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Introduction

This monograph makes contributions to the field of systems neuro-

science. Systems neuroscience aims to understand the brain at a sys-

tems or behavioral level, particularly considering the interactions be-

tween different brain regions and the rest of the body. By way of con-

trast, systems biology regards the study of biological processes particu-

larly at the cellular level.

When one peruses the literature on systems neuroscience one rather

quickly stumbles upon terms such as motor control, adaptation, learn-

ing, perception, consolidation, and internal models, among others. All

words that pique the curiosity of the control theorist. Questions that

arise are: what control architectures does the brain use to solve prob-

lems of motor control and adaptation? Are these control architectures

the same as the ones already employed in robotics and engineering?

Where are these internal models in the brain? How does the brain

deal with disturbances? What control problems has the brain already

solved through its evolutionary advantage that control theorists with

their engineering models and principles have not?

This monograph initiates an investigation into some of these questions.

4



5

We were particularly intrigued by the pervasiveness of discourse on

internal models in the brain in the neuroscience literature, contrasted

with a void regarding internal models of control theory. This dichotomy

was highlighted in a session at the 2018 IEEE Conference on Decision

and Control (Huang et al., 2018), with the hope that the two research

areas could be brought closer together.

Our working hypothesis is that the internal model principle of control

theory is operating in one or more areas of the brain. This is not a wild

conjecture since neuroscientists have been discussing internal models

for at least 40 years. Rather it shifts the focus from the role of internal

models to replicate the dynamics of a system to be controlled (Jordan

and Rumelhart, 1992; Wolpert and Kawato, 1998) to a role of internal

models to replicate exogenous signals (Francis and Wonham, 1975).

This shift of interpretation brings into view developments in control

theory on the design of internal models, developments which have, up

to now, not been regarded as relevant to brain modeling by either

research community.

Validating our hypothesis requires working both on the control theory

side and on the neuroscience side. The task involves carefully examining

the experimental record in neuroscience for any evidence of behavior

that reflects the internal model principle. On the other side, we review

developments in control theory to determine if available internal model

designs are suitable for brain modeling (see Chapter 3). This mono-

graph offers a curated and condensed view of two major thrusts of the

last 50 years in control theory: regulator theory, discussed in Chapter 2,

and adaptive control, discussed in Chapter 4. The synthesis of these two

areas (a process still ongoing) has resulted in adaptive internal models,

discussed in Chapter 5.

On the neuroscience side we have particularly focused on experimen-

tal results for the oculomotor system. Study of the oculomotor system

proves to be immensely gratifying because the brain structures and

the neural circuits are reasonably well known; the experimental record

is thorough and unrelenting; the oculomotor research community has

a history of outstanding modelers (Robinson, 1981; Zee, 2018); and fi-
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nally, the oculomotor system is widely regarded to provide the blueprint

for all other motor systems. Results for the oculomotor system as well

as visuomotor adaptation are found in Chapters 6–9. These chapters

draw upon our prior work (Battle and Broucke, 2021; Broucke, 2020;

Broucke, 2021; Gawad and Broucke, 2020; Hafez et al., 2021).

1.1 Internal Models in Control Theory

Regulator theory and the associated regulator problem regard a con-

trol specification to make an error signal of a control system tend to

zero asymptotically, despite the presence of persistent, exogenous dis-

turbance and reference signals entering the control loop. A key assump-

tion is that the disturbance and reference signals can be modeled by

a linear exosystem. A controller that satisfies the requirements of the

regulator problem is called a regulator.

Starting from the 1970’s, regulator designs progressed from multi-input

multi-output (MIMO) linear time-invariant (LTI) systems with known

plant and exosystem parameters, to uncertain nonlinear systems (Byrnes

et al., 1997), and finally to regulator designs when neither plant nor

exosystem parameters are known. Of particular relevance are regula-

tor designs based on adaptive internal models, which appeared in the

control theory literature in the mid 1990’s to early 2000’s (Bodson et

al., 1994; Bodson and Douglas, 1997; Nikiforov, 1996; Nikiforov, 1997a;

Marino and Tomei, 2000; Marino and Tomei, 2003a; Serrani and Isidori,

2000; Serrani et al., 2001). We present highlights of this progression for

linear systems.

Known Plant and Exosystem. When both the plant parameters

and exosystem parameters are known, the solution is given in (Davison,

1976; Francis and Wonham, 1976; Francis, 1977), where necessary and

sufficient conditions for regulation are provided. The solution relies on

the design of an observer or a servocompensator that asymptotically

reconstructs exogenous signals using an internal model. The internal

model is not adaptive. These developments are reviewed in our Chap-

ter 2.
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Known Plant and Unknown Exosystem. In the case when the

plant model is known and only the dimension of the exosystem is known,

then the adaptive internal models in (Nikiforov, 1996; Marino and

Tomei, 2003b) provide an asymptotic estimate of exogenous signals.

If only an upper bound on the dimension of the exosystem is avail-

able, but the plant is minimum phase, asymptotically stable, and has

known relative degree, then the adaptive internal model in (Marino

and Tomei, 2007) asymptotically reconstructs exogenous signals. For

this design, persistent excitation guarantees exponential convergence of

observer and parameter estimation errors. Linear systems with known

parameters but subject to unknown time delays in the control loop were

studied in (Gerasimov et al., 2020; Gerasimov et al., 2019a; Gerasimov

et al., 2019b; Nikiforov et al., 2020). In the case of discrete-time sys-

tems, a design based on averaging theory is developed in (Guo and

Bodson, 2009). A different approach for discrete-time systems appears

in (Fiorentini et al., 2006) but requires the online solution of a Sylvester

equation at each time-step.

Unknown Plant and Known Exosystem. It is possible that uncer-

tainties are limited to the plant, while the exosystem is known perfectly.

If the plant is stable, then an adaptive internal model design is given

in (Marino and Tomei, 2015). It uses knowledge of the signs of the DC

gain and either the real or imaginary part of the frequency response at

the frequencies of the exosystem.

Unknown Plant and Unknown Disturbance. The most complex

case is when both the plant model and the exosystem are uncertain.

There are a number of results for this problem. Kreisselmeier observers

and backstepping are proposed in (Nikiforov, 1997a) to design adaptive

internal models to reconstruct exogenous signals assuming the order of

the exosystem is known. More generally, novel techniques for design-

ing internal models to reconstruct exogenous signals were presented

in (Nikiforov, 2004a; Nikiforov, 2004b). The case of output tracking a

measurable reference signal with unknown frequencies by an unknown

single-input single-output (SISO) LTI system using output feedback

was considered in (Nikiforov, 1997b).
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If the plant is minimum phase with known relative degree and bounds

on parameter uncertainties (for both the plant and exosystem) are

known, then the design in (Marino and Tomei, 2011) may be used.

In (Marino and Tomei, 2016), the design of (Marino and Tomei, 2015)

was extended by estimating disturbance frequencies online. The design

relies on averaging theory, and it is assumed that the plant is stable and

the frequency response information previously mentioned is available.

A discrete-time solution is given in (Tomei, 2017), also using averag-

ing theory. An alternative design for discrete-time systems appeared

in (Hoagg et al., 2008) based on deadbeat control and employing a

logarithmic Lyapunov function argument for stability and parameter

convergence.

Uncertain plants and exosystems are considered in (Basturk and Krstic,

2012; Basturk and Krstic, 2014) when only state derivative feedback

measurements are available to the internal model. Unknown time de-

lays in the input or state are addressed in (Basturk and Krstic, 2015;

Basturk, 2017). Finally (Yilmaz and Basturk, 2019) considers unknown

minimum-phase LTI systems with known relative degree and system or-

der. Again using Kreisselmeier observers and adaptive backstepping as

in (Nikiforov, 1997a), the internal model design in (Yilmaz and Bas-

turk, 2019) rejects unknown sinusoidal exogenous signals while making

the system output track a given reference trajectory using only output

feedback.

1.2 Internal Models in Neuroscience

Many parts of the brain have been implicated in motor control and

motor learning including, but not limited to, the basal ganglia, the

motor cortex, and the cerebellum. What is of greatest interest to us

is that neuroscientists have posited that the cerebellum, in particular,

contains internal models. Here we review relevant theories of cerebellar

function. Our review is not complete, but highlights theoretical model

development since the 1970’s, focusing on those theories that interpret

cerebellar function in terms of adaptive control, adaptive filters, and

internal models; see (Barlow, 2002) for a detailed discussion and (Mont-
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gomery and Bodznick, 2016) for a historical perspective.

In 1967, Eccles, Ito, and Szentagothai published a landmark book on

the neuronal structure of the cerebellum (Eccles et al., 1967). Their

use of the term “neuronal machine” invited comparison with computer

science and control theory. The striking uniformity of the cerebellum

(see Section 3.2), despite the fact that it receives inputs from many parts

of the cerebral cortex, inspired Marr (Marr, 1969) and Albus (Albus,

1971) to propose computational models of the cerebellar circuit as a

spatial pattern classifier. The Marr-Albus theory provided significant

detail concerning the neuronal circuitry and the specific wiring of the

cerebellum, with a focus on modifiable synapses to account for learning.

The Albus theory arguably provided the first neural network model of

the cerebellum.

Following this, (Calvert and Meno, 1972) developed a spatio-temporal

model of cortical activity and applied it to the cerebellum. They oper-

ated under the assumption that while the true input-output relation-

ship is highly nonlinear (exhibiting such phenomena as saturation and

refractory periods), the cerebellum may be modeled as a linear system

since the ensemble behavior appears linear. To the best of our knowl-

edge, this is the first attempt at using linear models to qualitatively

describe cerebellar function and behavior, albeit at a neuronal level

rather than at a higher behavioral level.

In (Hassul and Daniels, 1977), the authors observed discrepancies be-

tween experimental results and the predictions of (Calvert and Meno,

1972). They opted for a simpler model by treating the cerebellar cor-

tex as a lumped linear system, bypassing the need to model the spatial

structure of neuronal circuitry in the cerebellum. Their model predicted

that the cerebellum implements a form of lead-lag compensation to

maintain loop stability in spite of the substantial delays involved in

signal paths to and from the cerebellum.

While the Marr-Albus model has been highly influential both on subse-

quent theory and experimentation, it did not account for the temporal

aspect of adaptation and learning, considering that information in the

central nervous system (CNS) is conveyed by continuous time (analog)
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signals that are frequency-modulated by nerve impulses. To address this

shortcoming, Fujita (Fujita, 1982) proposed an adaptive filter model in-

spired by the least mean square algorithm in adaptive signal processing

(Widrow and Stearns, 1985). This model built on the work in (Hassul

and Daniels, 1977) to provide a mechanism by which the lead-lag com-

pensator could be made adaptive in order to account for the learning

capabilities attributed to the cerebellum. If some performance metric

is defined on the output of the cerebellum by way of some reference or

target output, then the adaptive filter minimizes the mean square error

of this performance metric. Using the adaptive filter model, Fujita was

able to successfully simulate the vestibulo-ocular reflex (Fujita, 1982),

a critical step in translating neuronal models to tangible motor behav-

ior. A comprehensive review of this work can be found in (Ito, 1984).

The adaptive filter model has been further developed by Dean, Por-

rill, and co-workers to account for experimental discoveries on synaptic

plasticity and noise cancellation (Dean et al., 2010); see below.

The idea that the cerebellum contains internal models appears to orig-

inate in the work of Ito and Kawato (Ito, 1970; Kawato et al., 1987).

Internal models are defined as neural mechanisms that can mimic the

input-output characteristics (or their inverses) of the motor apparatus

(Kawato, 1999; Miall and Wolpert, 1996; Wolpert et al., 1998). Forward

internal models predict sensory consequences from efference copies of

issued motor commands, whereas inverse internal models calculate feed-

forward motor commands from desired reference trajectories.

The inverse model interpretation of the cerebellum was elaborated in

(Gomi and Kawato, 1992; Kawato and Gomi, 1992) as feedback error

learning, related to the computed-torque method in robotics (Spong et

al., 2005). The cerebellum builds an inverse model of the part of the

motor system to be controlled. It takes desired reference trajectories

which are assumed to be available as measurements and converts them

to feedforward motor commands. The difference between actual motor

commands (which include feedback terms) and feedforward motor com-

mands generates a motor error, which drives the adaptation process to

improve the estimate of the inverse model.
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The forward model interpretation of the cerebellum has been elaborated

over a series of papers in (Dean et al., 2002; Porrill et al., 2004; Dean

and Porrill, 2008; Dean et al., 2010). The forward model transforms

motor commands (available as efference copies) to predictions of motor

action. These predictions of motor action are compared to the actual

system response to generate an output (sensory) error, which, in turn,

is used to train the cerebellum to generate improved motor commands.

Dean and Porrill further interpret the function of the cerebellum to

decorrelate sensory signals from error signals. This interpretation fits

well within the mathematical framework of regulator theory in which

exogenous (sensory) signals must be removed or “rejected” from errors,

if those errors are to be driven to zero.

Several other theories of cerebellar function have been proposed. A

Smith predictor model of the cerebellum was suggested in (Miall et al.,

1993). A Smith predictor is a compensator that counteracts long delays

in the feedback path (Smith, 1959). Such a control mechanism would

allow to overcome the long transport delays from visual feedback to mo-

tor command, for instance. Other theories propose that the cerebellum

is a Kalman filter (Paulin, 1989), an optimal controller (Jordan and

Todorov, 2002) or a Bayesian state estimator (Paulin, 2005). Despite

numerous proposals, there is no consensus, to date, on a computational

model of the cerebellum.

This monograph describes a different approach to modeling the cere-

bellum. We delegate to the cerebellum a primary role of satisfying the

internal model principle of control theory (Francis and Wonham, 1976).

On this basis, we then apply adaptive internal models from the control

literature on regulator theory. Despite a different angle of attack, our

approach and resulting models may be regarded as an extension of the

class of models that derive from the adaptive filter interpretation of

cerebellar function.
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1.3 Control Theory and Systems Neuroscience

Control theory has contributed to understanding many biological pro-

cesses, but the application of control theory in system-level studies of

the brain is a relatively new endeavor. One must grapple with what

level in the hierarchy of neurological processes to focus for a specific

modeling problem (Gernstner and W. Kistler, 2014). Single neurons or

small groups of neurons are modeled using the Hodgkin-Huxley model

of action potential propagation, or larger groups of neurons compris-

ing neural circuits of modest size may be modeled using population

dynamic models such as the Wilson-Cowan model. Next come studies

of brain regions such as visual cortex, the hippocampus, the thalamus,

which likewise draw upon neural network and population dynamic mod-

els. At the highest level is the study of networks of brain regions and

their interaction with the body, as in the study of the motor systems,

of Parkinson’s disease, and so forth. See (Gernstner and W. Kistler,

2014; Dayan and Abbott, 2001) for further discussion on computational

methods. The emerging interface between control theory and systems

neuroscience is further discussed in (Madhav and Cowan, 2020; Schiff,

2009; Schiff, 2012).

This monograph attends to the highest level of the hierarchy by ex-

ploring the functional role of the cerebellum and how it contributes to

motor systems in humans. However, a number of other themes are be-

ing explored at the interface between systems neuroscience and control

theory.

• In addition to the work of David Robinson and others on the ocu-

lomotor system (Robinson, 1981), fundamental concepts of linear

system theory such as feedback and controllability have been ap-

plied to clarify and understand the brain at a systems level. For

example, (Gu et al., 2015) explores the degree to which the net-

work structure of the brain determines the level of brain activity

in connected brain regions. To make precise their idea, the au-

thors utilize a discrete-time linear system whose state vector cap-

tures neural activity in distinct brain regions. The controllability
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Gramian is used to obtain quantitative predictions on brain ac-

tivity based on network structure. Khalil and co-workers studied

micro-stimulation of the basal ganglia and Parkinson’s disease by

using using ideas from MIMO linear system theory (Liu et al.,

2010; Liu et al., 2011).

• Optimal control theory has been applied to clarify how the brain

manages redundant degrees of freedom of the limbs to achieve re-

peatable, energy efficient movements (Jordan and Todorov, 2002).

The interactions between the motor cortex (M1), basal ganglia,

and motor periphery to produce multi-joint movements such as

arm reaches have similarly been explored using optimal control

theory (Scott, 2004). Optimal control theory was also applied in

(Gu et al., 2017) to understand how the brain makes transitions

through different brain states - states of neural activity within

discrete brain regions.

• Dynamical system theory has held a prominent place both in

systems neuroscience and systems biology (Iglesias and Ingalls,

2009). For instance, Slotine and co-workers utilized nonlinear con-

traction analysis to model action selection by the basal ganglia

(Girard et al., 2008). Dynamical system theory has been applied

to large scale models of the cerebral cortex, for instance, to model

epileptic seizures, sleep, and anesthesia (Breakspear, 2017).

• Network theory is another key contributor to the study of the

brain at a systems level, taking inspiration from the area of net-

work biology (Barabasi and Oltvai, 2004). Hierarchically orga-

nized networks of neurons combined with linear threshhold popu-

lation models were utilized in (Nozari and Cortes, 2021a; Nozari

and Cortes, 2021b) to analyze the emergent behavior of selec-

tive attention. Many other works treat the brain from a network

perspective.

Finally, it is worth mentioning that while this monograph focuses on the

application of the internal model principle to understand the cerebel-

lum, the principle has also found application in systems biology. Doyle
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and co-workers (Yi et al., 2000) applied the internal model principle to

show robustness to disturbances in bacterial chemotaxis. Their analysis

specifically regards disturbance rejection of constant exogenous signals

using integral feedback.

1.4 Notation

Let R denote the real numbers, R+ denotes the non-negative real num-

bers, and C denotes the complex numbers. For a matrix A ∈ R
n×n,

σ(A) denotes its spectrum; the elements of σ(A) are the eigenvalues of

A. For a symmetric matrix A ∈ R
n×n, λmax(A) denotes the largest real

eigenvalue of A. Also for symmetric A ∈ R
n×n, we write A > 0 if A is

positive definite.

1.5 Corrections in this Version

This pdf version includes corrections to the published version.

• In Sections 4.2.2 - 4.2.4, and part of Section 4.3, tildes on the

parameter vector ψ have been added.

• The formula for e in (4.2.10) has been corrected.

• The formula for wf in Lemma 5.2.5 has been corrected.



2

Regulator Theory

Regulator theory deals with the question of how to regulate to zero an

error or output of a control system, despite the presence of exogenous

reference and disturbance signals entering the control loop. The regu-

lator problem is one of the central problems of control theory dating to

the work of James Clerk Maxwell on the regulation of flyball governors

(Maxwell, 1868). It is a natural next step in a progression of control

specifications of increasing complexity beyond stabilization to include

rejection of exogenous signals.

Significant progress was made in the 1970’s when the focus was to

extend to the multi-input, multi-output (MIMO) setting results for

single-input single-output (SISO) control systems (Davison, 1972; Davi-

son, 1975; Davison, 1976; Francis, 1977; Francis and Wonham, 1975;

Francis and Wonham, 1976; Johnson, 1971; Smith and Davison, 1972;

Wonham and Pearson, 1974). For instance, the ubiquitous notion to

place an integrator in the feedforward path of a unity feedback loop

in order to achieve step tracking by a SISO open-loop stable plant is

fully generalized to MIMO systems and general reference signals. The

insights and tools of that period have largely supplanted prior thought

on the SISO case due to their depth and clarity, and they form the

15
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cornerstones of what we call classical regulator theory. In classical reg-

ulator theory both the plant parameters and the frequency content of

reference and disturbance signals are assumed to be known.

2.1 Mathematical Background

We highlight several linear algebra results that are important in classi-

cal regulator theory.

Lemma 2.1.1. Given a matrix S ∈ R
q×q, there exist q independent

solutions Σ ∈ R
q×q of the matrix equation

ΣS = SΣ .

Definition 2.1.2. Given matrices A ∈ R
n×n, S ∈ R

q×q, and X ∈ R
n×q,

a Sylvester equation in unknown Π ∈ R
n×q is a matrix equation of the

form

ΠS = AΠ +X . (2.1.1)

Theorem 2.1.3 (Sylvester (Gantmacher, 1959)). The Sylvester equation

(2.1.1) has a unique solution Π for any X if and only if σ(A)∩σ(S) = ∅.

2.2 Regulator Problem

We consider a single-input single-output linear time-invariant (LTI)

control system

ẋ = Ax+Bu+ Ew (2.2.1a)

ẇ = Sw (2.2.1b)

e = Cx+Dw , (2.2.1c)

where x(t) ∈ R
n is the state, u(t) ∈ R is the input, e(t) ∈ R is the error,

w(t) ∈ R
q is the exosystem state, and Dw(t) ∈ R and Ew(t) ∈ R

n

consist of reference and disturbance signals. We are interested to find

a feedback controller called a regulator to make the error go to zero:

e(t) −→ 0. Stabilization of the error encompasses both the tracking

problem, to make the system output y = Cx asymptotically track a
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reference signal r = −Dw, and the disturbance rejection problem, to

asymptotically reject disturbances Ew and Dw. Variants of the prob-

lem depend on what measurements and what information about the

plant and exosystem are available to the regulator. For example, the

simplest case is when all system parameters are known, and both x(t)

and w(t) are measurable. Then we look for a static state feedback

u = Kx+Hw . (2.2.2)

Ultimately, one would like to solve the problem when the measurement

is e (and/or y), and the plant and exosystem parameters are unknown.

Problem 2.2.1 (Regulator Problem). Consider the system (2.2.1). Sup-

pose the system parameters (A,B,C,D,E, S) are unknown. Find an

error feedback regulator

ẋc = Fxc +Ge (2.2.3a)

u = Hxc +Ke , (2.2.3b)

with regulator state xc(t) ∈ R
p, such that the following conditions are

met:

(AS) The equilibrium (0, 0) ∈ R
n × R

p of the unforced closed-loop sys-

tem

ẋ = (A+BKC)x+BHxc (2.2.4a)

ẋc = Fxc +GCx (2.2.4b)

is asymptotically stable.

(R) The forced closed-loop system satisfies: for all (x(0), xc(0), w(0)),

e(t) −→ 0 as t −→ ∞. ⊳

Assumption 2.2.1. Consider (2.2.1). We assume the following:

(A1) (A,B) is controllable.

(A2) (C,A) is observable.

(A3) S has simple eigenvalues on the imaginary axis.
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The assumptions (A1)-(A2) (or the more relaxed requirements of sta-

bilizable and detectable) are well-known conditions for the existence of

matrices F , G, H, and K such that the unforced closed-loop system

matrix

Acl :=

[
A+BKC BH

GC F

]
. (2.2.5)

is Hurwitz, thereby satisfying (AS) of Problem 2.2.1. Assumption (A3)

ensures that the exosystem is capable to model persistent disturbance

and reference signals, and it ensures those signals are bounded.

