system enters
this region due to a large disturbance, the controllers defined
on Si, i = {17, 18, 19, 20}, return the system to nominal
behavior.

D. Resulting Controller Design

Now we solve RCP on each simplex Si, i ∈ Is. Equa-
tion (9) showed that under perfect stabilization in the y- and
z-directions, the dynamics in the x-direction reduce to ẍ = u.
For this double-integrator model, the dynamics (2) over each
simplex Si are

ṡ = As+Bu+ a =

[
0 1
0 0

]
s+

[
0
1

]
u, (12)

where s := (x, ẋ), whose components are the x-position and
x-velocity of the quadrocopter, respectively.

With the triangulation and exit facets presented, we now
construct the controllers on each simplex. For each sim-
plex Si, i ∈ Is, we identify the three corresponding vertices
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ẋ(
m
/s
)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 6. The closed-loop vector field for the L2R mode, illustrated by the
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vj = v̂ij , j ∈ I2, ij ∈ Iv , that form the simplex along with
the corresponding exit facets Ir. We design the control values
at the three vertices such that the invariance conditions (3)
are satisfied. Note that larger control values result in more
aggressive controls, and hence actuator constraints can also
be incorporated. Finally, we use (5) to obtain the feedback
law (4). The controllers can be computed manually or using
a numerical solver.

The resulting closed-loop dynamics for the L2R mode
over P and the non-liveness region is shown in Figure 6. As
expected, trajectories above the x-axis that start in P remain
inside P and are guided towards the set Bright, while any
other non-nominal trajectory (starting in P below the x-axis
or in the non-liveness region) eventually recovers and crosses
Bright. The closed-loop vector field for the R2L mode is
obtained by oddly reflecting the L2R design about the origin.

We remark that to avoid discontinuities in the control
when transitioning between simplices, we match the control
values at the vertices along shared facets between contiguous
simplices. For technical reasons related to solving RCP, it is
necessary to introduce a discontinuity at v̂14 [15].

IV. EXPERIMENTAL RESULTS

Our experimental platform is the Parrot AR.Drone 2.0 run-
ning firmware version 2.3.3. We interface with the AR.Drone

Fig. 7. Our quadrocopter vehicle close to the wall of the room with the
motion capture camera system in the background.

through ROS, an open-source robot operating system [21].
More precisely, we used ROS Hydro, installed on a 64-bit
12.04 Ubuntu version. In addition, we used the ROS ardrone
autonomy package [21], version 1.3.1. All experiments were
conducted with the indoor hull shown in Figure 7, which
protects the vehicle propellers.

We demonstrate the successful execution of the desired
side-to-side motion based on our RCP approach and compare
it to the performance of a standard trajectory tracking con-
troller [2], [3], which guides the vehicle along a predefined,
timed side-to-side trajectory. A video showing the experimen-
tal results can be found at: http://tiny.cc/quadrotorRCPx.

In our experiments, the following actions were performed
for both trajectory tracking and the RCP approach: 1) nominal
flight consisting of a few cycles of the L2R and R2L modes,
2) introducing a disturbance by manually holding the vehicle,
and 3) introducing a disturbance by pushing the vehicle.
At the top of Figures 8 and 9, we show the position x(t)
over time. The key difference that we observe is that when
the quadrocopter is disturbed, the tracking approach fails the
desired temporal sequence whereas the RCP approach does
not. The middle plots show that the nominal behavior of
both methods are comparable. The bottom plots show the
significant degradation caused by the disturbances, where only
in the tracking approach the trajectories exit the safety region
by speeding up too much.

V. CONCLUSION

We succeeded in experimentally demonstrating the first
ever implementation of reach controllers on a real system.
The result is a logically complex quadrocopter maneuver.
The main advantages of the reach control approach are that
it permits the incorporation of safety constraints, event se-
quences and logical constraints, and robustness to unmodeled
disturbances, as shown in our comparison between the reach
control and standard tracking approaches. The side-to-side
maneuver shown here was mainly chosen to demonstrate the
proof-of-concept, and so an extension would be to apply the
RCP methodology to a more complex maneuver and compare
to path following controllers.
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Fig. 8. Experimental results of the tracking approach.
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