2.3 Regulator Equations

To develop a solution to Problem 2.2.1, we first address the simpler

question of state feedback. Suppose u = Kx + Hw. The closed-loop

system is

ẋ = (A+BK)x+ (BH + E)w (2.3.1a)

e = Cx+Dw . (2.3.1b)

The unforced closed-loop system is ẋ = (A + BK)x, so to meet the

requirement (AS), we choose K such that A+BK is Hurwitz. Next, we

notice that because of (A3), σ(A+BK)∩σ(S) = ∅. By Theorem 2.1.3,

there exists a unique matrix Π ∈ R
n×q such that

ΠS = (A+BK)Π +BH + E = AΠ +BΓ +E , (2.3.2)

where Γ := H +KΠ. The form of (2.3.2) is reminiscent of a coordinate

transformation. We define a new state

z := x− Πw .

Using (2.3.2), the closed-loop system becomes

ż = (A+BK)z (2.3.3a)

e = Cz + (CΠ +D)w . (2.3.3b)

We see that disturbances have been removed from the first equation,

and moreover z(t) −→ 0. Then to achieve e(t) −→ 0 for all initial

conditions w(0), we require that CΠ + D = 0. These observations

motivate the main result on state feedback.
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Theorem 2.3.1. Consider the system (2.2.1) satisfying assumptions

(A1) and (A3). Problem 2.2.1 is solvable by a state feedback (2.2.2) if

and only if there exist matrices (Π,Γ) with Π ∈ R
n×q and Γ ∈ R

1×q

such that

ΠS = AΠ +BΓ + E (2.3.4a)

0 = CΠ +D . (2.3.4b)

Moreover, a state feedback solving the problem is

u = Γw +K(x− Πw) , (2.3.5)

where K ∈ R
1×n is any row vector such that (A+BK) is Hurwitz.

Proof. To prove sufficiency, suppose (A1),(A3), and (2.3.4) hold. By

(A1) there exists K such that A+BK is Hurwitz. Consider the feedback

(2.3.5). Since the unforced system is ẋ = (A + BK)x, condition (AS)

is satisfied. Next define z = x − Πw. Then using (2.3.4a) we obtain

ż = (A+BK)z, so z(t) −→ 0. Finally, using (2.3.4b) we obtain e(t) =

Cz(t) −→ 0, thus satisfying condition (R).

To prove necessity, suppose u = Kx + Hw is a static state feedback

solving the problem. The matrix A+BK is Hurwitz according to (AS).

Using (A3), we have σ(S)∩σ(A+BK) = ∅, so applying Theorem 2.1.3

there exists a unique Π ∈ R
n×q satisfying

ΠS = (A+BK)Π +BH + E .

Letting Γ := KΠ + H, we obtain (2.3.4a). As shown above, using

(2.3.4a), ż = (A+BK)z. Also, e = Cz+(CΠ+D)w. We know z(t) −→ 0,

and by condition (R), e(t) −→ 0. Thus, (CΠ + D)w(t) −→ 0 for all

initial conditions w(0). By (A3), we conclude (2.3.4b) holds.

The equations (2.3.4) are called the regulator equations (Francis, 1977).

Theorem 2.3.1 not only provides conditions for a solution by state feed-

back, but it also clarifies when zero steady-state error is achievable.

Define xss(t) := Πw(t) and uss(t) := Γw(t). Using (2.3.4), we find

ẋss(t) = Axss(t) +Buss(t) + Ew(t) (2.3.6a)

0 = Cxss(t) +Dw(t) . (2.3.6b)
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Thus, xss(t) with input uss(t) is a solution of (2.2.1a) that renders the

error to be exactly zero. The existence of an open-loop control uss(t)

and a corresponding solution xss(t) that hold the error exactly at zero is

clearly a necessary condition to solve the regulator problem using state

feedback. The proof of Theorem 2.3.1 shows that when the regulator

equations hold and the unforced system is stable, then x(t) −→ xss(t)

and u(t) −→ uss(t) using (2.3.5). Therefore, xss(t) is the steady state

response under the exogenous input (BΓ + E)w(t).

The solution of the regulator equations depends on precise knowledge of

the plant and exosystem parameters (A,B,C,D,E, S). The regulator

problem is said to be well-posedness if it is solvable for some nominal

plant and exosystem parameter values, and it remains solvable (by a

possibly different controller) in a neighborhood of those nominal values.

Theorem 2.3.1 suggests that well-posedness of the regulator problem

will depend on solvability of the regulator equations for all parameter

values close enough to the nominal values. This requirement can be

shown to be equivalent to solvability of the regulator equations for

nominal values of the plant and exosystem parameters, but arbitrary

E and D in (2.3.4) (Saberi et al., 2000); see also Lemma 1.4.2 in (Isidori

et al., 2003).

Lemma 2.3.2. Let (A,B,C, S) be fixed matrices. Consider the linear

equations

ΠS = AΠ +BΓ +X (2.3.7a)

0 = CΠ + Y . (2.3.7b)

For each (X,Y ) there exists a solution (Π,Γ) if and only if

(A4) det

[
A− λI B

C 0

]
6= 0 for all λ ∈ σ(S).

This condition is called a non-resonance condition because it says that

no eigenvalue of the exosystem is a zero of the plant.
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2.4 The Internal Model Principle

We turn to the case when e is the only measurement, and we must use

an error feedback regulator (2.2.3). Then a deep principle of control

theory makes its first appearance: the internal model principle.

Theorem 2.4.1. Consider the system (2.2.1) satisfying assumption (A3).

Let (2.2.3) be an error feedback regulator such that Acl is Hurwitz.

Then (2.2.3) solves Problem 2.2.1 if and only if there exist matrices

(Π,Γ,Σ) with Π ∈ R
n×q, Γ ∈ R

1×q, and Σ ∈ R
p×q such that

ΠS = AΠ +BΓ + E (2.4.1a)

0 = CΠ +D (2.4.1b)

ΣS = FΣ (2.4.1c)

Γ = HΣ . (2.4.1d)

Proof. By assumption the regulator satisfies the stability requirement

(AS). We will show that (R) is satisfied if and only if there exist (Π,Γ,Σ)

satisfying (2.4.1). By (A3), σ(Acl) ∩ σ(S) = ∅. Then by Theorem 2.1.3

there exists a unique solution (Π,Σ) of the Sylvester equation

[
Π

Σ

]
S =

[
A+BKC BH

GC F

] [
Π

Σ

]
+

[
E +BKD

GD

]
.

This equation splits into two equations

ΠS = AΠ +BHΣ + E +BK(CΠ +D) (2.4.2a)

ΣS = FΣ +G(CΠ +D) . (2.4.2b)

Define z = x − Πw and x̃c = xc − Σw. Using (2.4.2), the closed-loop

system is

ż = (A+BKC)z +BHx̃c + [AΠ +BHΣ + E +BK(CΠ +D) − ΠS]w

= (A+BKC)z +BHx̃c
˙̃xc = Fx̃c +GCz + [FΣ +G(CΠ +D) − ΣS]w

= GCz + Fx̃c .
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By the assumption on Acl, this closed-loop system is stable, so z(t) −→
0 and x̃c(t) −→ 0. Now we have

e = Cx+Dw = Cz + (CΠ +D)w .

Then e(t) −→ 0 if and only if CΠ + D = 0. But CΠ + D = 0 and

(2.4.2) yield (2.4.1), where we have selected Γ := HΣ. This proves the

result.

Equation (2.4.1c) gives rise to the important internal model principle of

control theory: any regulator solving Problem 2.2.1 contains an internal

model of those dynamics of the exosystem that are observable through

the error signal e for the composite system

ẋ = Ax+ Ew (2.4.3a)

ẇ = Sw (2.4.3b)

e = Cx+Dw . (2.4.3c)

Lemma 2.4.2. Consider the system (2.2.1) satisfying assumption (A3).

Let (2.2.3) be an error feedback regulator solving Problem 2.2.1. Then

every eigenvalue of S that is observable for the system (2.4.3) is an

eigenvalue of F .

Proof. Let v 6= 0 be an eigenvector of S associated with eigenvalue

λ ∈ σ(S); i.e. Sv = λv. Then from (2.4.1c) we have

ΣSv = λ(Σv) = F (Σv) .

If Σv 6= 0, then Σv is an eigenvector of F and λ ∈ σ(F ). If Σv = 0,

then we must show λ is an unobservable eigenvalue of (2.4.3). Consider

the vector v :=

[
Πv

v

]
6= 0. Using (2.4.1), we have

[
(A− λI) E

0 S − λI

] [
Πv

v

]
=

[
(A− λI)Πv + (ΠS −AΠ −BHΣ)v

(S − λI)v

]
= 0

[
C D

] [Πv

v

]
= (CΠ +D)v = 0 .

Therefore, λ ∈ σ(S) is an unobservable eigenvalue of (2.4.3).



2.5. Regulator Design I 23

So far we found algebraic conditions (2.3.4) called regulator equations

that characterize the existence of a steady-state for the plant such

that the error is exactly zero. And we found a necessary condition for

any error feedback regulator that it must satisfy the internal model

principle. But we have not yet proposed a solution to the regulator

problem. Next we consider two classical regulator designs (Davison,

1976; Francis, 1977).

2.5 Regulator Design I

The first regulator design, proposed in (Francis, 1977), is suggested by

the idea that only the eigenvalues of S observable through e for the

composite system (2.4.3) are relevant. We therefore make an assump-

tion that in addition to (A2), (2.4.3) is observable. We will see below

this assumption is no loss of generality.

Assumption 2.5.1. Consider the open-loop system (2.2.1). We as-

sume the following:

(A2′) The pair

([
C D

]
,

[
A E

0 S

])
is observable.

With (A2′) we can employ the observer-based design in (Francis, 1977).

Consider the observer

˙̂x = Ax̂+Bu+Eŵ +G1(e− ê) (2.5.1a)

˙̂w = Sŵ +G2(e− ê) (2.5.1b)

ê = Cx̂+Dŵ . (2.5.1c)

Using (A2′) we can select G1 and G2 such that
[
A E

0 S

]
−
[
G1

G2

] [
C D

]
(2.5.2)

is Hurwitz. Finally we choose the feedback

u = Γŵ +K(x̂− Πŵ) , (2.5.3)

where (Π,Γ) is the solution of the regulator equations (2.3.4), and K

is selected such that A+BK is Hurwitz.
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Theorem 2.5.2. Consider the system (2.2.1) satisfying assumptions

(A1)-(A4) and (A2′). The regulator (2.5.1)-(2.5.3) solves Problem 2.2.1.

Proof. Define the estimation errors x̃ = x − x̂ and w̃ = w − ŵ. The

unforced closed-loop system obtained by substituting (2.5.3) into (2.2.1)

and setting w(t) ≡ 0 is

ẋ = (A+BK)x−BKx̃−B(Γ −KΠ)w̃

˙̃x = (A−G1C)x̃+ (E −G1D)w̃

˙̃w = (−G2C)x̃+ (S −G2D)w̃ .

Since (A + BK) and (2.5.2) are Hurwitz, the equilibrium (x, x̃, w̃) =

(0, 0, 0) of the unforced closed-loop system is asymptotically stable. This

proves condition (AS) of Problem 2.2.1.

Next define z = x− Πw. Then we have

ż = (A+BK)z + [AΠ +BΓ +E − ΠS]w −BKx̃+B(Γ −KΠ)w̃

e = Cz + (CΠ +D)w .

Using (2.3.4), we obtain z(t) −→ 0 and e(t) −→ 0, which verifies (R)

of Problem 2.2.1.

The previous result was based on an observability assumption (A2′)

that permits the use of observers for both x and w. This assumption is

restrictive, but it is not a loss of generality. One can always perform a

reduction to eliminate the part of the composite system (2.4.3) that is

unobservable through e. In light of (A2), the reduced system will retain

the full plant model, whereas the part of the exosystem model that is

redundant with the plant is trimmed off.

Lemma 2.5.3. Consider the system (2.2.1). Suppose that conditions

(A1) and (A2) hold but not (A2′). There exists a coordinate transfor-

mation such that in new coordinates the open-loop system is:

ẋ′ = Ax′ +Bu+ E′w′ (2.5.4a)

ẇ′ = S′w′ (2.5.4b)

e = Cx′ +D′w′ . (2.5.4c)
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where S′, E′, and D′ have a partitioned structure

S′ =

[
S1 0

S21 S2

]
, E′ =

[
E1 0

]
, D′ =

[
D1 0

]
.

Moreover, the pair

([
C D1

]
,

[
A E1

0 S1

])
is observable.

Lemma 2.5.3 gives a procedure to resolve the problem of (A2′) failing

for the original system. Apply the coordinate transformation suggested

in the proof, the reduced system is

ẋ′ = Ax′ +Bu+ E1w1

ẇ1 = S1w1

e = Cx′ +D1w1 .

We see that the original plant is retained, but the exosystem has been

trimmed. The resulting system satisfies (A2′) so we can apply Theo-

rem 2.5.2 to design a regulator.

2.6 Regulator Design II

A second regulator design was proposed in (Davison, 1976). The theme

of this design is to follow the steps one follows for unity feedback loops

in the Laplace domain: first place the unstable poles of disturbance and

reference signals inside the feedforward path of the control loop. Sec-

ond, add a compensator to stabilize the augmented closed-loop system.

Effectively the regulator design is split into a part to satisfy the inter-

nal model principle, called the internal model, and a part to stabilize

the closed-loop system. Consider the internal model

˙̂w = Sŵ +Gime (2.6.1a)

uim = Himŵ . (2.6.1b)

This is not an observer for the exosystem, and ŵ is not an estimate

of w, but we continue to use the variable ŵ for consistency with other
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regulator designs. The control input splits into a stabilizing controller

us and the controller uim to satisfy the internal model principle:

u = us + uim . (2.6.2)

When we combine (2.2.1a) with (2.6.1), we have an augmented system

ẋ = Ax+BHimŵ +Bus + Ew (2.6.3a)

˙̂w = GimCx+ Sŵ +GimDw (2.6.3b)

e = Cx+Dw . (2.6.3c)

Suppose that the system matrix for the unforced augmented system

Acl =

[
A BHim

GimC S

]
(2.6.4)

is Hurwitz. Then we do not require a stabilizing controller, so let us = 0.

Theorem 2.6.1. Consider the system (2.2.1) satisfying assumption (A3).

Consider the regulator (2.6.1), and suppose Acl in (2.6.4) is Hurwitz.

Then (2.6.1) solves Problem 2.2.1.

Proof. By the assumption on Acl, (AS) is satisfied, so we must only

verify the regulation requirement (R). By (A3), σ(Acl) ∩ σ(S) = ∅.

Then by Theorem 2.1.3 there exists a unique solution (Π,Σ) of the

Sylvester equation
[
Π

Σ

]
S =

[
A BHim

GimC S

] [
Π

Σ

]
+

[
E

GimD

]
.

This equation splits into two equations

ΠS = AΠ +BHimΣ + E (2.6.5a)

ΣS = SΣ +Gim(CΠ +D) . (2.6.5b)

Considering the first equation, if we define Γ := HimΣ, then (2.4.1a)

and (2.4.1d) are satisfied. For the second equation, if we can show that

(Π,Σ) satisfy ΣS = SΣ and CΠ +D = 0, then (Π,Σ,Γ) satisfy (2.4.1).

Then by Theorem 2.4.1 we can conclude the proposed regulator solves

Problem 2.2.1.
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Define two linear operators: L1 : R
q×q → R

q×q and L2 : R
1×q → R

q×q

by

L1(Σ) := SΣ − ΣS (2.6.6)

L2(Z) := GimZ . (2.6.7)

First, we know dim(Im (L2)) ≤ q since the dimension of the image

of a linear map does not exceed the dimension of its domain. Second,

by Lemma 2.1.1, the equation L1(Σ) = 0 has at least q independent

solutions, so dim(Ker(L1)) ≥ q. Thus, dim(Im (L1)) ≤ q2 − q.

Now consider the equations

ΠS = AΠ +BHimΣ +X (2.6.8a)

ΣS = SΣ +GimCΠ + Y . (2.6.8b)

Since σ(Acl) ∩ σ(S) = ∅, Theorem 2.1.3 implies (2.6.8) has a solution

(Π,Γ) for each (X,Y ). The second equation can be written in terms of

our two linear operators as:

L1(Σ) + L2(CΠ) = −Y .

Since Y ∈ R
q×q is arbitrary, this equation implies

Im (L1) + Im (L2) = R
q×q .

Based on the bounds on the dimensions of Im (L1) and Im (L2) ob-

tained above, it must be that dim(Im (L1)) = q2−q, dim(Im (L2)) = q,

dim(Ker(L2)) = 0, and Im (L1) ∩ Im (L2) = {0}.

We return to (2.6.5b), which can be written as

L1(Σ) + L2(CΠ +D) = 0 .

Because Im (L1) ∩ Im (L2) = {0}, it must be that L1(Σ) = 0 and

L2(CΠ+D) = 0. The first equation yields (2.4.1c). Since dim(Ker(L2)) =

0, the second equation gives CΠ + D = 0, which is (2.4.1b). We have

shown that (Π,Σ,Γ) satisfy (2.4.1), as desired.

The previous design assumed we could select Him and Gim such that

Acl is fortuitously Hurwitz. This will not always be possible, and we
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may need to employ a dynamic compensator to stabilize the augmented

system (2.6.3). We introduce a second part of the regulator, a stabilizing

dynamic compensator of the form

ẋs = Fsxs +Gse (2.6.9a)

us = Hsxs . (2.6.9b)

The augmented system can be stabilized by a dynamic compensator

if it is controllable and observable. This can be shown by combining

(A1)-(A4) with additional assumptions on Gim and Him.

Lemma 2.6.2. Suppose (A1),(A2), and (A4) hold, σ(Fim) ⊂ σ(S),

(Fim, Gim) is controllable, and (Him, Fim) is observable. Then

([
C 0

]
,

[
A BHim

GimC Fim

]
,

[
B

0

])
(2.6.10)

is controllable and observable.

Proof. First we show

([
A 0

GimC Fim

]
,

[
B

0

])
is controllable. Suppose

not. By the PBH test, there exist v1 ∈ R
n and v2 ∈ R

q such that

vT
1 (A− λI) + vT

2 GimC = 0 , vT
1 B = 0 , vT

2 (Fim − λI) = 0

for some λ ∈ C. Notice that v2 6= 0, otherwise (A,B) is not controllable.

Therefore, by the third equation λ ∈ σ(Fim) ⊂ σ(S). Notice also that

vT
2 Gim 6= 0, otherwise (Fim, Gim) is not controllable. Then we have

[
vT

1 vT
2 Gim

] [A− λI B

C 0

]
= 0

for some λ ∈ σ(S). This contradicts (A4). Controllability of (2.6.10)

follows because controllability is unaffected by state feedback.

Next we show

([
C 0

]
,

[
A 0

GimC Fim

])
is observable. Suppose not. By

the PBH test, there exist v1 ∈ R
n and v2 ∈ R

q such that

(A− λI)v1 +BHimv2 = 0 , Cv1 = 0 , GCv1 + (Fim − λI)v2 = 0 ,
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for some λ ∈ C. Notice that v2 6= 0, otherwise (C,A) is not observable.

Therefore, by the second and third equation λ ∈ σ(Fim) ⊂ σ(S). Notice

also that Himv2 6= 0, otherwise (Him, Fim) is not observable. Then we

have [
A− λI B

C 0

] [
v1

Himv2

]
= 0 ,

for some λ ∈ σ(S). This contradicts (A4).

The previous result suggests we should choose Fim such that σ(Fim) ⊂
σ(S); Gim such that (Fim, Gim) is controllable; and Him such that

(Him, Fim) is observable. One choice (in the SISO case) is Fim =

S with S in companion form, Gim =
[
0 · · · 0 1

]T
and Him =[

1 0 · · · 0
]
. Assembling the two parts of the regulator (2.6.1) and

(2.6.9) into one, we define:

F :=

[
S 0

0 Fs

]
, G :=

[
Gim
Gs

]
, H :=

[
Him Hs

]
. (2.6.11)

The system matrix of the unforced closed-loop system is

Acl =

[
A BH

GC F

]
. (2.6.12)

Theorem 2.6.3. Consider the system (2.2.1) satisfying assumption (A3).

Consider a regulator (2.2.3) with F , G, and H as in (2.6.11), and K = 0.

Suppose (Fs, Gs,Hs) are selected so that Acl in (2.6.12) is Hurwitz.

Then (2.2.3) solves Problem 2.2.1.

Proof. By the assumption on Acl, (AS) is satisfied, so we must only

verify the regulation requirement (R). The closed-loop system is


ẋ

ẋs
˙̂w


 =




A BHs BHim

GsC Fs 0

GimC 0 S






x

xs
ŵ


+




E

GsD

GimD


w . (2.6.13)

Define ξ = (x, xs) and the submatrices

A =

[
A BHs

GsC Fs

]
, B =

[
B

0

]
, C =

[
C 0

]
, E =

[
E

GsD

]
.
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Then we can rewrite the closed-loop system as
[
ξ̇
˙̂w

]
=

[
A BHim

GimC S

] [
ξ

ŵ

]
+

[
E

GimD

]
w . (2.6.14)

By (A3), σ(Acl) ∩ σ(S) = ∅. Then by Theorem 2.1.3 there exists a

unique solution (Π,Σ) of the Sylvester equation
[
Π

Σ

]
S =

[
A BHim

GimC S

] [
Π

Σ

]
+

[
E

GimD

]
.

The proof now proceeds exactly as in Theorem 2.6.1. We conclude

(2.2.3) solves Problem 2.2.1.

2.7 Final Remarks

This chapter presents an overview of some of the major findings of

classical regulator theory: the regulator equations, the internal model

principle, and two classical regulator designs. We focused on SISO linear

systems, though most of the results are extendable to the multi-input

multi-output (MIMO) setting; see (Isidori, 2017; Saberi et al., 2000)

for this development. An advanced treatment of regulator theory from

a geometric viewpoint is presented in (Wonham, 1985).

With the aim to keep the discussion relatively simple, we did not dis-

cuss structurally stable regulators. A structurally stable regulator is

a regulator that solves the regulator problem, for a fixed exosystem,

over a range of plant parameter values near some nominal values, so

long as closed-loop stability is preserved. A structurally stable regula-

tor requires a more involved internal model design in the MIMO case

which was not presented here; see (Saberi et al., 2000; Isidori et al.,

2003; Isidori, 2017) for more discussion. Regulator Design I uses exact

information about the plant and exosystem parameters to solve the

regulator equations, but nevertheless can be shown to be structurally

stable. Regulator Design II can also be shown to be structurally stable.

In sum, classical regulator theory addresses uncertainty in the plant

parameters, but not the exosystem parameters. Further comments on

robustness are provided on Chapter 10.
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One quickly discerns that classical regulator theory may not be well

suited to model all control processes in neuroscience. The most imme-

diate limitation is the requirement to know the frequency content of

disturbance and reference signals. We discuss some limitations of classi-

cal regulator theory in the context of neuroscience in the next chapter.



3

Internal Models in Neuroscience

This chapter revisits classical regulator theory, examining how well it

serves an endeavor of mathematically characterizing internal models

in the brain. Limitations immediately present themselves; however, re-

cent progress in control theory has filled important gaps, and this gives

us hope that we are moving toward supplying the required theoretical

tools. On the neuroscience side, we look at the architecture of the cere-

bellum. The pattern of connectivity suggests highly structured mathe-

matical equations, which are given in Section 3.3. We will be looking

for this structure in our internal model designs. The structural model

does not consider individual neurons or neuron types, but describes

their aggregate contribution. How to map the structural systems-level

model to the neural microcircuit of the cerebellum is an interesting and

important open problem.

32
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3.1 Regulator Problem Revisited

Consider again the classical regulator problem formulated in Chapter 2.

We have a single-input single-output LTI control system

ẋ = Ax+Bu+ Ew (3.1.1a)

ẇ = Sw (3.1.1b)

e = Cx+Dw , (3.1.1c)

with x(t) ∈ R
n, u(t) ∈ R, e(t) ∈ R, w(t) ∈ R

q, and Dw(t) ∈ R and

Ew(t) ∈ R
n represent reference or disturbance signals.

We assume the plant parameters (A,B,C) are known, and we assume

the parameters associated with the exosystem (E,D,S) are also known.

We want to design a regulator

ẋc = Fxc +Ge (3.1.2a)

u = Hxc +Ke , (3.1.2b)

to make the error e go to zero asymptotically. This is the regulation

condition (R) in Problem 2.2.1. The second requirement (AS) is that

the equilibrium of the unforced closed-loop system

ẋ = (A+BKC)x+BHxc (3.1.3a)

ẋc = Fxc +GCx (3.1.3b)

is asymptotically stable.

Aspects of this problem must be revised or relaxed to address modeling

of internal models in the brain. It’s easy to identify the most immediate

restrictions.

• The foremost restriction of classical regulator theory is that the

exosystem parameters are assumed to be known. This restriction

has been recognized in control theory as being too limiting for

at least 25 years, leading to the development of adaptive inter-

nal models. An overview of this development was presented in

Section 1.1, and it will be the focus of our Chapter 5. Adaptive

internal models are the main tool we exploit to develop our neuro-

science models, and many sophisticated designs are now available.
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Figure 3.1: A unity feedback loop with a plant P and controller C. A persistent
reference signal r is generated by a process R within the control system.

• The second most important restriction of classical regulator the-

ory is the assumption that the plant parameters are known. A

number of results in the control literature have addressed this re-

striction; see Section 1.1. There is one caveat. The brain utilizes

a vast separation of time scales for parameter adaptation: some

adaptive processes such as smooth pursuit eye movements take

place over milliseconds; others such as adaptation to lesions of

the eye muscles take place over weeks. Generally, we have found

that experimental studies (particularly with the oculomotor sys-

tem) show that adaptation to exogenous disturbances happens

rapidly, while adaptation to model changes is very slow. Current

regulator designs that deal with unknown plant and exosystem

parameters combine plant and exosystem parameter adaptation

as one process. A modular approach may better capture brain

processes.

In sum, the main limitation of classical regulator theory is the well-

known restriction of a priori knowledge of parameters. Another limita-

tion regards an assumption on signals. Built into the (AS) requirement

is an implicit understanding about what constitutes an “unforced sys-

tem”. Signals designated as exogenous are those entering the control

system from the “outside” or the environment: disturbances and refer-

ence signals. The requirement (AS) ensures that if these signals entirely

disappear, are dropped as measurements, or are nulled, then the control
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Figure 3.2: A unity feedback control system with exogenous signals r and d. The
connection from y to e is persistent.

system gracefully “shuts down” to a stable state. Notably the connec-

tion from the plant output y to e = r − y is regarded as immutable.

Consider, in particular, the possible interpretations of a classical unity

feedback loop. Firstly, the reference signal r may be regarded as an

endogenous signal, part of the system being controlled, and therefore

persistent (if we assume no faults), as in Figure 3.1. For example in

a temperature control system consisting of a house and a thermostat,

the setpoint temperature of the thermostat is endogenous - it may

always be assumed to be available, under nominal operation. The same

may be said for temperature regulation or blood sugar regulation in

the body: without a setpoint for blood sugar, there is no meaningful

stability requirement. The measurement y = Cx is also assumed to be

endogenous and persistent. The controller utilizes e as its only input,

since there is no realistic scenario in which y would be present without

r.

A second interpretation, which is the most common in engineering ap-

plications, is that both the reference signal r and the disturbance d are

exogenous, and therefore may not persist, but the connection from y to

e is endogenous and persistent; see Figure 3.2. A paradox of this unity

feedback loop is that the controller utilizes e as its only measurement,

even though in this case a separate measurement of y may be avail-

able. When the reference signal disappears, the controller continues to

require e = −y for closed-loop stability, particularly if the open-loop
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system has been made unstable by the insertion of an internal model

in the feedforward path to satisfy the internal model principle. The

regulator has no shut off mechanism since the internal model is built

in permanently. Moreover, the classical design philosophy intertwines

closed-loop stability with the choice of internal model. Undergraduates

are taught to place the unstable poles of the exosystem in the feedfor-

ward path; then stabilize the resulting augmented system.

To summarize, if r is exogenous, but y is endogenous and therefore

persistent as a measurement, the controller could make use of a pure

measurement of y, for instance to achieve closed-loop stability. Yet

the classical unity feedback loop does not permit such a measurement

structure. The controller continues to be driven by e both for stability

and regulation; for instance, as in Regulator Design II.

Regulator theory for MIMO systems has addressed several of the con-

straints of the classical unity feedback loop by allowing, for example,

a separate measurement y for stabilization and e for regulation. Al-

ternatively, a measurement y may be used both for stabilization and

regulation, while the signal e is independently defined as the signal to be

regulated. An assumption that e is “readable” from y” was introduced

in (Francis and Wonham, 1976), such that the measurement e is recov-

erable from y. The text (Saberi et al., 2000) has as one of its themes

to extend classical regulator theory to allow separate measurements

and regulated variables. These extensions may be relevant in a biolog-

ical context, especially if a modular design approach is adopted: extra

measurements in y may be dedicated to closed-loop stability, while the

measurement of e through y is dedicated to regulation, and so forth.

More commonly, regulator designs that allow additional measurements

do not insist on such a partition of tasks.

Now consider the situation in Figure 3.3. The environment is outside

the feedforward path, and the connection from y to e arises in the

environment. The exogenous signals, which must be assumed to be

unreliable, are e and d. For example, consider a self-driving car that

must follow a lead car at a safe distance. If the lead car changes lanes,

suddenly the error measurement is dropped. If the unforced closed-
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Figure 3.3: A unity feedback control system with exogenous signals e and d. The
connection from y to e occurs in the environment.

loop system is taken to be the remaining system after removal of e

and d, then the stability requirement (AS) would be in conflict with

the regulation requirement (R): the unstable poles of the exosystem

inserted in the feedforward path to achieve regulation would cause the

closed-loop system to be unstable when e is dropped as a measurement.

Let’s see how the two classical regulator designs we presented in Sec-

tions 2.5 and 2.6 behave in the new interpretation of unforced closed-

loop system. Regulator design I utilized observers for both plant and

exosystem:

˙̂x = Ax̂+Bu+Eŵ +G1(e− ê) (3.1.4a)

˙̂w = Sŵ +G2(e− ê) (3.1.4b)

ê = Cx̂+Dŵ . (3.1.4c)

Based on an observability assumption, G1 and G2 could be selected so

that [
A−G1C E −G1D

−G2C S −G2D

]
(3.1.5)

is Hurwitz. The controller is

u = Γŵ +K(x̂− Πŵ) , (3.1.6)

where (Π,Γ) is the solution of the regulator equations. We ignore for

the moment that precise values of (Π,Γ) are not available to the con-

troller and focus instead on what happens when the signals e and d are
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dropped. We obtain

ẋ = Ax+Bu (3.1.7a)

˙̂x = (A−G1C)x̂+ (E −G1D)ŵ +Bu (3.1.7b)

˙̂w = −G2Cx̂+ (S −G2D)ŵ . (3.1.7c)

Suppose that A is already Hurwitz or it has been stabilized by an inde-

pendent stability mechanism. Then we can see that a reasonable way

to handle the loss of e in the measurement is to remove u from all the

equations. The (x̂, ŵ) dynamics become decoupled from the x dynam-

ics, and by the assumption on (3.1.5), they are exponentially stable.

For this scheme to work, the controller would require a technology that

detects the loss of measurement e and is capable to instantaneously

latch u.

Consider regulator design II, which takes the form:

˙̂w = Sŵ +Gime (3.1.8a)

u = Himŵ . (3.1.8b)

When the measurement e is dropped, then we have

ẋ = Ax+Bu+ Ew

˙̂w = Sŵ

u = Himŵ .

Now the system includes the unstable ŵ dynamics. In an engineering

system, one could devise a latch to disable these unstable dynamics

when the error is dropped. However, this would result in undesirable

chattering in the input u in case the measurement is intermittent. In

a biological system, the internal model with state ŵ may not be so

easily disabled, since the internal model is physically implemented in

a neural circuit. A graceful shut off mechanism is needed. It seems

that whatever brain region supplies internal models for motor control,

it must be supported by dedicated brain infrastructure for closed-loop

stability that functions reasonably with or without incoming sensory

error measurements.

Several other issues related to the dichotomy between biological and

engineering applications of regulator theory deserve mention.
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• All parameters (or constants) are in flux in the brain. How does

a regulator self-calibrate to counter its own varying parameters?

For example, a common plant parametrization used in adaptive

control consists of two stable filters:

ẇ1 = Fw1 +Gy

ẇ2 = Fw2 +Gu

ŷ = θ̂1w1 + θ̂2w2 ,

where ŷ is an estimate of the plant output y, and (θ̂1, θ̂2) are

estimates of plant parameters. For this design to work, the two

stable filters must have identical system matrices (F,G). Such a

requirement is never achieved in a biological system, unless some

further adaptive process is in operation.

Because control theory primarily focuses on designs that are ul-

timately implemented on a digital computer or microprocessor,

variation of parameters of the regulator itself is not incorporated

in the design. Robustness results for such designs likewise do not

exist.

• The brain liberally utilizes (noisy) feedfoward signals to assist

with disturbance rejection tasks. For example, the brain uses a

noisy measurement of head velocity from the ear’s semicircular

canals to stabilize the gaze while the head is moving. The inter-

action between noisy feedforward signals and internal models has

not been widely studied in regulator theory, to our knowledge.

We expect interesting ideas would come forth in this area.

3.2 Cerebellum

The locus of internal models in the brain is believed to be the cerebel-

lum. The cerebellum is a major brain region positioned at the back of

the head, partly covered by the cerebral cortex, and itself covering the

brainstem. It consists of the cerebellar cortex, forming the outer layer,

and the deep cerebellar nuclei. While the human brain contains roughly
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86 billion nerve cells, 69 billion, or 80% of them are in the cerebellum.

The cerebellar cortex unfolded is more than 2 meters long in humans.

In 1967 nobel prize winner John Eccles and his co-authors laid out all

the neuron types and their interconnections comprising the microcircuit

of the cerebellum (Eccles et al., 1967). Their work showed that the

cerebellum contains relatively few neuron types, that it has a laminated

structure with a repeating architectural pattern pervading each layer or

zone, unlike any other brain region. We will refer to zones as functional

modules (not to be confused with cerebellar lobules, which may consist

of multiple modules) (Apps et al., 2018). Each module has only two

input pathways and a single output pathway.

The cerebellar cortex is a folded sheet divided into three main layers:

from outside to inside, the molecular layer, the Purkinje cell (PC) layer,

and the granular layer. These three layers contain the main neuron

types of the cerebellum. Each neuron type has a distinctive cell body

shape, cellular processes, and input/output connections.

• The first of two input pathways to the cerebellum is via the mossy

fiber (MF) inputs. The mossy fibers carry an extraordinarily rich

flow of information into the cerebellum from many sources, in-

cluding sensory inputs as well as the output of the cerebellum

itself.

• The granular layer is formed by tens of billions of granule cells,

the most common cell type of the brain. Granule cells receive

their input from the mossy fibers, further expanding the richness

of information flow through their numbers.

• The axons of the granule cells form the parallel fibers (PFs), so-

called because they run parallel to each other within the molecu-

lar layer.

• The parallel fibers connect with the dendrites of the principal

neuron type of the cerebellum, the Purkinje cells, which com-

prise the Purkinje cell layer. Each Purkinje cell receives synaptic

connections from as many as 200,000 parallel fibers, themselves
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receiving inputs from 4.6 million granule cells, and each parallel

fiber synapses with many Purkinje cells as it passes along the

molecular layer.

• The second input pathway to the cerebellum is via the climb-

ing fibers (CFs), which are the axons of cells from part of the

brainstem called the inferior olive. Each climbing fiber forms a

powerful connection with a single Purkinje cell. This one-to-one

relationship between Purkinje cells and their climbing fibers con-

trasts with the massive convergence of information from the par-

allel fibers to the Purkinje cells. Climbing fibers are capable to

modify the strength of the synapse between parallel fiber inputs

onto the Purkinje cells.

• The Purkinje cell axons project to the deep cerebellar nuclei and

the vestibular nuclei, forming the only output pathway from the

cerebellum. The deep cerebellar nuclei also receive direct inputs

from mossy fibers and climbing fibers.

Several other cell types occur in the cerebellum:

• Within the granular layer are inhibitory Golgi cells that receive

mossy fiber and parallel fiber input and project to granule cells.

• In some areas of the cerebellum, there are excitatory cells called

unipolar brush cells that also receive mossy fiber input and project

to granule cells. Golgi cells and unipolar brush cells assist to fur-

ther expand the information arriving in mossy fibers into granule

cells.

• The molecular layer includes stellate cells that receive input from

many parallel fibers, and their axons run across the molecular

layer to contact Purkinje cell dendrites.

• The Purkinje cell layer includes basket cells that receive Purkinje

cell and parallel fiber input and project back to Purkinje cells.

For our present purposes, the notable features of the anatomical struc-

ture of the cerebellum are:
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• The cerebellum has a purely feedforward structure. Information

flows from the mossy fiber inputs to granule cells and then via

the parallel fibers to the Purkinje cells. The Purkinje cells send

their outputs to the deep cerebellar nuclei and vestibular nuclei.

• There is a massive fanout of information from the mossy fiber

inputs to the granule cells and the parallel fibers, followed by

a massive fan-in of information from the parallel fibers to the

Purkinje cells.

• Each functional module of the cerebellum is identical to the others

and performs the same neural computation. The only distinction

between modules is in terms of the input and output connections

to other regions of the brain.

• Each functional module of the cerebellum processes its own sen-

sory error signal received via the climbing fiber inputs from a cir-

cumscribed region of the inferior olive (IO). Each module sends

its output to a circumscribed region in the cerebellar nuclei.

• The adaptive capability of the cerebellum is provided by the

climbing fiber input, which changes the strength of the synapse

between the parallel fibers and the Purkinje cells.

• Mossy fibers projecting to a similar region of the cerebellar cortex

encode similar information.

• Each of the deep cerebellar nuclei and the vestibular nuclei has

a projection to the MF inputs of the cerebellum. This projection

is termed the nucleo-cortical pathway and is regarded to provide

an efference copy of the motor command issued by the cerebel-

lum (Ruigrok, 2011; Houck and Person, 2014; Houck and Person,

2015).
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3.3 A Structural Model

Informed by the cerebellar architecture, we explore the efficacy of a

structural model

ẋ = Ax+Bu+Ew (3.3.1a)

e = Cx+Dw (3.3.1b)

ẇ0 = F0w0 + F0G0e (3.3.1c)

ẇ1 = F1w1 +G1umf,1 (3.3.1d)

... (3.3.1e)

ẇk = Fkwk +Gkumf,k (3.3.1f)

ẇk+1 = Fk+1wk+1 +Gk+1uim (3.3.1g)

ŵ = (w0, w1, . . . , wk+1) (3.3.1h)
˙̂
ψ = γeŵT (3.3.1i)

uim = ψ̂ŵ (3.3.1j)

u = us + uim . (3.3.1k)

Equation (3.3.1a) represents the open-loop system. Signal e is the (sen-

sory) error that the cerebellum is tasked with driving to zero. The dis-

tinct mossy fiber input signals are umf,1, . . . , umf,k. The filters (3.3.1c)-

(3.3.1g) may be likened to the lead-lag filters utilized in (Fujita, 1982)

to model the mossy fiber-granule cell-Golgi cell network. Here rather

than restricting to a lead-lag interpretation, we allow these filters to

have a more general form. We assume each filter is stable, i.e. Fi is

Hurwitz, so that if a mossy fiber input is dropped or intermittent, the

filter remains stable. Also, each pair (Fi, Gi) is controllable. The fil-

ter (3.3.1g) models the nucleo-cortical pathway. The equation (3.3.1i)

is the standard least-mean-squares (LMS) parameter adaptation law,

presumed to model the modifiable synapses between parallel fibers and

Purkinje cells. The error signal e in this equation is supplied by the

climbing fiber inputs. The output of the cerebellum is uim, and the

motor command is u, which includes us for closed-loop stability, as

needed.
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In the chapters that follow we present internal model designs that we

deem to be promising to fullful the requirements of internal models in

the brain, including the architecture of the cerebellum. The foremost

priority is to remove the assumption that the exosystem parameters

are known. This involves a review of the relevant results from adaptive

control, the subject of the next chapter, on which these adaptive designs

are based.

The regulator designs we present are for SISO LTI systems, as these

represent the class of open-loop models we have worked with so far

(primarily the oculomotor system). How the brain deals with MIMO

plants (such as the arm or leg) requires a dedicated study of the brain

regions that are involved, especially the interconnections between the

motor cortex and the cerebellum. We do not utilize nonlinear regulator

theory, despite the proliferation of significant results in this area, again

due to our choice of model systems.

The designs we consider generally allow for separate consideration of

stabilization and regulation, thereby setting up a structure to handle

measurement of exogenous (possibly intermittent) error signals. How-

ever, the problem of regulation with intermittent measurements is not

addressed in this monograph and will require a separate theoretical

development.

This monograph focused on behaviors associated with short-term adap-

tation. Our finding is that short term adaptation may be modeled as

a disturbance rejection problem to unknown exogenous reference and

disturbance signals. As such, our regulator designs assume that plant

parameters are known. Adaptation to changing plant parameters is re-

garded to be part of long-term adaptation, requiring a separate study

both in terms of control theory developments and in terms of interpret-

ing experimental results in the neuroscience literature.
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Adaptive Control

Adaptive control was developed starting in the 1950’s and includes a

large body of results covering system identification, adaptive observers,

adaptive pole placement, and model reference adaptive control, among

other subjects. Standard references for the area are (Anderson and al.,

1986; Ioannou and Sun, 2012; Narendra and Annaswamy, 1989; Sastry

and Bodson, 1989). See also (Slotine and Li, 1991) for the application

of adaptive control to robotic manipulators. This chapter reviews tech-

niques from adaptive control that are required to extend the regulator

problem to the adaptive case. Model reference adaptive control is not

discussed, although it was a main focus of adaptive control researchers

in the 1970-80’s.

Model reference adaptive control assumes that a desired reference model,

typically a stable linear system driven by a known reference input, is

given. The control objective is to make the plant output track the out-

put of the reference model. Since we cannot assume a reference model

is given or known in the regulator problem, this formulation is not di-

rectly useful. However, many tools and techniques of adaptive control

are of great interest in extending regulator theory to the fully adaptive

setting.

45
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Inspired by the approach in (Narendra and Annaswamy, 1989), this

chapter is organized around the notion of error models, a conceptu-

ally elegant framework for discussing parameter adaptation in terms

of driving an error signal to zero. Error models with their associated

parameter adaptation laws provide a general design tool which can be

applied in a variety of control applications.

4.1 Mathematical Background

Let x : R+ → R
n. The L∞ norm is defined as

‖x‖∞ = sup
t≥0

‖x(t)‖ .

We say x ∈ L∞ if ‖x‖∞ exists.

Definition 4.1.1. Consider a function f : R
+ → R. We say f is

uniformly continuous if for each ǫ > 0, there exists δ > 0 such that for

every x, y ∈ R, |x− y| < δ implies |f(x) − f(y)| < ǫ.

An easily checkable sufficient condition for a function to be uniformly

continuous is the following.

Lemma 4.1.2. Consider a differentiable function f : R+ → R. If ḟ ∈
L∞, then f is uniformly continuous.

Lemma 4.1.3 (Barbalat). Consider a differentiable function f : R+ →
R, and suppose limt→∞ f(t) exists. If ḟ is uniformly continuous, then

limt→∞ ḟ(t) = 0.

When we refer to a transfer function H(s), we mean a proper rational

function in the Laplace variable s = d
dt

. A transfer function is stable if

all its poles are in the open left-half complex plane. For a strictly proper

transfer function H(s), we write H(s) = C(sI −A)−1B to denote that

the triple (A,B,C) constitutes a minimal realization of H(s).

Consider a strictly proper transfer function H(s) = C(sI − A)−1B,

and let ψ(t) ∈ R
1×q and w(t) ∈ R

q be time-varying signals. Consider a

scalar error given by

e = H(s) [ψw] . (4.1.1)
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This mixed time and Laplace domain notation is a shorthand for an

equivalent state space model of the form

ẋ = Ax+B(ψ(t)w(t)) (4.1.2a)

e = Cx , (4.1.2b)

where the dimension of state x ∈ R
n is determined by the order of

the denominator polynomial of H(s), and the initial conditions x(0)

can take any value in R
n. Typically this mixed notation is used when

A is Hurwitz, so the contribution of initial conditions is exponentially

vanishing. We also use the notation H(s)I [w], where I is the q × q

identity matrix, to denote the component-wise filtering by H(s) of each

component of signal w(t). The dimension of I will generally be inferred

from the context.

Concepts from network theory regarding dissipative networks play a

role in certain stability results in adaptive control; see (Ioannou and

Sun, 2012) for more discussion.

Definition 4.1.4. Consider a transfer function H(s). We say H(s) is

strictly positive real (SPR) if there exists ǫ > 0 such that

ℜ [H(s− ǫ)] ≥ 0

for all s ∈ C with ℜ(s) ≥ 0. That is, H(s) maps every point in the

right half complex plane to the right half complex plane, with margin

ǫ > 0.

Theorem 4.1.5. A transfer function H(s) is SPR if and only if H(s) is

stable and

ℜ [H(jω)] > 0 , ∀ω ≥ 0 . (4.1.3)

A famous result regarding SPR transfer functions is the Kalman-Yakubovich-

Popov lemma.

Lemma 4.1.6 (KYP Lemma). Consider a linear system

ẋ = Ax+Bu (4.1.4)

y = Cx , (4.1.5)
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where A is Hurwitz and (A,B) is controllable. The transfer function

H(s) = C(sI − A)−1B is SPR if and only if there exist symmetric,

positive definite matrices P and Q such that

ATP + PA = −Q , PB = CT . (4.1.6)

Finally, we review some results for linear time-varying systems. Con-

sider the linear time-varying system [C(t), A(t)] defined by

ẋ(t) = A(t)x(t) (4.1.7a)

y(t) = C(t)x(t) , (4.1.7b)

where x(t) ∈ R
n and y(t) ∈ R

m. Also A(t) ∈ R
n×n and C(t) ∈ R

m×n

are piecewise continuous functions of time. Let Φ(t, t0) ∈ R
n×n be the

state transition matrix associated with A(t).

Definition 4.1.7. The system [C(t), A(t)] is called uniformly com-

pletely observable (UCO) if there exist constants β1, β2, δ > 0 such that

for all t0 ≥ 0

β1I ≤ Wo(t0, t0 + δ) ≤ β2I ,

where Wo(t0, t0 + δ) ∈ R
n×n is the observability Gramian

Wo(t0, t0 + δ) =

∫ t0+δ

t0

ΦT(τ, t0)CT(τ)C(τ)Φ(τ, t0)dτ .

The latter condition may be rewritten as

β1‖x(t0)‖2 ≤
∫ t0+δ

t0

|C(τ)x(τ)|2dτ ≤ β2‖x(t0)‖2 ,

for all x(t0) and t0 ≥ 0, where x(t) is the solution of (4.1.7) starting

at x(t0).

Lemma 4.1.8. Consider a function L : R+ → R
n×1. Suppose that for

all δ > 0, there exists cδ ≥ 0 such that for all t0 ≥ 0
∫ t0+δ

t0

||L(τ)||2dτ ≤ cδ .

Then, the system [C(t), A(t)] is UCO if and only if the system [C(t), A(t)+

L(t)C(t)] is UCO. Moreover, if the observability grammian of [C(t), A(t)]

satisfies

β1I ≤ Wo(t0, t0 + δ) ≤ β2I ,
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then the observability grammian of [C(t), A(t)+L(t)C(t)] satisfies these

inequalities with the same δ and

β′
1 =

β1

(1 +
√
cδβ2)2

, β′
2 = β2e

cδβ2 .

4.2 Error Models

4.2.1 Error Model I

We start with the simplest setting of parameter adaptation. We have

a scalar signal

y = ψw

that depends linearly on a row vector of constant, unknown parameters

ψ ∈ R
1×q. The known vector w(t) ∈ R

q is called the regressor. Let ψ̂(t)

be an estimate of ψ and define the parameter error ψ̃ := ψ − ψ̂. Also

define the estimate

ŷ := ψ̂w ,

and the error

e := y − ŷ = ψ̃w .

We consider a parameter adaptation law

˙̂
ψ = γewT , (4.2.1)

where γ > 0 is the adaptation rate. This adaptation law is called gra-

dient descent since it corresponds to the gradient of the squared error;

namely,
∂e2

∂ψ̃
= 2e

∂e

∂ψ̃
= 2ewT .

Theorem 4.2.1. Consider the error e = ψ̃w and the parameter adap-

tation law (4.2.1). Suppose w, ẇ ∈ L∞. Then ψ̃ ∈ L∞, e(t) −→ 0, and

ψ̃(t)w(t) −→ 0.

Proof. Define the Lyapunov function V = ψ̃ψ̃T. Noting
˙̃
ψ = − ˙̂

ψ, we

have

V̇ = −2e(γψ̃w) = −2γe2 ≤ 0 .
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We conclude V, ψ̃ ∈ L∞. Since w ∈ L∞, in turn e,
˙̃
ψ ∈ L∞. Now

consider

V̈ = −4γe
[

˙̃
ψw + ψ̃ẇ

]
.

Since all terms on the right are bounded, then V̈ ∈ L∞, and by

Lemma 4.1.2, V̇ is uniformly continuous. Since V is a decreasing func-

tion which is lower bounded, it has a finite limit. Therefore we can

apply Lemma 4.1.3 to conclude V̇ (t) −→ 0. This implies e(t) −→ 0.

Since e = ψ̃w, we also have ψ̃(t)w(t) −→ 0.

Remark 4.1. We are not in a position to conclude that ψ̃(t) −→ 0.

This requires an extra condition called persistency of excitation, which

we consider in Section 4.2.3 for the third error model.

A small but useful extension is to allow for some exponentially stable

dynamics to enter into e. Consider the system

e = ψ̃w + ψ2w2 (4.2.2a)

ẇ2 = F2w2 (4.2.2b)
˙̃
ψ = −γewT , (4.2.2c)

where w2 ∈ R
r, ψ2 ∈ R

1×r is constant, and F2 is Hurwitz.

Corollary 4.2.2. Consider the system (4.2.2) with γ > 0 and F2 Hur-

witz. Let w, ẇ ∈ L∞. Then ψ̃ ∈ L∞, e(t), w2(t) −→ 0, and ψ̃(t)w(t) −→
0.

Proof. It is obvious that w2(t) −→ 0. Consider the Lyapunov function

V =
1

γ
ψ̃ψ̃T + c2w

T
2 P2w2 ,

where c2 > 0 is to be determined, and P2 is the symmetric, positive

definite solution of FT
2 P2 + P2F2 = −I. Then we have

V̇ = −2e(ψ̃w) − c2w
T
2 w2 = −2e2 + 2eψ2w2 − c2w

T
2 w2 .

Recall Young’s Inequality: for any a, b ∈ R and ε > 0,

ab ≤ a2

2ε
+
εb2

2
. (4.2.3)
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Let a = e, b = ψ2w2, and ε = 2. Then

V̇ ≤ −3

2
e2 + 2wT

2 ψ
T
2 ψ2w2 − c2w

T
2 w2 .

We choose c2 = 4λmax(ψT
2 ψ2) > 0. Then we obtain

V̇ ≤ −3

2
e2 − c2

2
wT

2 w2 ≤ 0 .

We conclude V, ψ̃ ∈ L∞. Since w,w2 ∈ L∞, in turn e,
˙̃
ψ ∈ L∞. Also,

ė, ẇ ∈ L∞. Now consider

V̈ = −2ė(ψ̃w) − 2e(ψ̃ẇ) − 2c2w
T
2 F2w2 .

Since all terms on the right are bounded, then V̈ ∈ L∞, and by

Lemma 4.1.2, V̇ is uniformly continuous. Since V is a decreasing func-

tion which is lower bounded, it has a finite limit. Therefore we can

apply Lemma 4.1.3 to conclude V̇ (t) −→ 0. This implies e(t) −→ 0.

Since e = ψ̃w + ψ2w2, we also have ψ̃(t)w(t) −→ 0.

4.2.2 Error Model II

A second simple scenario for parameter adaptation is one in which a

stable linear system is driven by a parameter-dependent signal, and the

system states are measurable. Consider the system

ẋ = Ax+B(ψ̃w) , (4.2.4)

where A is Hurwitz, (A,B) is controllable, and ψ(t) = ψ − ψ̂ ∈ R
1×q

is a row vector of time-varying parameter estimation errors. Suppose

the state x(t) and the regressor w(t) are measurable. We propose a

parameter adaptation law of the form

˙̃
ψ = −γ

(
BTPx

)
wT , (4.2.5)

where γ > 0 is the adaptation rate, and P is the symmetric, positive

definite solution of the Lyapunov equation

ATP + PA = −Q

for a given symmetric, positive definite matrix Q.



52 Adaptive Control

Theorem 4.2.3. Consider the system (4.2.4) and the parameter adap-

tation law (4.2.5) with γ > 0. Suppose A is Hurwitz and w ∈ L∞. Then

x, ψ̃ ∈ L∞, and x(t) −→ 0.

Proof. Consider the Lyapunov function V = xTPx+ 1
γ
ψ̃ψ̃T. Then we

have

V̇ = 2xTPẋ+
2

γ
ψ̃

˙̃
ψ

T
= 2xTP (Ax+Bψ̃w) − 2ψ̃wBTPx

= −xTQx ≤ 0 .

It follows that V, x, ψ̃ ∈ L∞. Since also w ∈ L∞, from (4.2.4), we get

ẋ ∈ L∞. Therefore, V̈ = −2xTQẋ ∈ L∞. This means V̇ is uniformly

continuous by Lemma 4.1.2. Then by Lemma 4.1.3, we get V̇ (t) −→ 0.

Therefore, x(t) −→ 0, as desired.

A small extension, as in Corollary 4.2.2, is to allow some exponentially

stable dynamics to be appended. Consider the closed-loop system

ẋ = Ax+B(ψ̃w) + E(ψ2w2) (4.2.6a)

ẇ2 = F2w2 (4.2.6b)
˙̃
ψ = −γ

(
BTPx

)
wT , (4.2.6c)

where x ∈ R
n, w2 ∈ R

r, and ψ2 ∈ R
1×r is a constant.

Corollary 4.2.4. Consider the system (4.2.6) with γ > 0. Suppose A

and F2 are Hurwitz and w ∈ L∞. Then x,w2, ψ̃ ∈ L∞, and x(t), w2(t) −→
0.

4.2.3 Error Model III

Consider a transfer function H(s) = C(sI −A)−1B with minimal real-

ization (A,B,C), let ψ̃ = ψ − ψ̂ ∈ R
1×q be a time-varying parameter

estimation error vector, and let w(t) ∈ R
q be a known regressor. Con-

sider a scalar error signal given by

e = H(s)
[
ψ̃w
]
. (4.2.7)
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Recall this error model is equivalent to a state space model

ẋ = Ax+B(ψ̃w) (4.2.8a)

e = Cx . (4.2.8b)

Comparing to the second error model, now we assume the state x is not

measurable, but the measurement is e. Suppose the parameter vector

is updated according to the parameter adaptation law

˙̃
ψ = −γewT , (4.2.9)

where γ > 0 is the adaptation rate.

Theorem 4.2.5. Consider the error (4.2.7) and the parameter adapta-

tion law (4.2.9). Suppose that H(s) is SPR. Then x, e, ψ̃ ∈ L∞. More-

over, if w ∈ L∞, then e(t) −→ 0.

Proof. Since H(s) is SPR, by Lemma 4.1.6, given Q symmetric and

positive definite, there exists P symmetric and positive definite such

that

ATP + PA = −Q , PB = CT .

Consider the Lyapunov function V = xTPx+ 1
γ
ψ̃ψ̃T. We have

V̇ = 2xTPẋ+
2

γ
ψ̃

˙̃
ψ

T
= 2xTP (Ax+Bψ̃w) − 2ψ̃we

= −xTQx+ 2xTCTψ̃w − 2eψ̃w

= −xTQx ≤ 0 .

Therefore, V, x, ψ̃ ∈ L∞, and thus e ∈ L∞. Supposew ∈ L∞. Then from

(4.2.8), ẋ ∈ L∞. Then we have V̈ = −2xTQẋ ∈ L∞, so by Lemma 4.1.2,

V̇ is uniformly continuous. Then by Lemma 4.1.3, V̇ −→ 0. Hence,

x(t) −→ 0 and e(t) −→ 0.

4.2.4 Error Model IV

Suppose we have an error model

e = H(s)
[
ψ̃w
]
,
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where ψ̃ = ψ − ψ̂ ∈ R
1×q is a row vector of time-varying parameter

estimation errors, w(t) ∈ R
q is a known, bounded regressor, andH(s) =

C(sI − A)−1B is a known stable, strictly proper transfer function. If

H(s) is not SPR, then we cannot use results for the third error model.

Instead, a modification of the error takes us back to the first error

model. Consider the augmented error

e := e+H(s)
[
ψ̂w
]

− ψ̂H(s)I [w] (4.2.10)

= H(s)
[
ψ̃w
]

+H(s)
[
ψ̂w
]

− ψ̂H(s)I [w]

= H(s) [ψw] − ψ̂w + ǫ ,

where I is the q × q identity matrix, w := H(s)I [w] ∈ R
q is the fil-

tered regressor, and ǫ is an exponentially vanishing term. A state space

realization of w is

η̇ = Aη +BwT

w = (Cη)T ,

where η ∈ R
n×q is the state matrix, A ∈ R

n×n, B ∈ R
n×1, and

C ∈ R
1×n. The initial condition η(0) for the state space realization

is arbitrary, but its contribution is exponentially vanishing since A is

Hurwitz. It is useful to note already that for ψ constant, the following

swapping lemma holds.

Lemma 4.2.6. Suppose ψ ∈ R
1×q is a constant parameter vector,

w(t) ∈ R
q is a known regressor, and H(s) = C(sI −A)−1B is a stable

transfer function. Then
(
ψH(s)I [w] − H(s) [ψw]

)
(t) −→ 0 exponen-

tially.

Using the lemma and ignoring exponentially vanishing terms, we see

that

e = ψH(s)I [w] − ψ̂w = ψ̃w .

Consider the parameter adaptation law

ψ̇ = −γewT , (4.2.11)

where γ > 0. The error model (4.2.10) and parameter adaptation law

(4.2.11) now correspond to the model in Section 4.2.1.
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Lemma 4.2.7. Suppose H(s) = C(sI − A)−1B is a stable transfer

function. Consider the augmented error (4.2.10) and the parameter

adaptation law (4.2.11). Let w, ẇ ∈ L∞. Then ψ̃ ∈ L∞, e(t) −→ 0, and

ψ̃(t)w(t) −→ 0.

Proof. Since by assumption w, ẇ ∈ L∞, and H(s) is stable, then w, ẇ ∈
L∞. Now we can apply Theorem 4.2.1 to signals (e, ψ̃, w) to conclude

ψ̃ ∈ L∞, and e(t) −→ 0. It then follows that e(t) = ψ̃(t)w(t) −→ 0.

This result does not provide conclusions on the original error signal e.

For this we require the so-called swapping lemma.

Lemma 4.2.8. Let ψ̃ and w be signals with ψ̃ differentiable. Let H(s) =

C(sI −A)−1B be a stable transfer function. Then

ψ̃H(s)I [w] −H(s)
[
ψ̃w
]

= Hc(s)
[

˙̃
ψHb(s) [w]

]
,

where Hb(s) = (sI −A)−1B and Hc(s) = C(sI −A)−1.

Proof. Consider the state space models

η̇1 = Aη1 +BwT , y1 = Cη1ψ̃
T

η̇2 = Aη2 +B(ψ̃w) , y2 = Cη2 ,

where η1 ∈ R
n×q and η2 ∈ R

n. Notice that y1 = ψ̃H(s)I [w] and

y2 = H(s)
[
ψ̃w
]
. Next we compute

d

dt

(
η1ψ̃

T − η2

)
= (Aη1 +BwT)ψ̃T + η1

˙̃
ψ

T
−Aη2 −BwTψ̃T

= A(η1ψ̃
T − η2) + η1

˙̃
ψ

T
.

Putting it all together,

y1 − y2 = ψ̃H(s)I [w] −H(s)
[
ψ̃w
]

= C(η1ψ̃
T − η2)

= Hc

[
η1

˙̃
ψ

T
]

= Hc

[
Hb[w

T]
˙̃
ψ

T
]
.
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Theorem 4.2.9. Suppose H(s) = C(sI − A)−1B is a stable transfer

function. Consider the augmented error (4.2.10) and the parameter

adaptation law (4.2.11). Let w, ẇ ∈ L∞. Then ψ̃ ∈ L∞, e(t) −→ 0,

e(t) −→ 0, and ψ̃(t)w(t) −→ 0.

Proof. By Lemma 4.2.7 we know ψ̃ ∈ L∞, e(t) −→ 0, and ψ̃(t)w(t) −→
0. Since w ∈ L∞, from (4.2.11) we have

˙̃
ψ(t) −→ 0. Since H(s) is stable

and applying Lemma 4.2.8, we obtain

(
ψ̃H(s)I [w] −H(s)

[
ψ̃w
])

(t) −→ 0 .

We conclude e(t) −→ 0.

4.3 Persistency of Excitation

Theorem 4.2.1 says that if e = ψ̃w and
˙̃
ψ = −γewT, then e(t) −→ 0.

Still unresolved is the question of whether the parameters converge;

that is, ψ̃(t) −→ 0. There are generally two avenues to address this

question; see (Sastry and Bodson, 1989) for more discussion.

The first avenue investigates the properties of w and ψ̃w directly. Sup-

pose ψ̃(t) asymptotically approaches a constant row vector. We also

know ψ̃(t)w(t) −→ 0. If w(t) rotates through all of Rq during any time

interval [t, t + T ] for some T > 0, then intuitively the only constant

vector ψ̃ for which ψ̃w(t) −→ 0 is the zero vector. This intuition ap-

plies even when ψ̃ does not converge by noting that if w ∈ L∞ and

e(t) −→ 0, then
˙̃
ψ = −γewT −→ 0. This means that progressively in

time ψ̃ varies more slowly. By the vector-valued Mean Value Theorem

(Rudin, 1976, p.113):

‖ψ̃(t1) − ψ̃(t2)‖ ≤ ‖ ˙̃
ψ(t)‖|t1 − t2| ,

for some t ∈ [t1, t2]. The lack of variation of ψ̃ in a time interval contra-

posed with the change in w(t) on the same time interval allows one to

show that ψ̃(t) −→ 0. First, we have to make mathematically precise

what it means for a vector to rotate in its space over any time interval.
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Definition 4.3.1. We say w : R+ → R
q is persistently exciting (PE) if

there exist α1, α2, T > 0 such that

α1I ≤
∫ t+T

t
w(τ)wT(τ)dτ ≤ α2I , (4.3.1)

for all t ≥ 0.

Some useful properties of persistently exciting signals are the following.

Lemma 4.3.2. Let w, ε : R+ → R
q. If w is PE and ε is an exponentially

stable signal, then w + ε is PE.

Lemma 4.3.3. Let w : R+ → R
q. Suppose w is PE and differentiable,

and w, ẇ ∈ L∞. Also suppose H(s) is a stable, SPR transfer function.

Then H(s)I [w] is PE.

We also need a definition.

Definition 4.3.4. A signal w : R+ → R
q is said to be stationary if the

following limit exists, uniformly in t0:

Rw(t) := lim
T→∞

1

T

∫ t0+T

t0

w(τ)wT(t+ τ)dτ .

The limit, if it exists, is called the autocovariance of w.

The relationship between autocovariance and PE is spelled out in the

following.

Lemma 4.3.5. Let w be stationary. Then w is PE if and only if Rw(0)

is positive definite.

Now we return to our main problem to prove convergence of the pa-

rameter estimates.

Theorem 4.3.6. Consider the error e = ψ̃w, where ψ̃ is differentiable,

and w, ψ̃ ∈ L∞. Suppose ψ̃(t)w(t) −→ 0 and
˙̃
ψ(t) −→ 0. If w is sta-

tionary and PE, then ψ̃(t) −→ 0.
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Proof. Since w is stationary and PE, it has an autocovariance Rw(t)

and by Lemma 4.3.5, Rw(0) is positive definite. We will show

ψ̃(t)Rw(0)ψ̃T(t) −→ 0 ,

which implies ψ̃(t) −→ 0.

Since ψ̃, w ∈ L∞, there exists κ > 0 such that

‖ψ̃(t)‖ , ‖w‖ < κ , ∀t ≥ 0 . (4.3.2)

Fix ε > 0. We will show there exists T1 > 0 such that for all t ≥ T1,

ψ̃(t)Rw(0)ψ̃T(t) < ε. Since w has an autocovariance, there exists T > 0

such that for all t0 ≥ 0
∥∥∥∥Rw(0) − 1

T

∫ t0+T

t0

w(τ)wT(τ) dτ

∥∥∥∥ ≤ ε

3κ2
. (4.3.3)

Then using (4.3.2), we have

∥∥∥∥ψ̃(t)Rw(0)ψ̃T(t) − ψ̃(t)
1

T

∫ t0+T

t0

w(τ)wT(τ) dτψ̃T(t)

∥∥∥∥ ≤ ε

3
. (4.3.4)

Since ψ̃(t)w(t) −→ 0 and
˙̃
ψ(t) −→ 0, there exists T1 > 0 such that for

all t > T1

‖ψ̃(t)w(t)‖2 ≤ ε

3
, (4.3.5)

and

‖ ˙̃
ψ(t)‖ ≤ ε

6κ3T
. (4.3.6)

Using (4.3.6) and the vector-valued Mean Value Theorem (stated above),

we have

‖ψ̃(t) − ψ̃(τ)‖ ≤ ε(τ − t)

6κ3T
,

for all τ > t > T1. Then, using (4.3.2) we have for all t > T1

∥∥∥∥ψ̃(t)
1

T

∫ t+T

t
w(τ)wT(τ) dτψ̃T(t) − 1

T

∫ t+T

t
ψ̃(τ)w(τ)wT(τ)ψ̃T(τ) dτ

∥∥∥∥

=

∥∥∥∥
1

T

∫ t+T

t
wT(τ)(ψ̃T(t) − ψ̃T(τ))wT(τ)(ψ̃T (t) + ψ̃T(τ)) dτ

∥∥∥∥

≤ ε

3
. (4.3.7)
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Using (4.3.5), we have for all t > T1

‖ 1

T

∫ t+T

t
ψ̃(τ)w(τ)wT(τ)ψ̃T(τ) dτ‖ ≤ ε

3
. (4.3.8)

Finally, using (4.3.4), (4.3.7), and (4.3.8) we have for all t > T1,

ψ̃(t)Rw(0)ψ̃T(t) ≤ ε .

This proves the result.

The second avenue for proving convergence of the parameter estimates

is to study the properties of (4.2.1), which can be equivalently written

as the linear time-varying differential equation

˙̃
ψ

T
= −γ

(
w(t)wT(t)

)
ψ̃T . (4.3.9)

The main result is as follows.

Theorem 4.3.7. Suppose w is piecewise continuous and PE. Then the

equilibrium of (4.3.9) is globally exponentially stable.

Finally, we consider the error model studied in Section 4.2.3

ẋ = Ax+B(ψ̃w) (4.3.10a)

e = Cx (4.3.10b)

˙̃
ψ

T
= −γew , (4.3.10c)

where γ > 0 and (A,B,C) is a minimal realization of H(s) = C(sI −
A)−1B.

Theorem 4.3.8. LetH(s) be SPR, and supposew is PE and w, ẇ ∈ L∞.

Then the equilibrium (x, ψ̃T) = (0, 0) of (4.3.10) is globally exponen-

tially stable.

Proof. Consider the Lyapunov function V = xTPx + 1
γ
ψ̃ψ̃T, where

P satisfies (4.1.6). From the proof of Theorem 4.2.5, V̇ ≤ −xTQx.

Therefore,
∫ t0+δ

t0

V̇ dτ ≤ −
∫ t0+δ

t0

x(τ)TQx(τ)dτ ≤ −
∫ t0+δ

t0

λmin(Q)‖x(τ)‖2dτ

≤ −λmin(Q)

‖C‖2

∫ t0+δ

t0

e(τ)2dτ .
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Based on Theorem 1.5.2 in (Sastry and Bodson, 1989), exponential

convergence is guaranteed if for some k0 > 0,

∫ t0+δ

t0

e2(τ)dτ ≥ k0

(
‖x(t0)‖2 + ‖ψ̃(t0)‖2

)
, (4.3.11)

for all t0 ≥ 0, x(t0), and ψ̃(t0). This condition can be interpreted as a

UCO condition on (4.3.10).

To that end, define L(t) :=

[
0

γw(t)

]
. Notice L satisfies the condition

of Lemma 4.1.8 because w ∈ L∞. Then we can apply Lemma 4.1.8 to

obtain that UCO of (4.3.10) is equivalent to UCO of a simpler system

ẋ = Ax+Bψ̃w (4.3.12a)

˙̃
ψ

T
= 0 (4.3.12b)

e = Cx . (4.3.12c)

To show (4.3.12) is UCO, we must show

e(t) = CeA(t−t0)x(t0) +

∫ t

t0

CeA(t−τ)Bw(τ)Tdτψ̃(t0)T

:= e1(t) + e2(t)

satisfies, for some β1, β2, δ > 0, and for all t0 ≥ 0, x(t0), and ψ̃(t0),

β1

(
‖x(t0)‖2 + ‖ψ̃(t0)‖2

)
≤
∫ t0+δ

t0

e2(τ)dτ ≤ β2

(
‖x(t0)‖2 + ‖ψ̃(t0)‖2

)
.

(4.3.13)

By assumption, w is PE, and w, ẇ ∈ L∞. By Lemma 4.3.3, we have

that for all t0 ≥ 0, the signal

wf (t) :=

∫ t

t0

CeA(t−τ)Bw(τ)dτ

is PE. This means that, for some α1, α2, T0 > 0

α1‖ψ̃(t0)‖2 ≤
∫ t+T0

t
|e2(τ)|2dτ ≤ α2‖ψ̃(t0)‖2 , (4.3.14)

for all t ≥ 0 and ψ̃(t0).
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Next, since A is Hurwitz there exist k1, γ1 > 0 such that
∫ ∞

t0+n0T0

e2
1(τ)dτ ≤ k1‖x(t0)‖2e−γ1n0T0 , (4.3.15)

for all t0 ≥ 0, x(t0), and an integer n0 > 0. Since [C,A] is observable,

there exists k2(n0T0) > 0 with k2(n0T0) increasing with n0T0 such that
∫ t0+n0T0

t0

e2
1(τ)dτ ≥ k2(n0T0)‖x(t0)‖2 ,

for all t0 ≥ 0, x(t0), and n0 > 0. Let n1 > 0 be another integer and let

δ = (n0 + n1)T0. Using the fact that for a, b ∈ R, (a + b)2 ≥ 1
2a

2 − b2

and (a+ b)2 ≥ 1
2b

2 − a2, we have

∫ t0+δ

t0

e2(τ)dτ =

∫ t0+δ

t0

(e1(τ) + e2(τ))2dτ

≥ 1

2

∫ t0+n0T0

t0

e1(τ)2dτ −
∫ t0+n0T0

t0

e2(τ)2dτ

+
1

2

∫ t0+δ

t0+n0T0

e2(τ)2dτ −
∫ t0+δ

t0+n0T0

e1(τ)2dτ

≥ 1

2
k2(n0T0)‖x(t0)‖2 − n0α2‖ψ̃(t0)‖2

+
1

2
n1α1‖ψ̃(t0)‖2 − k1e

−γ1n0T0‖x(t0)‖2 . (4.3.16)

Let n0 be sufficiently large to satisfy

1

2
k2(n0T0) − k1e

−γ1n0T0 ≥ 1

4
k2(n0T0) ,

and n1 sufficiently large to obtain 1
2n1α1 −n0α2 ≥ α1. By (4.3.16), the

lower inequality of (4.3.13) is achieved by defining

β1 = min

{
α1,

1

4
k2(n0T0)

}
.

Using inequalities (4.3.14) and (4.3.15), it can be seen that the upper

inequality of (4.3.13) is satisfied by defining

β2 = max{k1, (n0 + n1)α2} .

Therefore, (4.3.13) is satisfied, showing that system (4.3.12) is UCO.
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4.4 Final Remarks

This chapter presented an overview of some of the major concepts and

findings of adaptive control. These include error models, gradient-based

parameter adaptation laws, strictly positive real transfer functions, aug-

mented errors, and persistently exciting signals. The benefit of error

models in adaptive control is that they provide an organized treat-

ment of available stability results, and they promote a modular design

in which different parameter adaptation laws may be utilized. Here

we focused on the popular gradient adaptation law, but other choices

include least squares, gradient with projection, least squares with pro-

jection, and integral cost adaptation, among others; see (Ioannou and

Sun, 2012) for an overview.

An important subject in adaptive control is that of robustness. Its

relevance was exposed through a number of examples of the failure

of standard algorithms in the presence of unmodeled plant dynamics

and bounded exogenous disturbances (Rohrs et al., 1985). It is known

that the main source of non-robustness is the parameter adaptation

law, which introduces nonlinear time-varying dynamics. A number of

modifications have been proposed, including adding a dead zone, the

use of projection operators to keep parameters in a bounded set, the

so-called σ-modification, and the e1-modification scheme. A comprehen-

sive treatment of these modified adaptation laws is found in (Ioannou

and Sun, 2012). See also (Anderson and al., 1986) for a thorough anal-

ysis of stability and robustness, (Ortega and Tang, 1989) for a survey

on robustness, and (Ortega et al., 2020) for recent results.

Finally, persistency of excitation plays a role in robustness. Theorem 4.3.8

gives a global exponential stability result for a nominal system under

persistency of excitation of the regressor w. If unmodeled plant dynam-

ics and/or exogeneous signals result in bounded disturbances, the per-

turbed system will have bounded states based on a linear system theory

argument, so long as the disturbances do not destroy the PE property

of the regressor. In other words, for the states to remain bounded, the

level of persistent excitation must be high enough relative to bounded

disturbances so that the PE property is not destroyed. See (Narendra
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and Annaswamy, 1989) for further discussion on the relationship be-

tween robustness and persistency of excitation.
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Adaptive Internal Models

This chapter studies the regulator problem in the case when the plant

parameters are known but the exosystem parameters are unknown.

Each of the presented designs highlights some feature regarding avail-

ability of feedforward signals or of state measurements. Regulator de-

sign III considers a disturbance rejection problem in which the distur-

bance enters only at the plant input and the state vector is measurable.

Regulator design IV considers a tracking problem in which the refer-

ence signal is measurable but the state is not measurable. Regulator

design V combines the previous two designs. These designs are some-

what more general than required for the applications presented in this

monograph, but they are of independent interest and can provide a

framework to investigate other motor systems.

5.1 Plant Representation

We saw in Chapter 2 that the regulator equations (2.3.4) provide an

algebraic characterization of an error-zeroing steady state (xss, uss) for

the open-loop system (2.2.1). Utilizing (2.3.4), we performed a coordi-

nate transformation z = x − Πw in order to express error dynamics

64
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relative to this error-zeroing steady state. These have the form

ż = Az +Bu−BΓw (5.1.1a)

e = Cz . (5.1.1b)

As we have discussed, the transformed system makes it transparent

that the regulator problem is equivalently a problem of stabilization of

z(t). Generally, z is not measurable as a state vector. However, the idea

of stabilizing z provides a path to achieve stabilization for the original

system. Let us split the controller as we did before in (2.6.2):

u = us + uim . (5.1.2)

Under assumption 2.2.1(A1)-(A2), we can define an observer

˙̂z = Aẑ +Bus + Ls(e− ê) (5.1.3a)

ê = Cẑ , (5.1.3b)

where Ls is selected so that (A−LsC) is Hurwitz. Define the estimation

error z̃ = z − ẑ. Using (5.1.1a) and (5.1.3), we obtain

˙̃z = (A− LsC)z̃ +B(uim − Γw) .

So long as uim is designed to achieve uim(t) − Γw(t) −→ 0, then we

achieve z̃(t) −→ 0. Then we select us = Kẑ such that (A + BK) is

Hurwitz in order to stabilize the z dynamics. No information about the

exosystem or the solution of the regulator equations (Π,Γ) is needed

to achieve stabilization, in contrast with a classical design philosophy

where one first inserts the internal model in the feedforward path, then

stabilizes the augmented system.

5.2 Exosystem Representation

In this chapter we contend with the fact that the parameters associated

with the exosystem, namely (S,E,D) in (2.2.1) are unknown. In fact,

there is redundancy in these parameters, and in analogy with the con-

trollable canonical form and observable canonical form, which provide

parsimonious representations of the plant in terms of a fewest number
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of parameters, it is likewise desirable to find a representation of the

exosystem that reduces the burden of identifying its unknown param-

eters. Several techniques for eliminating redundancy in the unknown

parameters of the exosystem were introduced in (Nikiforov, 1996); see

also (Nikiforov, 2004a; Nikiforov, 2004b).

Lemma 5.2.1. Let F ∈ R
q×q, G ∈ R

q, and L ∈ R
1×q be such that

(F,G) is a controllable pair, (L,S) is an observable pair, and σ(F ) ∩
σ(S) = ∅. Then there exists a nonsingular matrix M ∈ R

q×q such that

MS = (F +Gψ)M , ψ = LM−1 .

Proof. Since σ(F )∩σ(S) = ∅, by Theorem 2.1.3, the Sylvester equation

MS = FM +GL (5.2.1)

has a unique solution M ∈ R
q×q. We prove M is nonsingular. Suppose

by way of contradiction that Ker(M) 6= 0. Let {v1, . . . , vk} be a basis

for Ker(M). Utilizing (5.2.1), we have

MSvj = GLvj , j = 1, . . . , k . (5.2.2)

Since M is square, there exist row vectors {w1, . . . , wk} such that

wiM = 0, i = 1, . . . , k. Then

wiGLvj = 0 , i, j = 1, . . . , k . (5.2.3)

Suppose Lvj = 0 for all j. Then (5.2.2) gives MSvj = 0, j = 1, . . . , k.

This implies Svj ∈ Ker(M), j = 1, . . . , k, so Ker(M) is S-invariant and

contained in Ker(L). This contradicts that (L,S) is observable. Suppose

instead Lvj 6= 0 for some j. From (5.2.3) (note wiG ∈ R), we get wiG =

0, for all i = 1, . . . , k. Using a dual argument, we obtain a contradiction

with controllability of (F,G). We conclude M is nonsingular. Finally,

by setting ψ := LM−1, the result is obtained.

Remark 5.1. We note that ψ is the unique row vector that assigns to

F +Gψ a set of eigenvalues that coincide with the eigenvalues of S. ⊳

The previous lemma immediately leads to the following result.
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Lemma 5.2.2. Consider a linear exosystem ζ̇ = Sζ generating a signal

d = Lζ, and suppose that (L,S) is an observable pair. Let (F,G) be

a controllable pair such that σ(F ) ∩ σ(S) = ∅. Then there exists a

coordinate transformation w = Mζ such that in new coordinates, the

exosystem is

ẇ = Fw +Gd (5.2.4a)

d = ψw , (5.2.4b)

where ψ = LM−1.

Lemma 5.2.3. Consider a signal d generated by the exosystem (5.2.4).

Let N(s) be a polynomial in s = d
dt

and define the signal d′ = N(s) [d].

Then d′ can be represented as

ẇ = (F +Gψ)w (5.2.5a)

d′ = ψ′w , (5.2.5b)

where w ∈ R
q is the state of (5.2.4), and ψ′ = N(F +Gψ) ∈ R

1×q.

Proof. We observe that for any integer k ≥ 0,

dk

dtk
(ψw) = ψ(F +Gψ)kw .

The result follows immediately.

Lemma 5.2.4. Consider a signal d generated by the exosystem (5.2.4).

Define the filtered signal df := H(s) [d], where H(s) = C(sI − A)−1B

is a stable transfer function. Then df can be represented as

ẇf = Fwf +Gdf (5.2.6a)

df = ψwf + ε , (5.2.6b)

where wf ∈ R
q and ε(t) −→ 0 exponentially.

Proof. Let Hψ(s) = ψ(sI − F )−1G. Then d = Hψ(s)[d]. Since sta-

ble scalar transfer functions commute, modulo an exponentially stable
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term, we have

df = H(s)[Hψ(s)[d]]

= Hψ(s)[H(s)[d]] + ε

= Hψ(s)[df ] + ε .

A realization of Hψ(s)[df ] proves the result.

Remark 5.2. Consider again the situation of Lemma 5.2.4. Let H(s) be

a stable transfer function, and w,wf , d, df as given above. Let H(s)I [w]

denote the component-wise application of the filter H(s) to w. Analo-

gous to the proof of Lemma 5.2.4, we can derive

H(s)I [w] = H(s)I
[
(sI − F )−1G [d]

]

= (sI − F )−1G [H(s) [d]] + ε

= (sI − F )−1G [df ] + ε

= wf + ε .

Based on this calculation, we call wf := H(s)I [w] the filtered regressor.

⊳

Lemma 5.2.5. Consider a signal d generated by the exosystem (5.2.4).

Let H(s) be a stable transfer function. Consider the filtered signal

df := H(s) [d] and the filtered regressor wf . Suppose that no zero of

H(s) is an eigenvalue of S = F +Gψ. Then there exists a nonsingular

matrix T such that

wf = Tw + ε .

Moreover,

d = ψfwf + ε ,

where ψf := ψT−1.

Proof. Let H(s) = N(s)
D(s) with N(s) and D(s) coprime. By Remark 5.2,

wf = H(s)I [w] + ε. That is,

D(s)I [wf ] = N(s)I [w] + ε .
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We know from (5.2.4) that ẇ = (F +Gψ)w and from Lemma 5.2.4 that

also ẇf = (F +Gψ)wf + ε. It follows

D(S)wf = N(S)w + ε .

We claim that N(S) is invertible. For suppose not; that is, 0 ∈ σ(N(S)).

By the Spectral Mapping Theorem, σ(N(S)) = N(σ(S)). This implies

there exists λ ∈ σ(S) such that N(λ) = 0, a contradiction to the

assumption on the zeros of H(s). Similarly, D(S) is invertible because

D(s) is a Hurwitz polynomial and S has eigenvalues on the imaginary

axis. Define T := D(S)−1N(S) and ψf := ψT−1. Then we have

wf = Tw + ε .

Moreover, d = ψw = ψ(T−1wf + ε) = ψfwf + ε.

5.3 Regulator Design III: Disturbance Rejection

Consider the open-loop system

ẋ = Ax+Bu+Bd (5.3.1a)

ẇ = (F +Gψ)w (5.3.1b)

d = ψw (5.3.1c)

(5.3.1d)

where x ∈ R
n, w ∈ R

q, u ∈ R, and d ∈ R. Comparing to (2.2.1), the ex-

osystem (5.3.1b) has already been transformed according to Lemma 5.2.2.

Moreover, the vector coefficient B multiplying d in (5.3.1a) is matched

to the input u. This is a standard disturbance rejection problem in which

the disturbance d enters additively in the control input.

Assumption 5.3.1. We assume the open-loop system (5.3.1) satisfies:

(A1) (A,B) is controllable.

(A2) S = F +Gψ has simple eigenvalues on the imaginary axis.

(A3) (F,G) is a controllable pair, F is Hurwitz, and (ψ, S) is an ob-

servable pair.
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(A4) Dimension q is interpreted as a known upper bound on the ex-

osystem order, but the parameters (ψ, S) are unknown.

(A5) The parameters (A,B) are known.

(A6) The measurement is x.

Remark 5.3. (A1) may be relaxed to (A,B) stabilizable. (A2) guaran-

tees that reference and disturbance signals are bounded. In (A4) the

assumption that (ψ, S) is observable is without loss of generality since

one can trim off the unobservable part of the exosystem without affect-

ing the plant. Also in (A4), the interpretation of q as an upper bound

on the exosystem order means the exosystem may be overmodeled for

a particular instance of the disturbance. ⊳

Consider the control input (5.1.2). For stabilization, let us = Kx such

that (A + BK) is Hurwitz. To satisfy the internal model principle,

consider the internal model

˙̂w = Sŵ +G(d − ψŵ)

= Fŵ +Gd .

Define the estimation error w̃ = w − ŵ. Then ˙̃w = Fw̃, and since F is

Hurwitz, w̃(t) −→ 0 exponentially. This internal model cannot be built

as d = ψw is unavailable for measurement. Instead, we consider an in-

ternal model based on a minimal order observer proposed in (Nikiforov,

2004a) given by

ẇ0 = Fw0 + (FN −NA)x−NBu (5.3.2a)

ŵ = w0 +Nx (5.3.2b)

uim = −ψ̂ŵ , (5.3.2c)

where N is selected such that NB = G, and ψ̂ is an estimate of ψ.

Then we have

˙̂w = Fw0 + (FN −NA)x−NBu+N(Ax+Bu+Bd)

= F (w0 +Nx) +Gd

= Fŵ +Gd . (5.3.3)
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The parameter adaptation law is

˙̂
ψ = γ(BTPx)ŵT , (5.3.4)

where γ > 0 is the adaptation rate, and P ∈ R
n×n is the symmetric,

positive definite solution of the Lyapunov equation

(A+BK)TP + P (A+BK) = −Q ,

with Q ∈ R
n×n symmetric and positive definite. Finally, the controller

is

u = Kx− ψ̂ŵ . (5.3.5)

Define the parameter estimation error ψ̃ := ψ − ψ̂.

Theorem 5.3.2. Consider the system (5.3.1) satisfying assumption 5.3.1,

and consider the regulator (5.3.2), (5.3.4), and (5.3.5). Suppose A+BK

is Hurwitz. Then x, ψ̂, ŵ ∈ L∞, x(t) −→ 0, and ψ̃(t)ŵ(t) −→ 0.

Proof. Applying input (5.3.5), the closed loop system is

ẋ = (A+BK)x+Bψ̃ŵ +Bψw̃ (5.3.6a)

˙̃w = Fw̃ (5.3.6b)
˙̃
ψ = −γ(BTPx)ŵT . (5.3.6c)

Since F is Hurwitz, from (5.3.6b) we get w̃(t) −→ 0. By assumption

(A2), w ∈ L∞, so ŵ ∈ L∞. Hence, the system satisfies all the assump-

tions of Corollary 4.2.4. We conclude x, ψ̃ ∈ L∞, and x(t) −→ 0.

From (5.3.6a) we know ẋ ∈ L∞; from (5.3.6c) we know
˙̃
ψ ∈ L∞; and

from (5.3.3), ˙̂w ∈ L∞. Then considering

ẍ = (A+BK)ẋ+B
˙̃
ψŵ +Bψ̃ ˙̂w +BψFw̃ ,

we deduce that ẍ ∈ L∞, so by Lemma 4.1.2, ẋ is uniformly continuous.

Then by Lemma 4.1.3, ẋ(t) −→ 0. Using (5.3.6a), we conclude that

ψ̃(t)ŵ(t) −→ 0.

Remark 5.4. Theorem 5.3.2 (as well as the rest of the theorems of this

chapter) regards only the regulation requirement (R) of Problem 2.2.1.
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The asymptotic stability requirement (AS) is not present in the theorem

statement because Regulator Design III no longer achieves asymptotic

stability. The unforced system with w(0) = 0 is stable based on a

Lyapunov argument, and ŵ(t) and x(t) converge to zero, but ψ̂ does

not, as can be seen from (5.3.4). ⊳

5.3.1 Extended Form

The internal model (5.3.2) is based on a minimal order observer, but an

extended form provides an indication of how unknown plant parameters

may be incorporated in the parameter adaptation process.

Suppose the system matrices (A,B) of plant (5.3.1a) take the special

form

A = A0 +B0a
T , B = bB0 ,

where

A0 :=




0 1 · · · 0
. . . 1

0 · · · 0


 , B0 :=




0
...

0

1



. (5.3.7)

Vectors a = (a1, . . . , an) ∈ R
n and b ∈ R represent unknown plant

parameters. Consider the extended internal model

ẇ0 = Fw0 + (FN −NA0)x (5.3.8a)

ẇ1 = Fw1 −NB0x1 (5.3.8b)

... (5.3.8c)

ẇn = Fwn −NB0xn (5.3.8d)

ẇn+1 = Fwn+1 −NB0u (5.3.8e)

ŵ = w0 +Nx+ a1w1 + . . .+ anwn + bwn+1 , (5.3.8f)

where N is selected such that NB0 = G. We can verify that once again

˙̂w = Fŵ +Gd ,

so (5.3.8) does indeed provide an internal model of the disturbance d.

Define the estimation error w̃ = w − ŵ. Then ˙̃w = Fw̃ and ŵ(t) −→
w(t).
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Next define the extended parameters ψd and regressor ŵd as

ψd :=
[
ψ a1ψ · · · anψ bψ

]

ŵd := (w0 +Nx,w1, . . . , wn, wn+1) .

Then

d = ψw = ψŵ + ε = ψdŵd + ε ,

where ε = ψw̃ vanishes exponentially.

5.4 Regulator Design IV: Tracking

Consider the open-loop system

ẋ = Ax+Bu (5.4.1a)

ẇ = (F +Gψ)w (5.4.1b)

e = r − y = ψw − Cx , (5.4.1c)

where x ∈ R
n, w ∈ R

q, u ∈ R and e ∈ R. Comparing to (2.2.1), the

disturbance has been removed from (5.4.1a), and the exosystem (5.4.1b)

has already been transformed according to Lemma 5.2.2. Further, r =

ψw is a reference signal whose frequency content is unknown. Regarding

y = Cx as the system output, this is a standard tracking problem.

Assumption 5.4.1. We assume the open-loop system (5.4.1) satisfies:

(A1) (A,B) is controllable.

(A2) (C,A) is observable.

(A3) S = F +Gψ has simple eigenvalues on the imaginary axis.

(A4) det

[
A− λI B

C 0

]
6= 0 for all λ ∈ σ(S).

(A5) (F,G) is a controllable pair, F is Hurwitz, and (ψ, S) is w.l.o.g.

an observable pair.

(A6) Dimension q is interpreted as a known upper bound on the ex-

osystem order, but the parameters (ψ, S) are unknown.
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(A7) The parameters (A,B,C) are known.

(A8) The measurements are r and y.

We examine the information provided by the regulator equations. By

(A4) and Lemma 2.3.2, there exist (Π,Γ) such that

ΠS = AΠ +BΓ (5.4.2a)

0 = ψ − CΠ . (5.4.2b)

These equations have no particular structure other than that the feed-

forward control uss = Γw needed to achieve zero steady state error

relies on parameters Γ that generally differ from the parameters ψ of

the exosystem.

As usual we split the regulator design into a part for stabilization and a

part to satisfy the internal model principle. If the state x is measurable

(C = I), then for stabilization we utilize us = Kx such that (A+BK)

is Hurwitz. Otherwise we utilize a Luenberger observer

˙̂xs = Ax̂s +Bu+ Ls(y − Cx̂s) (5.4.3a)

us = Kx̂s , (5.4.3b)

where Ls is such that (A−LsC) is Hurwitz and K is such that (A+BK)

is Hurwitz. If we define x̃ = x− x̂s, then we have ˙̃x = (A− LsC)x̃, so

x̃(t) −→ 0 exponentially.

To satisfy the internal model principle, we consider the regulator design

in (Nikiforov, 2004a). The internal model is

˙̂w = Fŵ +Gr (5.4.4a)

uim = Γ̂ŵ , (5.4.4b)

where Γ̂ ∈ R
1×q is an estimate of Γ. Define w̃ = w− ŵ. Then ˙̃w = Fw̃,

and since F is Hurwitz, w̃(t) −→ 0 exponentially.

Next we must design the parameter adaptation process. To that end,

define the augmented error

e := e+H(s)
[
Γ̂ŵ
]

− Γ̂H(s)I [ŵ] ,
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where I ∈ q × q is the identity matrix, and H(s) := C(sI − (A +

BK))−1B is a stable transfer function. This formula is motivated by

the fact that

ê := Γ̂H(s)I [ŵ] −H(s)
[
Γ̂ŵ
]

will be seen in the proof of Theorem 5.4.2 to provide an estimate of e.

Therefore, the augmented error

e = e− ê

measures the difference between the true and estimated errors.

We define the filtered regressor to be

w := H(s)I [ŵ] .

A realization of w ∈ R
q is given by

η̇1 = (A+BK)η1 +Bŵ1 (5.4.5a)

... (5.4.5b)

η̇q = (A+BK)ηq +Bŵq (5.4.5c)

w = (Cη1, . . . , Cηq) , (5.4.5d)

where ŵ = (ŵ1, . . . , ŵq) ∈ R
q, η1, . . . , ηq ∈ R

n, and initial conditions

are arbitrary. Then we define the parameter adaptation law to be

˙̂
Γ = γewT , (5.4.6)

where γ > 0 is the adaptation rate. The overall controller is

u = Kx̂s + Γ̂ŵ . (5.4.7)

Finally, define the parameter estimation error Γ̃ := Γ − Γ̂.

Theorem 5.4.2. Consider the system (5.4.1) satisfying assumption 5.4.1,

and consider the regulator consisting of (5.4.3), (5.4.4), (5.4.5), (5.4.6),

and (5.4.7). Suppose A+BK and A−LsC are Hurwitz. Then x, Γ̂, ŵ ∈
L∞, e(t) −→ 0, and Γ̃(t)ŵ(t) −→ 0.

Proof. By (A4) and Lemma 2.3.2 there exist matrices (Π,Γ) satisfying

the regulator equations (5.4.2). Define z = x− Πw. Then using (5.4.7)
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we obtain

ż = (A+BK)z −BΓ̃ŵ −BKx̃−BΓw̃

˙̃x = (A− LsC)x̃

˙̃w = Fw̃

e = −Cz .

Therefore, we can equivalently write

e = H(s)
[
Γ̃ŵ +Kx̃+ Γw̃

]
= H(s)

[
Γ̃ŵ
]

+ ε1 ,

where H(s) = C(sI − (A+BK))−1B is a stable transfer function, and

ε1(t) −→ 0 exponentially. Now consider the augmented error

e = e+H(s)
[
Γ̂ŵ
]

− Γ̂H(s)I [ŵ]

= H(s)
[
(Γ − Γ̂)ŵ + ε1

]
+H(s)

[
Γ̂ŵ
]

− Γ̂H(s)I[ŵ]

= H(s) [Γŵ] − Γ̂H(s)I[ŵ] + ε2

= Γ̃H(s)I [ŵ] +H(s) [Γŵ] − ΓH(s)I[ŵ] + ε2 =: Γ̃w + ε2 ,

where we applied Lemma 4.2.6 in one of the steps.

Now we have

e = H(s)
[
Γ̃ŵ
]

+ ε1 (5.4.8a)

w = H(s)I [ŵ] (5.4.8b)

e = Γ̃w + ε2 (5.4.8c)

˙̃
Γ = −γewT , (5.4.8d)

where ε1(t), ε2(t) −→ 0 exponentially. Since r ∈ L∞, then using (5.4.4),

ŵ, ˙̂w ∈ L∞. Since H(s) is a stable transfer function, w, ẇ ∈ L∞. All

conditions are in place to apply Corollary 4.2.1. We conclude that Γ̃, Γ̂ ∈
L∞, e(t) −→ 0, and Γ̃(t)w(t) −→ 0.

Since w ∈ L∞, from (5.4.8),
˙̃
Γ(t) −→ 0. Since H(s) is stable, we can

apply Lemma 4.2.8 to obtain

(
Γ̂H(s)I [ŵ] −H(s)

[
Γ̂ŵ
])

(t) −→ 0 .
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It follows that e(t) −→ 0. Finally, since x̃(t) −→ 0 and w̃(t) −→ 0

exponentially, and (A + BK) is Hurwitz, also z(t) −→ 0. Hence x ∈
L∞.

5.5 Regulator Design V

We study a design that combines tracking and disturbance rejection.

Consider the open-loop system

ẋ = Ax+Bu+Bd (5.5.1a)

ẇ1 = (F1 +G1ψ1)w1 (5.5.1b)

ẇ2 = (F2 +G2ψ2)w2 (5.5.1c)

d = ψ1w1 (5.5.1d)

r = ψ2w2 (5.5.1e)

y = Cx (5.5.1f)

e = r − y , (5.5.1g)

where x ∈ R
n, w1 ∈ R

q1, w2 ∈ R
q2, u ∈ R, d, r ∈ R, and y ∈ R. Here r

is a reference signal to be tracked by the system output y, while d is a

disturbance that enters additively at the plant input.

Assumption 5.5.1. We assume the open-loop system (5.5.1) satisfies:

(A1) (A,B) is controllable.

(A2) (C,A) is observable.

(A3) S = diag(S1, S2) has simple eigenvalues on the imaginary axis,

where S1 = F1 +G1ψ1, and S2 = F2 +G2ψ2;

(A4) det

[
A− λI B

C 0

]
6= 0 for all λ ∈ σ(S).

(A5) Each Fi is Hurwitz, (Fi, Gi) is a controllable pair, and (ψi, Si) is

w.l.o.g. an observable pair, for i = 1, 2.

(A6) Upper bounds on q1 and q2 are known, but the parameters of

(ψ1, S1) and (ψ2, S2) are unknown.
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(A7) The parameters (A,B,C) are known.

(A8) The measurements are r and y.

The diagonal structure of S permits a partition of the regulator equa-

tions in a natural way. By (A4) and Lemma 2.3.2, there exist (Π1,Γ1)

and (Π2,Γ2) such that

Π1S1 = AΠ1 +BΓ1 +Bψ1 (5.5.2a)

0 = −CΠ1 (5.5.2b)

Π2S2 = AΠ2 +BΓ2 (5.5.2c)

0 = ψ2 − CΠ2 . (5.5.2d)

The solution of the first set of equations is Π1 = 0 and Γ1 = −ψ1, re-

turning to the situation in Section 5.3. The second set has no particular

structure.

We develop a controller of the form

u = us + uim,1 + uim,2 . (5.5.3)

First we design us for closed-loop stability. Define z := x−Π2w2. Using

(5.5.2) we obtain the error model

ż = Az +Bu−BΓ1w1 −BΓ2w2 (5.5.4a)

e = −Cz . (5.5.4b)

Under assumption 2.2.1(A1)-(A2), we can define an observer of the

form:
˙̂zs = Aẑs +Bus + Ls(e+ Cẑs) (5.5.5)

where Ls is selected so that (A+LsC) is Hurwitz. Define the estimation

error z̃s = z − ẑs. Using (5.5.3), we obtain

˙̃zs = (A+ LsC)z̃s +Buim,1 +Buim,2 −BΓ1w1 −BΓ2w2 .

Assuming we can design uim,1 and uim,2 such that (uim,1−Γ1w1)(t) −→
0 and (uim,2 − Γ2w2)(t) −→ 0, independently of the z̃s error dynamics,

then z̃s(t) −→ 0. Therefore, we choose

us = Kẑs ,



5.5. Regulator Design V 79

such that (A+BK) is Hurwitz in order to stabilize the z dynamics.

Next we design uim,1. Consider the internal model

˙̂xd = Ax̂d +Bu+ Ld(y − Cx̂d) (5.5.6a)

˙̂wf = F1ŵf +G1(y − Cx̂d) , (5.5.6b)

where we choose Ld such that Ad := A−LdC is Hurwitz. Define x̃d :=

x− x̂d. Then we have

˙̃xd = Adx̃d +Bd (5.5.7a)

df := Cx̃d . (5.5.7b)

Define the stable transfer function Hd(s) := C(sI − Ad)
−1B. Then

df = Hd(s) [d] is the filtered disturbance. Recall from Lemma 5.2.4 that

df can be represented as

ẇf = F1wf +G1df (5.5.8a)

df = ψ1wf + ε , (5.5.8b)

where wf = Hd(s)I [w1] is the filtered regressor. Define the estimation

error w̃f := wf − ŵf . Using (5.5.6b), we have ˙̃wf = F1w̃f . Since F1 is

Hurwitz, we obtain w̃f (t) −→ 0. Now we have a regressor ŵf for the

filtered disturbance, but we require a regressor for d. This is provided

by Lemma 5.2.5; namely, there exists Γf ∈ R
1×q1 such that

d = ψ1w1 = Γfwf + ε . (5.5.9)

Finally, we define

uim,1 = Γ̂f ŵf , (5.5.10)

where Γ̂f ∈ R
1×q1 is an estimate of Γf .

Next we consider the design of uim,2. The second internal model is

˙̂w2 = F2ŵ2 +G2r (5.5.11a)

uim,2 = Γ̂2ŵ2 , (5.5.11b)

where Γ̂2 ∈ R
1×q2 is an estimate of Γ2. Define w̃2 := w2 − ŵ2. Using

(5.5.1c), we have ˙̃w2 = F2w̃2, and since F2 is Hurwitz, w̃2(t) −→ 0.
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Let’s summarize the design so far. We have an error model

ż = Az +Bu−BΓfwf −BΓ2w2 (5.5.12a)

e = −Cz , (5.5.12b)

and we have a controller

u = Kẑs + Γ̂f ŵf + Γ̂2ŵ2

where (ŵf , ŵ2) are known regressors, and (Γ̂f , Γ̂2) are parameter esti-

mates. We write this model more compactly by defining a composite

parameter vector, regressor, and their estimates:

Γ :=
[
Γf Γ2

]
∈ R

1×q , w := (wf , w2) ∈ R
q , (5.5.13a)

Γ̂ :=
[
Γ̂f Γ̂2

]
∈ R

1×q , ŵ := (ŵf , ŵ2) ∈ R
q , (5.5.13b)

where q = q1 + q2. Define w̃ := w − ŵ. Then ˙̃w = Fw̃, where F =

diag(F1, F2). The error model becomes

ż = Az +Bu−BΓw (5.5.14a)

e = −Cz . (5.5.14b)

Unfortunately this error model can not be used to design the parameter

adaptation process following the steps in Section 4.2.4 because A may

be unstable. To overcome this impasse, we consider an observer

˙̂zp = Aẑp +Bu+ Lp(e+ Cẑp) , (5.5.15)

where Lp is selected so that Ap := (A + LpC) is Hurwitz. Define the

estimation error z̃p := z − ẑp. Then we obtain

˙̃zp = Apz̃p −BΓw .

Notice that

e+ Cẑp = −Cz̃p = Hp(s) [Γw] ,

where Hp(s) := C(sI − Ap)
−1B is a stable transfer function. This er-

ror model now recalls the one in Section 4.2.4. Thus, we define the

augmented error

e := e+ Cẑp − Γ̂Hp(s)I [ŵ] ,
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where I is the q× q identity matrix. The regressor for parameter adap-

tation is

w := Hp(s)I [ŵ] .

A realization of w ∈ R
q is

η̇1 = Apη1 +Bŵ1 (5.5.16a)

... (5.5.16b)

η̇q = Apηq +Bŵq (5.5.16c)

w = (Cη1, . . . , Cηq) , (5.5.16d)

where ŵ = (ŵ1, . . . , ŵq) ∈ R
q and η1, . . . , ηq ∈ R

n.

Remark 5.5. We remark that ŵ and w evolve according to identical

dynamics, modulo exponentially vanishing terms. For recall that, by as-

sumption, ẇ1 = S1w1 and ẇ2 = S2w2. Using (5.5.6b), (5.5.7b), (5.5.8),

and (5.5.11), we obtain

˙̂wf = S1ŵf + ε

˙̂w2 = S2ŵ2 + ε ,

where (abusing notation) ε captures any exponentially vanishing terms.

Recall S = diag(S1, S2). Overall we obtain

˙̂w = Sŵ + ε .

Now consider w = Hp(s)I [ŵ]. We have

ẇ = sHp(s)I [ŵ]

= Hp(s)I
[

˙̂w
]

= Hp(s)I [Sŵ] + ε

= SHp(s)I [ŵ] + ε

= Sw + ε .

⊳

Using Lemma 5.2.5 we can extract an algebraic relationship between

ŵ and w.
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Lemma 5.5.2. Consider w, ŵ, andw as above. Suppose Assumption 5.5.1

holds. Then there exists a nonsingular matrix T ∈ R
q×q such that

w = T ŵ + ε .

Proof. Consider H(s) = C(sI − A)−1B. By assumption (A4), no zero

of H(s) is an eigenvalue of S. Since Hp(s) = C(sI− (A+CLp))B, also

no zero of Np(s) is an eigenvalue of S (Brockett, 1965). Then we can

apply Lemma 5.2.5 to obtain that there exists a nonsingular matrix

T = Dp(S)−1Np(S) such that

w = T ŵ + ε .

Finally, we choose the parameter adaptation law

˙̂
Γ = γewT ,

where γ > 0 is the adaptation rate.

We summarize the overall design:

˙̂zs = (A+BK)ẑs + Ls(e+ Cẑs) (5.5.17a)

˙̂xd = Ax̂d +Bu+ Ld(y − Cx̂d) (5.5.17b)

˙̂zp = Aẑp +Bu+ Lp(e+ Cẑp) (5.5.17c)

˙̂wf = F1ŵf +G1(y −Cx̂d) (5.5.17d)

˙̂w2 = F2ŵ2 +G2r (5.5.17e)

ŵ = (ŵf , ŵ2) (5.5.17f)

w = Hp(s)I [ŵ] (5.5.17g)

e = e+ Cẑp − Γ̂w (5.5.17h)

˙̂
Γ = γewT (5.5.17i)

u = Kẑs + Γ̂ŵ . (5.5.17j)

Define Γ̃ := Γ − Γ̂ and w̃ := w − ŵ.

Theorem 5.5.3. Consider the system (5.5.1) satisfying assumption 5.5.1,

and consider the regulator given in (5.5.17). Suppose A + BK, As =
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A + LsC, Ad = A − LdC, and Ap = A + LpC are Hurwitz. Then

Γ̂, ŵ ∈ L∞, e(t) −→ 0, and Γ̃(t)ŵ(t) −→ 0.

Proof. Define z̃s = z − ẑs, z̃p = z − ẑp. Then using (5.5.17), we have

ż = (A+BK)z −BΓ̃ŵ −BΓw̃ −BKz̃s (5.5.18a)

˙̃zs = Asz̃s −BΓ̃ŵ −BΓw̃ (5.5.18b)

˙̃zp = Apz̃p −BΓw (5.5.18c)

˙̃w = Fw̃ (5.5.18d)

e = −Cz . (5.5.18e)

Now consider the augmented error

e = −Cz̃p − Γ̂Hp(s)I [ŵ]

= Hp(s) [Γw] − Γ̂Hp(s)I [ŵ]

= Γ̃Hp(s)I [ŵ] +Hp(s) [Γ(w̃ + ŵ)] − ΓHp(s)I [ŵ]

= Γ̃w + ε ,

where ε(t) −→ 0 exponentially due to Lemma 4.2.6 and the exponential

stability of w̃.

Now we can study the system

e = Γ̃w + ε
˙̃
Γ = −γewT .

Because w, ẇ ∈ L∞, then ŵ, ˙̂w,w, ẇ ∈ L∞. Therefore, we can apply

Corollary 4.2.2 to conclude that Γ̂ ∈ L∞, e(t) −→ 0, and Γ̃(t)w(t) −→
0. Since w ∈ L∞ and e(t) −→ 0, we have

˙̃
Γ(t) −→ 0. Then by

Lemma 4.2.8,
(

Γ̃Hp(s)I [ŵ] −Hp(s)
[
Γ̃ŵ
])

(t) −→ 0 .

Therefore, Hp(s)
[
Γ̃ŵ
]

−→ 0.

Since ŵ(t) → w(t) exponentially and w is the state of an LTI system

satisfying assumption (A3), there exist matrix M ∈ R
q×(2s+1) and vec-

tor ŵr(t) such that ŵ(t) = Mŵr(t) and

ŵr(t) = (1, cos(ω1t), sin(ω1t), . . . , cos(ωst), sin(ωst))
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with ωi 6= ωj for i 6= j and 2s + 1 ≤ q. Then we have

w = Hp(s)I [ŵ]+ε = Hp(s)I [Mŵr]+ε = MHp(s)I [ŵ]+ε =: Mwr+ε .

Since Hp(s) is a stable transfer function,

wr = (Hp(0), |Hp(jω1)| cos(ω1t+ φ(ω1)), |Hp(jω1)| sin(ω1t+ φ(ω1)), . . . ,

|Hp(jωs)| cos(ωst+ φ(ωs)), |Hp(jωs)| sin(ωst + φ(ωs))) + ε .

The zeros of Hp(s) are the same as those of the plant C(sI − A)−1B

(Brockett, 1965), and by (A4), Hp(0) 6= 0 and |Hp(jωk)| 6= 0, for k =

1, . . . , s. One can verify by direct calculation that wr is stationary and

its autocovariance is positive definite. By Lemma 4.3.5, wr is PE.

We have e = Γ̃w+ ε = Γ̃Mwr + ε. Let Γ̃r := Γ̃M . We have established

that Γ̃r(t)wr(t) −→ 0,
˙̃
Γr =

˙̃
ΓM −→ 0, and wr is PE, so we can apply

Theorem 4.3.6 to conclude that Γ̃r(t) −→ 0. This implies Γ̃(t)ŵ(t) =

Γ̃r(t)ŵr(t) −→ 0. Observing (5.5.18) we also have z̃s(t), z(t) −→ 0.

Finally, we conclude e(t) −→ 0.

5.6 Final Remarks

In this chapter we presented several regulator designs inspired by the

disturbance observer approach in (Nikiforov, 2004a) that incorporate

adaptation in the internal model, thus removing the requirement that

the frequency content of exogenous reference and disturbance signals

must be known a priori. In all the designs the plant parameters are

assumed to be known. While this assumption is not realistic in neuro-

science applications, as we discussed before, the brain utilizes a separa-

tion of timescales to handle adaptation of disturbance parameters v.s.

plant parameters. Rather than mix these two processes in one design,

incurring a risk of introducing spurious processes in our models, we

have opted for these simpler designs. We included the extended design

in Section 5.3.1 to give some indication of how the assumption of known

plant parameters may be removed. The extended design proved to be

helpful in developing our model of the optokinetic system, presented in

Chapter 7.
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The first regulator design regards disturbance rejection for disturbances

entering at the plant input. This design is relevant in modeling the slow

eye movement systems and the optokinetic system. The second regu-

lator design regards a tracking problem where the reference signal is

assumed to be measurable. This design is evocative in neuroscience

applications as the cerebellum appears to process a massive amount

of feedforward sensory measurements. The final regulator design is the

least directly relevant as a physiologically inspired model of the cerebel-

lum. It includes a number of observers whose placements in the brain

are, at present, simply possibilities or conjectures. Nevertheless, this de-

sign has found application in modeling visuomotor adaptation (Hafez

et al., 2021). At this time it is not known if the cerebellum utilizes state

feedback or output feedback for motor control tasks, though given the

amount of sensory information the cerebellum receives, the use of state

feedback can certainly not be ruled out at this stage. Finally, we men-

tion that all the regulator designs presented in this chapter can be made

robust to plant parameter uncertainty and unmodeled, bounded distur-

bances using techniques from robust adaptive control, as mentioned in

Section 4.4.



6

Slow Eye Movement Systems

The slow eye movement systems quite literally refer to those motor con-

trol systems that move the eyes slowly, in contrast with the saccadic

system which produces one of the fastest movements of the body, a

saccade. A part of the oculomotor system, the slow eye movement sys-

tems comprise several subsystems: the vestibulo-ocular reflex (VOR),

optokinetic system (OKS), the gaze fixation system, the smooth pursuit

system, and the vergence system. This chapter concentrates on mod-

eling the VOR, smooth pursuit, and gaze fixation. The OKR will be

discussed in Chapter 7 and the saccadic system in Chapter 9.

Our focus on the oculomotor system is motivated by the fact that it

serves as an exemplar among motor control systems. As we discussed

in Chapter 3, the structure and computations of the cerebellum are

identical across all the systems it regulates, differences arising only in

the input/output connections to each cerebellar module. The oculomo-

tor system has a very simple plant (the eyeball), is phylogenetically

the oldest motor system, and is believed to provide the blueprint for

all other motor systems (Leigh and Zee, 2015).

The idea that the brain provides internal models of exogenous signals

86
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specifically with regard to the oculomotor system has been suggested

in the oculomotor literature, making this system a promising point of

departure (Cerminara et al., 2009; Churchland et al., 2003; Lisberger,

2009). First, there is the so-called predictive capability of the smooth

pursuit system - to track moving targets with zero steady-state error

(Bahill and McDonald, 1983a; Deno et al., 1995; Wyatt and Pola, 1988).

Second, it has been shown experimentally that exogenous signals that

can be modeled by low-order linear exosystems are easily tracked by the

eyes, while unpredictable signals are not (Bahill and McDonald, 1983b;

Collewijn and Tamminga, 1984; Deno et al., 1995; Michael and Jones,

1966). Third, in an experiment called target blanking, a moving target is

temporarily occluded, yet the eye continues to move (Cerminara et al.,

2009; Churchland et al., 2003); researchers postulate the brain has an

internal model of the motion of the target. In a fourth experiment called

the error clamp, the retinal error is artificially clamped at zero using

an experimental apparatus that places the target image on the fovea

(Barnes et al., 1995; Morris and Lisberger, 1987; Stone and Lisberger,

1990). Despite zero retinal error, the eye continues to track the target,

suggesting that so called extra-retinal signals drive the smooth pursuit

system.

6.1 Control Architecture

The oculomotor system anatomy includes the oculomotor plant con-

sisting of the eyeball, muscles moving the eye, and oculomotor neurons

that stimulate the muscles; the brainstem which provides the main feed-

back loop by receiving the retinal and vestibular (from the semicircular

canals of the ear) signals and issuing the oculomotor command to the

eye muscles; and the cerebellum which provides fine regulation of eye

movements as a top up to the main control loop through the brainstem.

The control architecture may be abstractly represented by the block

diagram in Figure 6.1, based on the neural circuit of the oculomotor

system (Leigh and Zee, 2015); see also Section 3.2. A visual error signal

encoding the difference between target and gaze angles is transmitted

from the visual cortex to the inferior olive (IO), where it is relayed to ap-
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propriate climbing fiber inputs (CFs) of the cerebellum (C) (specifically,

the floccular complex). The cerebellum also receives mossy fiber inputs

(MFs) containing a mixture of visual, eye movement, and vestibular

information from the medial vestibular nuclei (MVN) in the brainstem

(B) (Lisberger, 2009). The sole output of the cerebellum is transmitted

via its Purkinje cells (PCs) to floccular target neurons (FTNs) in the

MVN (Ramanchandran and Lisberger, 2008). The MVN also receives

a head velocity signal from the semicircular canals of the ear. The

output of the MVN is sent both to the neural integrator (NI) in the

brainstem nucleus prepositus hypoglossi (NPH) and directly to the ocu-

lomotor neurons (MNs) of the oculomotor plant (P). Salient features

of this architecture include:

(i) The cerebellum forms a side loop to the main feedback loop be-

tween the plant and the brainstem;

(ii) The brainstem has a direct feedthrough from the vestibular sys-

tem to the plant to cancel measurable disturbance signals from

head movement;

(iii) The CF cerebellar input is a sensory error signal carrying visual

information; and

(iv) The cerebellum has only one output which acts as a top up to

the control command generated by a brainstem-only pathway.

6.2 Oculomotor Plant

The horizontal motion of the eye is modeled by considering the eyeball

as a sphere that is suspended in fluid and subjected to viscous drag,

elastic restoring forces, and the pulling of two muscles. A reasonable

approximation is obtained by assuming that the inertia of the eyeball

is insignificant (Leigh and Zee, 2015; Robinson, 1981; Sylvestre and

Cullen, 1999). Letting x be the horizontal eye angle and u be the net

torque imparted by the two muscles, we obtain a first order model

ẋ = −Kxx+ u . (6.2.1)
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Figure 6.1: Control architecture for the VOR, gaze holding and smooth pursuit
systems.

The parameter Kx > 0 is constant (or very slowly varying) such that

the time constant of the eye is τx := 1/Kx ≃ 0.2s (Robinson, 1981).

Consider a reference signal r representing the angle of a target mov-

ing in the horizontal plane. Let xh and ẋh denote the horizontal head

angular position and angular velocity, respectively. The retinal error is

defined to be

e := αe(r − xh − x) . (6.2.2)

Notice that r − xh − x is the target angle r relative to the gaze angle

xh + x. For sufficiently distant targets, this relative angle is propor-

tional (through the scale factor αe ∈ R) to a linear displacement on

the retina from the fovea to the target image on the retina. The goal

of the oculomotor system is to drive e to zero. As such, we can make a

simplifying assumption that αe = 1 without sacrificing the plausibility

of the model.

Our modeling assumptions are as follows. The eye position x is as-

sumed to be unavailable for direct measurement (Guthrie et al., 1983).

The retinal error signal e (or a scaled version of it) is assumed to be

available as a measurement to the brainstem and to both MF and CF

inputs of the cerebellum (Blohm et al., 2005; Krauzlis et al., 1997). The

reference signal r is unmeasurable. The vestibular system provides a

measurement of the head angular velocity ẋh to the brainstem but not
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directly to the cerebellum (Gerrits et al., 1989; Robinson, 1981), and

it does not provide the head position xh (Robinson, 1981).

Remark 6.1. Each of the eye movement systems has driving signals,

signals required for computation of ongoing eye movement. Head veloc-

ity is a driving signal for the VOR. Retinal error, the difference between

the target and fovea positions on the retina, drives the saccadic system

(Pola, 2002). Retinal slip velocity, the time derivative of retinal error,

is often taken to be the driving signal in models of the smooth pursuit

system.

Here we have chosen the retinal error to be the driving signal of the

VOR, gaze holding, and smooth pursuit. Experimental evidence sup-

porting this assumption was obtained in several studies (Berthoz, 1988;

Eggers et al., 2003; Shelhamer et al., 1995; Shelhamer et al., 1994).

Further, a series of studies by Pola and Wyatt (Pola and Wyatt, 1980;

Wyatt and Pola, 1981; Wyatt and Pola, 1983b) showed that retinal slip

velocity is inadequate to explain all the behaviors of the smooth pursuit

system. Other studies used strobe-reared cats, who never experience

retinal slip velocity (Mandl et al., 1981; Jones and Mandl, 1979). Fi-

nally, direct experimental evidence that retinal errors drive the smooth

pursuit system was given in (Blohm et al., 2005); they used a flash-

ing visual target for which no velocity information could be perceived

directly.

It is known that in primates, the VOR, gaze holding, and smooth pur-

suit systems share the same neural pathways in the brainstem and

cerebellum (in this chapter when we use the term “cerebellum”, we re-

fer more specifically to the floccular complex, comprising the flocculus

and the ventral paraflocculus (Lisberger, 2009).), so it is plausible these

systems share certain driving signals (Büttner and Waespe, 1984; Lis-

berger, 2015). For the model presented here, we assume the common

visual driving signal shared by the VOR, gaze holding, and smooth

pursuit systems is the retinal error. ⊳
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6.3 Brainstem

The brainstem provides two functions (among others) to the eye move-

ment systems: a direct feedthrough of the head velocity signal for the

VOR, and an estimate of the eye position used by all eye movement

systems. The latter function has been the subject of a long-standing

debate in the neuroscience community regarding how the eye position

information is obtained. One theory dating to the 1800’s proposed that

the brain receives an efference copy of an internal signal carrying eye

position information. An opposing theory argued that proprioception of

eye muscle activity provides eye movement information, obviating the

need for an efference copy. In the 1950’s, the term corollary discharge

was coined to characterize a copy of the motor command that informs

the brain of ongoing eye movement. The debate between corollary dis-

charge and proprioception has been largely settled, with experiments

showing that proprioception from the eye muscles plays a negligible

role in eye movement (Carpenter, 1972; Guthrie et al., 1983; Keller

and Robinson, 1971). Based on the experimental evidence, one can

construct the eye position estimate using a standard observer.

We start from Robinson’s parallel pathway model (Skavenski and Robin-

son, 1973) consisting of two parallel pathways in the brainstem that

combine to form the oculomotor command; that is,

u = uv + un ,

where uv is carried on the direct pathway from the MVN to the MNs;

and un corresponds to an indirect pathway from MVN to NPH to MNs.

The signal un is the output of the brainstem neural integrator in the

NPH. Invoking equation (3) in (Robinson, 1974), the neural integrator

is modeled as a leaky integrator:

˙̂x = −K̃xx̂+ uv , un = αxx̂ , (6.3.1)

where αx and K̃x are constants (or very slowly varying). Using the fact

that uv = u− αxx̂, this model can be re-expressed as

˙̂x = −K̂xx̂+ u , (6.3.2)
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where K̂x := K̃x + αx. Finally, we incorporate the idea from (Galiana

and Outerbridge, 1984) that K̂x = Kx (henceforth we drop the hat); see

also (Dale and Cullen, 2015; Green et al., 2004). In sum, we deduce that

the brainstem neural integrator forms an observer of the oculomotor

plant. If we define the estimation error x̃ := x − x̂, then x̃ evolves

according to ˙̃x = −Kxx̃, implying that x̂(t) converges exponentially to

x(t). Aside from a momentary perturbation (a push on the eyeball),

x̂(t) well approximates x(t).

Remark 6.2. The major variants of the brainstem model can be derived

from (6.3.1). When K̂x = Kx, the model is called a forward model in

the neuroscience literature. With the choice K̂x = 0 and αx = Kx, the

model is called an inverse model, because it cancels the stable pole

of the oculomotor plant. The inverse model is not accurate since the

neural integrator is leaky (Robinson, 1974); nevertheless, it finds use

in models of the saccadic system (Pola, 2002) to allow modelers to

account for gaze holding at the end of a saccade without explicitly

modeling the contribution from the cerebellum. In control theoretic

terms, the inverse model inserts a pole at zero to allow the eye to track

an exosystem R(s) = 1/s. ⊳

Remark 6.3. Our assumption that K̂x = Kx implicitly relies on the ex-

istence of two additional brain processes. First we assume that the brain

is capable of long-term adaptation (over days and weeks) to changes in

model parameters (e.g. weakening of the muscles of the eye) (Leigh and

Zee, 2015). Second, we assume the brain is capable of learning transfer,

a process by which adapted parameter values can be transferred from

one brain region to another (cerebellum to brainstem) (Shutoh et al.,

2006; Kassardjian et al., 2005). ⊳

As a final step in modeling the brainstem, we identify the components

of the signal uv:

uv = us + uim − αvorẋh .

The signal αvorẋh is the vestibular measurement of head angular velocity

representing the direct feedthrough from the semicircular canals to the

MNs for the VOR; the signal us carries visual information only and it
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improves the closed-loop stability of the system; and the signal uim is

the output from the PCs of the cerebellum which is required to satisfy

the internal model principle. Of course our choice to use the notation

us and uim is intended to recall the regulator designs in Chapter 5;

these will be used to model the cerebellum.

To summarize, the brainstem processes a brainstem-only signal given

by

ub = αxx̂− αvorẋh . (6.3.3)

This signal can be interpreted as the first line of defense in rejecting

disturbances in the retinal error signal. The term αvorẋh represents a

partial cancellation of the head velocity to improve the quality of vi-

sion. The term αxx̂ represents a partial cancellation of the drift term

of the oculomotor plant; without such cancellation, the eye would con-

stantly drift to center, particularly without the support of the cerebel-

lum, again diminishing the quality of vision.

The brainstem also processes signals that are part of a loop with the

cerebellum. These signals are combined to form a cerebellar signal in

the brainstem:

uc = us + uim .

When we compare these signals with the signals in the parallel pathway

model we see that the overall motor command is

u = uv + un = ub + uc .

6.4 Cerebellum

It has long been hypothesized that the cerebellum provides a top up

to the disturbance supression activities of the brainstem. For exam-

ple, the flocculus central vestibular neuron complementary hypothesis

of (Büttner and Waespe, 1984) postulated that the cerebellum will be

modulated if the signal provided by MVN neurons (in the brainstem)

is not sufficient to achieve the objectives of the VOR, OKR, or smooth

pursuit. This role of the cerebellum can be mathematically character-

ized in terms of regulation of e. A modeling problem transforms into



94 Slow Eye Movement Systems

a synthesis problem: to design a regulator, consistent with the neural

architecture, to make e(t) −→ 0.

The open-loop model we developed in the previous section is

ẋ = −Kxx+ u

˙̂x = −Kxx̂+ u

e = r − xh − x

ub = αxx̂− αvorẋh

u = ub + us + uim .

Assuming that x̂(t) ≡ x(t) for t ≥ 0, we obtain the error model

ė = −K̃xe− us − uim + ṙ + K̃xr − (1 − αvor)ẋh − K̃xxh , (6.4.2)

where K̃x := Kx − αx. We assume the reference signal r as well as the

head position xh are modeled as the outputs of a linear exosystem. Let

η(t) ∈ R
q be the exosystem state and define the exosystem

ζ̇ = Sζ

r = D1ζ

xh = D2ζ ,

where S ∈ R
q×q, D1 ∈ R

1×q, and D2 ∈ R
1×q. Then (6.4.2) takes the

form

ė = −K̃xe− us − uim + Eη (6.4.3)

where

E := D1S + K̃xD1 − (1 − αvor)D2S − K̃xD2 ∈ R
1×q .

Next we transform the exosystem according to Lemma 5.2.2. Let (F,G)

be a controllable pair with F Hurwitz. The exosystem becomes

ẇ = (F +Gψ)w .

According to Lemma 5.2.2, Eη = ψw, so we can rewrite the error

dynamics (6.4.3) in terms of the new exosystem state:

ė = −K̃xe− us − uim + d , (6.4.4)
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where d = ψw is the disturbance to be rejected. The parameters

(K̃x, ψ
T) ∈ R

q+1 capture all unknown model and disturbance parame-

ters.

Now we follow the design steps in Section 5.3. We select us to improve

closed-loop stability (note the plant is already open-loop stable):

us = Kee ,

where Ke > 0. To generate uim, we employ the adaptive internal model

of Section 5.3.1:

ẇ0 = Fw0 + FGe (6.4.5a)

ẇ1 = Fw1 −Ge (6.4.5b)

ẇ2 = Fw2 −Gus (6.4.5c)

ẇ3 = Fw3 −Guim (6.4.5d)

ŵ = w0 +Ge− K̃xw1 − w2 − w3 . (6.4.5e)

We can verify that ˙̂w = Fŵ+Gd, so (6.4.5) provides an internal model

of disturbance d. Define the estimation error w̃ = w−ŵ. Then ˙̃w = Fw̃

and ŵ(t) −→ w(t).

Since the plant parameter K̃x is not known, we may use the extended

parameter vector and regressor of Section 5.3.1 in the adaptation pro-

cess:

ψd :=
[
ψ −K̃xψ ψ ψ

]

ŵd := (w0 +Ge,w1, w2, w3) .

Then

d = ψw = ψŵ + ψw̃ = ψdŵd + ε ,

where ε = ψw̃ vanishes exponentially. Therefore we choose

uim = ψ̂dŵd ,

where ψ̂d is an estimate of ψd. Finally, the parameter adaptation rule

is
˙̂
ψd = eŵT

d .

By Theorem 5.3.2, this design achieves regulation of e.
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Remark 6.4. Notice that the adaptive internal model only receives vi-

sual information in the signal e, so ongoing eye movement information,

namely x or x̂, is not directly supplied to it. However, since eye move-

ment affects e, the output of the internal model indirectly reflects eye

movement. Also, we assume that when the visual driving signal e is

removed, as in darkness or when the eyes close, the cerebellum (specif-

ically the floccular complex) falls inactive (Lisberger, 2015). However,

we have not fully modeled how this inactivity takes place - whether it

is instantaneous or gradual. ⊳

The overall model of the slow eye movement systems that we have

derived is:

˙̂x = −Kxx̂+ u (6.4.6a)

ẇ0 = Fw0 + FGe (6.4.6b)

ẇ1 = Fw1 −Ge (6.4.6c)

ẇ2 = Fw2 −Gus (6.4.6d)

ẇ3 = Fw2 −Guim (6.4.6e)

ŵd := (w0 +Ge,w1, w2, w3) (6.4.6f)
˙̂
ψd = eŵT

d (6.4.6g)

ub = αxx̂− αvorẋh (6.4.6h)

us = Kee (6.4.6i)

uim = ψ̂dŵd (6.4.6j)

u = ub + us + uim . (6.4.6k)

One may arrive at somewhat different models by using other adap-

tive internal model designs in the control literature. In (Broucke, 2020;

Broucke, 2021) we used an internal model design from (Serrani and
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Isidori, 2000; Serrani et al., 2001). The overall model is:

˙̂x = −Kxx̂+ u (6.4.7a)

˙̂w = Fŵ +G(us + uim) (6.4.7b)
˙̂
ψ = eŵT (6.4.7c)

ub = αxx̂− αvorẋh (6.4.7d)

us = Kee (6.4.7e)

uim = ψ̂ŵ (6.4.7f)

u = ub + us + uim . (6.4.7g)

The internal model is now given by a single equation (6.4.7b). This

model provides less detail on specific mossy fiber inputs and due to

its parsimony may be less directly related to the neural circuit. On

the other hand, it’s stability proof (given in (Serrani and Isidori, 2000;

Serrani et al., 2001)) does not require that the exosystem states are

bounded, unlike the results in Chapter 5. Either model may be used

for the slow eye movement systems, with differences showing up in their

transient responses.

6.5 Neural Circuit

We want to verify that the model (6.4.6) is consistent with the neural

architecture. Particularly, a mapping between brain projections and

signals in our model must be identified. We refer to details about the

neural circuit in (Büttner and Büttner-Ennever, 2006).

The retinal error signal e descends from the visual cortex and is utilized

in our model in three forms: as the projection from the IO to the

CF input in (6.4.6g); as a visual MF input us; and again as a visual

signal us in the MVN. Note that us may be distinct in the MVN v.s.

the MFs; here it is the same signal only for the sake of mathematical

parsimony. Next, the projection from the PCs to the MVN corresponds

to the signal uim. From the MVN this signal then projects to the MF

input of the cerebellum and to the MNs. The direct projection from

the vestibular system to the MVN and thence to the MNs is modeled

by αvorẋh. The eye position signal αxx̂ nominally corresponds to the
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projection from the NPH to the MNs; however, we do not make precise

statements about its location as the neural substrate of the NPH is still

under investigation (Dale and Cullen, 2015; Green et al., 2004; Green

et al., 2007). The MF inputs to the flocculus have been classified as

visual, vestibular, and eye movement MFs (Lisberger, 2009). In our

model uim carries an estimate of all persistent disturbances acting on

the retinal error, so this signal alone may account for the mixture of

signals observed on the MF inputs of the cerebellum.

While we have not provided a detailed mapping to cell types in the

MVN, our model may be amenable to such a mapping. For example,

consider the EH neurons, a class of FTNs thought to be involved in

long-term adaptation of the VOR gain (Roy and Cullen, 2003). These

cells receive inputs from the PCs and the vestibular system; that is,

ueh = uim + αehẋh .

During steady-state smooth pursuit with passive head rotation, our

model predicts

uim ≃ ṙ + K̃xr − (1 − αvor)ẋh − K̃xxh .

Since x(t) ≃ r(t) − xh(t), this becomes

uim ≃ ẋ+ K̃xx+ αvorẋh .

Therefore, our model predicts

ueh ≃ ẋ+ K̃xx+ (αvor + αeh)ẋh ,

which is the formula obtained experimentally in (Roy and Cullen, 2003,

Fig. 14).

Our neural circuit has a few distinctions from some circuits in the lit-

erature. First, our model does not included a pure head velocity MF

input. Not only are there no primary afferents (Gerrits et al., 1989), but

all secondary afferents in the MVN carry other signals as well (Robin-

son, 1981). Additionally, the resting rate of vestibular only MF inputs

does not match that of vestibular nerve fibers, whereas they have rest-

ing rates comparable to vestibular only neurons in the MVN (Langer

et al., 0185; Lisberger and Fuchs, 1978b). Finally, the smooth pursuit
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system, which relies in the cerebellum, is fully functional without any

vestibular signal (Waterston et al., 1992).

Second, our model does not make use of the projection from the NPH to

the flocculus, presumed to provide an efference copy of the motor com-

mand u as an MF input, as doing so leads to inconsistencies with lesion

experiments. If the NPH (but not the MVN) is lesioned, it is known

that the VOR and smooth pursuit systems are still functional, show-

ing minor changes in their transient responses (Cannon and Robinson,

1987; Kaneko, 1999; Kim et al., 2016). It is also known that smooth

pursuit is abolished after ablation of the flocculus (Zee et al., 1981).

If we assumed the projection from the NPH to the flocculus were u,

we would arrive at a paradox that the smooth pursuit system can still

function without an MF input to the cerebellum when the NPH is le-

sioned. In contrast, after lesioning the MVN, the VOR, the OKR, gaze

holding, and smooth pursuit are all disabled or strongly modified, con-

sistent with the idea that damage to the MVN effectively disables the

flocculus (Cannon and Robinson, 1987).

6.6 Simulations

The simulations presented are taken from (Broucke, 2020; Broucke,

2021) for the model (6.4.7). The parameter values in the simulations

are: Kx = 5, αx = 0.95Kx, αvor = 0.65, Ke = 5, q = 2,

F =

[
0 1

−1 −1

]
, G =

[
0

1

]
.

These values were selected according to the following criteria. First,

Kx is selected to match the known time constant τx = 1/Kx = 0.2s

of the human oculomotor plant. Second, αx is selected so that K̃x =

Kx−αx = 0.25 gives a time constant of τ̃x = 1/K̃x = 4s, in the range of

the known time constant of the combined oculomotor plant and neural

integrator (Glasauer, 2003). The final top-up to this time constant is

provided by the cerebellum; see the discussion on gaze fixation below.

We have chosen αvor called the VOR gain (see below) somewhat arbi-

trarily; it may range from 0.6 to 0.9 under natural conditions and is
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highly adaptable. The parameter Ke = 5 has been selected to match

the transient response of the smooth pursuit system (see Figure 6.14);

however, it too appears to be adjustable (Broucke, 2020). The parame-

ter q which sets the order of the internal model is of great interest and

may vary according to which module of the cerebellum is under study.

For the floccular complex, we have selected q = 2 based on the per-

formance of the human smooth pursuit system; we have selected F so

the adaptive internal model has stable complex conjugate poles. This

choice is informed by the damped oscillations of the smooth pursuit

system when initiating tracking of a constant speed target (Robinson

et al., 1986).

6.6.1 Vestibulo-Ocular Reflex

The purpose of the vestibulo-ocular reflex (VOR) is to stabilize the gaze

(sum of eye and head angles) when the head is moving. This system

has been intensively studied over the last 60 years, and experiments

may be classified as follows.

(a) The standard behavioral experiment with the VOR involves invol-

untary sinusoidal rotation of the subject’s head in darkness. The

ratio of peak eye velocity to peak head velocity in steady-state

is called the VOR gain. Another behavioral experiment involves

involuntary sinusoidal rotation of the subject’s head in the light,

while the subject fixates on a stationary target. In this case, the

effective VOR gain jumps to close to unity in human subjects.

(b) VOR cancellation is an experiment in which the subject’s head

is moved involuntarily while the subject must track a target that

moves with the head. The experiment is called VOR cancellation

because the brain must suppress its own (brainstem) reflex to

move the eyes opposite to the head.

(c) VOR adaptation experiments involve experimental adaptation of

the VOR gain.
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(d) Neurological experiments typically record from the cells of the

MVN or the Purkinje cells of the cerebellum.

(e) Lesion experiments involve total cerebellectomy, lesions of the

flocculus only, the MVN, the NPH, or some combination thereof.

First we consider the standard experiment of measuring the VOR gain.

This gain is measured in darkness when the cerebellum is relatively

inactive, so in our model we assume uc = 0. Then the eye dynam-

ics evolve according to a brainstem-only control input. Assuming that

x(t) ≃ x̂(t), we have

ẋ = −K̃xx− αvorẋh . (6.6.1)

Suppose xh(t) = ah sin(βht). Assuming K̃x > 0, then the steady-state

response of (6.6.1) has the form

xss(t) = −αvorah
βh

K̃2
x + β2

h

(
βh sin(βht) − K̃x cos(βht)

)
.

Generally K̃x ≪ βh, so

xss(t) ≃ −αvorah sin(βht) = −αvorxh(t) .

That is, the eye moves relative to the head with a scale factor of -αvor.

The parameter αvor is called the VOR gain since it well approximates

the ratio of head velocity to eye velocity measured in darkness. Our

model predicts that the VOR in the dark is unaffected by disabling

the cerebellum, as reported experimentally (Robinson, 1981; Zee et al.,

1981).

The second standard experiment with the VOR is to measure the VOR

gain in the light while applying an involuntary sinusoidal head rotation

xh(t) = ah sin(βht), where ah, βh > 0. Figure 6.2 shows simulation

results for the values ah = 15, βh = 0.1Hz for t ∈ [0, 10], and βh = 0.2Hz

for t ∈ [10, 20]. The initial condition on all states is zero except the eye

angle, which starts at x(0) = −10◦. We also plot the retinal error e, the

cerebellar output uim, the brainstem component ub, and the parameter

estimates ψ̂1 and ψ̂2. As expected, the eye moves opposite to the head

rotation, and it adapts to the frequency of the sinusoidal disturbance.
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Figure 6.2: VOR with a sinusoidal head rotation. The top left figure shows the head
(yellow) and eye (blue) angles; the eye moves opposite to the head for a properly
functioning VOR. The top right figure shows the retinal error (red), which tends to
zero. The middle figures are ub and uim, and the bottom figures are the parameter
estimates ψ̂1 and ψ̂2. During t ∈ [10, 20], the frequency of sinusoidal oscillation of
the head is βh = 0.1Hz and during t ∈ [10, 20] it is βh = 0.2Hz. We see that the
cerebellar output uim adapts to the change in frequency of the head disturbance.

A third standard experiment evokes short-term adaptation of the VOR.

For example, suppose an involuntary sinusoidal head rotation is applied,

given by xh(t) = ah sin(βht), where ah, βh > 0, while at the same time
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the subject must track a target r(t) = αrxh(t), where αr is a constant.

Figure 6.3 shows simulation results for αr = 0.5, ah = 15, βh = 0.1Hz

for t ∈ [0, 10], and βh = 0.2Hz for t ∈ [10, 20]. The initial condition on

all states is zero except the eye angle, which starts at x(0) = −10◦. We

also plot the retinal error e, the cerebellar output uim, the brainstem

component ub, and the parameter estimates ψ̂1 and ψ̂2. The eye moves

opposite to the head rotation, but only with half the amplitude.

In an experiment called VOR cancellation, the head is rotated invol-

untarily while the eyes must track a head-fixed target (Büttner and

Waespe, 1984). Suppose the head angle is xh(t) = ah sin(βht) with

ah, βh > 0, and the target angle is r(t) = xh(t). Then the error is

given by e = −x. The role of uim in this case is to cancel the distur-

bance αvorẋh introduced by the brainstem component ub. Figure 6.4

illustrates the results for VOR cancellation using our model. Particu-

larly, we note that the response amplitude of the brainstem component

is not reduced during VOR cancellation, as experimentally confirmed

in (Buettner and U. Buttner, 1979; Keller and Daniels, 1975).

Next we consider experiments involving an adapted VOR gain. The

VOR gain αvor is subject to an adaptive brain process called long-term

adaptation. While we do not include this process in our model (αvor

is treated as a constant), we can consider how an adapted VOR gain

affects short-term behavior of the oculomotor system. Such an experi-

ment was reported in (Lisberger and Pavelko, 1986) in which the effect

of the VOR gain on the transient response of the oculomotor system

was investigated. It was discovered that the overshoot in the eye veloc-

ity to a sudden rotation of the head was larger when the VOR gain is

smaller. In the experiment, a light spot at r = 0 on which the monkey

fixates (in another otherwise dark room) is strobed. Here we assume

the subject attempts to continuously fixate the eyes on a target at

r = 0, even when the light spot is extinguished. The head position is a

ramp function: xh(t) = 0 for t ∈ [0, 1] and xh(t) = −30t for t ∈ [1, 5],

resulting in a head angular velocity of -30◦/s. Figure 6.5 illustrates the

behavior observed in the experiments in (Lisberger and Pavelko, 1986).

The blue curve is the eye angular velocity for αvor = 0.3, red is with

αvor = 0.5, and yellow is with αvor = 0.8. We see clearly that smaller
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Figure 6.3: VOR while tracking a target moving relative to the head rotation. The
top left figure shows the head (yellow) and eye (blue) angles, showing that the eye no
longer moves opposite to the head because the subject is tracking a target with the
same frequency but different amplitude as the head movement. The left figure shows
that the retinal error (red) tends to zero. The middle figures are ub and uim, showing
the cerebellar output uim is reduced corresponding to the reduced eye movement.
The brainstem component ub of the VOR is unchanged compared to a standard
VOR experiment, as expected. The bottom figures are the parameter estimates ψ̂1

and ψ̂2.

VOR gains result in larger overshoots.

A second experiment involving an adapted VOR gain was documented



6.6. Simulations 105

0 5 10 15 20

Time (secs)

-20

-10

0

10

20

H
e
a
d
 a

n
d
 E

y
e
 A

n
g
le

s
 (

d
e
g
)

0 5 10 15 20

Time (secs)

-3

-2

-1

0

1

2

3

E
rr

o
r

0 5 10 15 20

Time (secs)

-15

-10

-5

0

5

10

15

B
ra

in
s
te

m
 c

o
m

m
a
n
d
 U

b

0 5 10 15 20

Time (secs)

-15

-10

-5

0

5

10

15

C
e
re

b
e
lla

r 
c
o
m

m
a
n
d
 U

im
p

0 5 10 15 20

Time (secs)

-1.5

-1

-0.5

0

0.5

1

1.5

P
s
i1

0 5 10 15 20

Time (secs)

-2

-1

0

1

2

3

4

5

P
s
i2

Figure 6.4: VOR cancellation. The top left figure shows the head (yellow) and eye
(blue) angles, showing that the eye remains stationary as it tracks a head fixed target.
The left figure shows that the retinal error (red) tends to zero. The middle figures
are ub and uim, showing the cerebellar output uim now fully compensates for the
brainstem VOR signal to keep the eye stationary. The brainstem component ub of
the VOR is unchanged by the tracking task. The bottom figures are the parameter
estimates ψ̂1 and ψ̂2.

in (Lisberger, 1994). Monkeys were adapted to a new VOR gain by

wearing goggles in their cages. It was found that changes in the VOR

gain had no affect on the monkey’s ability to track a moving target. This
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Figure 6.5: VOR with a step input in head velocity for the values αvor = 0.3, 0.5, 0.8
(blue, red, yellow). The size of the overshoot in the eye velocity is inversely propor-
tional to the value of αvor.

behavior is explained in our model when we consider that the cerebel-

lar component uim compensates for whatever fraction of the vestibular

signal entering the error is not already cancelled by the brainstem com-

ponent −αvorẋh.

In a third experiment involving an adapted VOR gain, it has been

demonstrated that the VOR in the light is unaffected by changes in

the VOR gain (Miles and Eighmy, 1980). Figure 6.6 shows this exper-

imental behavior with our model, where αvor = 2 for t ∈ [0, 15] and

αvor = −1 for t ∈ [15, 30]. It is clear from the left figure in Figure 6.6

that our model predicts that in steady-state, the VOR in the light is

unaffected by changes in the VOR gain.

Next we consider neurological experiments with the VOR. An experi-

ment reported in (Lisberger and Fuchs, 1978a) demonstrated that the

depth of firing rate of the output of the cerebellum increases with the

frequency of sinusoidal head rotation while the subject fixates on a

stationary target. In this case, r = 0 and xh = ah sin(βht). Consider-

ing the error model (6.4.2), the cerebellum must reject a disturbance

signal with the form −(1 − αvor)ẋh − K̃xxh. In particular, the term

ẋh = ahβh cos(βht) is proportional to βh. Figure 6.7 shows the simu-
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Figure 6.6: Effect of αvor on the VOR. The top left figure shows the head (yellow)
and eye (blue) angles. During t ∈ [0, 15], αvor = 2 and during t ∈ [15, 30], αvor =
−1. We observe that the abrupt change in VOR gain only mildly affects the eye
movement during VOR, which continues to move opposite the head in this standard
VOR experiment. The top right figure shows that the retinal error e tends to zero,
irrespective of the VOR gain. The bottom figure shows that the cerebellar output
uim compensates for the change in VOR gain.

lation results for ah = 15, βh = 0.1Hz for t ∈ [0, 20]; βh = 0.2Hz for

t ∈ [20, 40]; and βh = 0.5Hz for t ∈ [40, 60]. We see in the right fig-

ure that the amplitude of uim increases as the frequency of the head

rotation increases.

Finally, we consider lesion experiments with the VOR. A number of

researchers have studied the VOR in the situation when the cerebellum

is disabled either due to disease or cerebellectomy (Zee et al., 1981). We

illustrate this effect for VOR cancellation, in which the eyes must track

a head fixed target; that is, the target position is mechanically coupled

to the head position by an experimental apparatus so that r(t) = xh(t).

Simulation results are shown in Figure 6.8 with uc = 0 to disable the

cerebellum. We observe in the left figure that the subject is no longer
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Figure 6.7: Effect of the frequency of oscillations of the head on the depth of mod-
ulation of the cerebellar component uim. The top left figure shows the head (yellow)
and eye (blue) angles, with the eye moving opposite to the head in this standard
VOR experiment with three different frequencies of sinusoidal head movement. The
left figure shows that the retinal error (red) tends to zero, with some transients
occurring when the frequency of sinusoidal head oscillation changes. The bottom
figure shows that the cerebellar output uim has an amplitude that increases with
increasing frequency of the sinusoidal head oscillation, as observed in experiments.

able to suppress the VOR - the blue curve shows that the eye position

is not stabilized, despite a head-fixed target. This result corroborates

many experimental findings (Zee et al., 1981).

In a second lesion experiment, a careful study of the effects of dis-

abling the neural integrator on the VOR, OKR, gazing holding, and

smooth pursuit appeared in (Cannon and Robinson, 1987). In our

model, disabling the neural integrator corresponds to removing the

observer (6.4.6a) and setting ub = −αvorẋh. For experiments conducted

in total darkness, also uc = 0. Therefore, in darkness the eye evolves

according to dynamics ẋ = −Kxx−αvorẋh. Comparing with the normal

eye dynamics in darkness: ẋ = −K̃xx− αvorẋh, we notice the change is
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Figure 6.8: VOR cancellation with the cerebellum disabled. The top left figure
shows the head (yellow) and eye (blue) angles. The eye no longer remains stationary
in order to track a head fixed target because the cerebellar output that cancels the
effect of the brainstem component of the VOR has been removed. The top right
figure shows that the retinal error e does not go to zero. The bottom figure shows
the brainstem component ub, which drives the eye to move sinusoidally opposite to
the head.

in the constant K̃x = 0.05Kx ≪ Kx, where K̃x was selected to approx-

imate the known time constant of the combined oculomotor plant and

neural integrator. For instance, for gaze holding with the head station-

ary, the eye drifts back to center with the time constant of the oculo-

motor plant. If the head angular velocity is a constant ẋh = v, then the

eye position converges exponentially to x = −αvorv/Kx, rather than

approximately tracking a ramp (with a very slow exponential decay).

This is the behavior recovered in experiments (Cannon and Robinson,

1987): a step of constant head velocity in total darkness evokes a step

change in eye position, not in eye velocity.

A further study of the effects of disabling the neural integrator on

the VOR, OKR, and smooth pursuit in monkeys appeared in (Kaneko,
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Figure 6.9: VOR with the neural integrator disabled. The top left figure shows the
head (yellow) and eye (blue) angles, with the eye moving opposite to the head in
this standard VOR experiment. The neural integrator has been disabled, so there
is no signal αxx̂ in the brainstem component ub. Nevertheless the VOR operators
as normal, modulo some possibly different transient behavior. The top right figure
shows the error tends to zero. The bottom figures are ub and uim. The brainstem
component ub is unaffected by removing the neural integrator, while the cerebellar
component uim must now compensate for the change in disturbances affecting the
system caused by removal of the neural integrator.

1999). They found these systems are minimally affected after a recovery

period. Our model predicts that in the light, the cerebellum will com-

pensate for the additional disturbances arising from the removal of the

term −αxx̂, such that the VOR is only mildly affected, as reported in

(Kaneko, 1999). Figure 6.9 shows the behavior of the VOR in the light

with the neural integrator disabled, with xh(t) = ah sin(βht), ah = 15,

and βh = 0.1Hz for t ∈ [0, 20]. We observe the eye moves opposite to

the head rotation, as expected.

We conclude the discussion of the VOR with experiments that blur the

boundaries between the different eye movement systems. The optoki-
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netic reflex is elicited by movement of large objects in the visual field or

movement of the visual surround; it operates in tandem with the VOR.

The driving signal of the OKR is different than the VOR, so strictly

speaking it requires a separate model, developed in Chapter 7. How-

ever, OKR experiments may invoke the VOR, gaze holding, or smooth

pursuit.

In many OKR experiments, the eyes must track a drum-fixed light slit

with the head stationary and the optical drum rotating sinusoidally. In

this case the error is e = r − x, where r(t) = ah sin(βht). We treat

this situation as being the same as smooth pursuit, to be discussed

below. In an experiment called OKR cancellation, a light spot at r = 0

is placed in front of a moving striped optical drum. In this case, the

pursuit system appears to override the OKR, as the eyes fixate on the

fixed light spot, and the error is e = −x. If there is no head rotation,

then this situation is the same as gaze holding, discussed in the next

subsection.

In an experiment called visual-vestibular conflict the head and the op-

tokinetic drum are mechanically coupled so that they rotate together,

and the eyes must track a light strip on the drum (Baarsma and

Collewijn, 1974). Therefore, we have r(t) = xh(t) = ah sin(βht), so

e = r − xh − x = −x. From the point of view of our mathematical

model, this situation is no different than VOR cancellation. It has been

reported that under such stimulation, the modulation of the firing rate

of the cerebellum is larger than when the drum is not rotated (Waespe

and Henn, 1978a); that is, when r(t) = 0, xh(t) = ah sin(βht), and

e = −xh − x.

In the context of our model, this finding makes sense. In the first case,

the role of uim is to cancel the term αvorẋh. In the second case, the

role of uim is to cancel the term −(1 − αvor)ẋh − K̃xxh. Assuming that

αvor is not close to 0.5 and that K̃x is close to zero, the amplitude of

the latter term is larger than the amplitude of the former. Figure 6.10

illustrates this comparison for values αvor = 0.9; ah = 15; βh = 0.2Hz;

r = xh = ah sin(βht) for t ∈ [0, 15]; and r = 0, xh = ah sin(βht) for

t ∈ [15, 30].
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Figure 6.10: Visuo-vestibular conflict in the OKR and its effect on the depth of
modulation of the cerebellar output uim. The top left figure shows the head (yellow)
and eye (blue) angles. The top right figure shows the retinal error (red). The bottom
figures are ub and uim. During t ∈ [0, 15], the eye must track a head fixed sinusoidally
rotating target (a light strip on an optical drum), while during t ∈ [15, 30], the eye
must track a stationary target while the head is sinusoidally rotating. The bottom
figure shows that the depth of modulation of the cerebellar output uim is larger
when the eye must track a head fixed target, even though the eye is not moving,
than during the standard VOR experiment, when the eye does move. This behavior
corresponds to experimental findings.

6.6.2 Gaze Fixation

The purpose of the gaze fixation or gaze holding system is to stabilize

the gaze on a stationary object. Gaze holding has been described as a

distributed brain function, involving the oculomotor plant, the brain-

stem, and the cerebellum, and consisting of three time constants (Leigh

and Zee, 2015; Glasauer, 2003). The first time constant may be mea-

sured in darkness with the eye in an eccentric position at lights out, in

an animal whose NPH has been lesioned (Cannon and Robinson, 1987).

With the head stationary, ub = 0. Also uc = 0 because the cerebellum
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(flocculus) is inactive in darkness. Then the eye evolves according to

the dynamics ẋ = −Kxx, so the first time constant of gaze holding is

τx = 1/Kx, the time constant of the oculomotor plant itself. The sec-

ond time constant is measured in normal (un-lesioned) subjects with

the lights out. Then ub = αxx̂ and uc = 0. Assuming x̂(t) ≃ x(t), the

eye evolves according to dynamics ẋ = −K̃xx, so the second time con-

stant of gaze holding is τ̃x := 1/K̃x, the time constant of the combined

oculomotor plant and neural integrator.

The third time constant is measured in the light while the subject

fixates on a stationary target at an eccentric position. Suppose r 6= 0

is constant and xh = 0. Assuming that x̂(t) ≃ x(t), the error dynamics

(6.4.2) take the form

ė = −K̃xe− uc + K̃xr . (6.6.2)

We see that to make the error go to zero it is necessary that uim ≃ K̃xr.

Then the eye will evolve according to the dynamics ẋ = −K̃x(x− r) +

Kee. In particular, the steady-state value of x is r, so our model predicts

an infinite time constant for gaze holding in the light. In practice, this

time constant is closer to 25s, potentially depending on the subject’s

fatigue.

Because the cerebellar component uim must cancel a disturbance K̃xr

for gazing holding, the output of the PCs will be proportional to the

eye position. This behavior is observed experimentally in many studies

(Noda and Suzuki, 1979). Figure 6.11 shows the behavior for three

target angles: r(t) = 5◦ for t ∈ [0, 15]; r(t) = 10◦ for t ∈ [15, 30], and

r(t) = 15◦ for t ≥ 30.

Further evidence that K̃x 6= 0 comes from studies in which the cerebel-

lum is disabled, either through ablation or disease. It is well known that

in this case, in the light the eye has a slow drift back to the central po-

sition x = 0 (Carpenter, 1972; Noda and Suzuki, 1979; Robinson, 1974;

Skavenski and Robinson, 1973; Zee et al., 1976). In this case, xh = 0,

uc = 0, and u = ub = αxx̂. Assuming x̂(t) ≃ x(t), the eye position

evolves according to the dynamics ẋ = −K̃xx, the same model as in

the dark, discussed above. Thus, the eye drifts back to center at an

exponential rate determined by K̃x. Figure 6.12 depicts this behavior
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Figure 6.11: Gaze holding. The top left figure shows the head (yellow) and eye
(blue) angles, with the eye holding three different eccentric positions. The top right
figure shows the error tends to zero after each gaze shift. The middle figures are ub

and uim. The brainstem component is ub = αxx̂, since there is no head movement,
so its value is proportional to the eye angle. The cerebellar component uim is also
proportional to the eye angle, consistent with experimental findings. The bottom
figures are the parameter estimates ψ̂1 and ψ̂2.

for the same target angles as in Figure 6.11.
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Figure 6.12: Gaze holding with the cerebellum disabled. The left figure shows the
target (yellow) and eye (blue) angles, with the target in three different positions. We
observe that without the cerebellum, the eye drifts back to center and is not able
to hold the gaze on eccentric targets. The right figure shows the error does not tend
to zero following a gaze shift to an eccentric target.

6.6.3 Smooth Pursuit

The purpose of the smooth pursuit system is to keep a moving object

centered on the fovea. Experiments with the smooth pursuit system

may be categorized, analogously with the VOR, as behavioral, neuro-

logical, and lesion experiments.

Figure 6.13 depicts a standard behavioral experiment for smooth pur-

suit of a sinusoidal target r(t) = ah sin(βht), with ah = 15, βh = 0.1Hz

for t ∈ [0, 10] and βh = 0.2Hz for t ∈ [10, 20]. We see that the cerebellar

output uim is strongly modulated during tracking of a sinusoidal tar-

get, as observed experimentally (Lisberger, 2009). Figure 6.14 depicts

the transient response for smooth pursuit of a ramp target r(t) = vt

with v = 5, 10, 20, 30. This transient response matches that reported

in Figure 3 in (Robinson et al., 1986). Similar behavior is reported in

(Wyatt and Pola, 1983a).

The perfect tracking capability of the smooth pursuit system has been

well documented over the years; a small sampling includes (Bahill and

McDonald, 1983a; Collewijn and Tamminga, 1984; Deno et al., 1995;

Wyatt and Pola, 1988). This tracking capability improves as the tar-

get motion becomes more predictable (Bahill and McDonald, 1983b).

Figure 6.15 depicts the behavior of our model for smooth pursuit of a

target r(t) = a1 sin(2πβ1t)+a2 sin(2πβ2t), with a1 = 4.85, β1 = 0.22Hz,
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Figure 6.13: Smooth pursuit of a sinusoidal target. The top left figure shows the
target (yellow) and the eye (blue) angles, for three frequencies of sinusoidal motion
of the target. The blue and yellow plots are almost overlayed due to the near perfect
tracking capability of the human eye. The top right figure shows the error, with
transients introduced each time the frequency of the sinusoidal tracking signal is
changed. The bottom figure shows the output of the cerebellum, which modulates
according to the frequency of the target motion.

a2 = 0.853 and β2 = 1.25Hz. The time interval t ∈ [9, 18] was chosen to

match the data in Figure 1 of (Barnes et al., 1987). This simulated be-

havior reproduces what is observed in experiments; namely, that while

humans are not capable of perfect tracking of a sum of two or more

sinusoids, nevertheless the smooth pursuit system performs reasonably

well. The non-zero error displayed in the center of Figure 6.15 is cor-

roborated by experimental findings in (Barnes et al., 1987).

Figure 6.16 depicts the behavior of our model for smooth pursuit of

a target r(t) = a1 sin(2πβ1t) + · · · + a4 sin(2πβ4t), with a1 = 6.94,

β1 = 0.214Hz, a2 = 2.86, β2 = 0.519Hz, a3 = 2.11, β3 = 0.702Hz,

a4 = 1.57, and β4 = 0.946Hz. The results are comparable to those

obtained experimentally as shown in Figure 2 of (Collewijn and Tam-
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Figure 6.14: Smooth pursuit of a ramp target with velocity v = 5, 10, 20, 30 (blue,
red, yellow, purple). The figure shows the characteristic transients associated with
the onset of smooth pursuit, as recorded in experiments.

minga, 1984).

It is known that the processing delay for the retinal error to arrive

at the cerebellum is on the order of 100ms. Nevertheless, the smooth

pursuit system achieves nearly perfect tracking capability; its ability

to do so in the face of this delay has been interpreted as a predictive

capabability (Deno et al., 1995). Our model does not impart any pre-

diction to the smooth pursuit system, but the presence of the adaptive

internal model aids in overcoming delays. Figure 6.17 depicts the be-

havior when tracking a sinusoidal target r(t) = a sin(2πβt) with a = 10

and β = 0.1Hz. The error e has been replaced by e(t − τ) with a time

delay of τ = 107ms. The other parameter values are the same as before

but we set Ke = 8 for closed-loop stability. We observe there is little

degradation in the system’s tracking capability.

The choice of Ke to achieve closed-loop stability is tied to the time

delay and the magnitude of the reference r(t). Figure 6.18 depicts the

largest delay attained with the smallest Ke for varying frequencies and

amplitudes of reference signals of the form r(t) = a sin(2πβt). With

a = 10 and β = {0.1, 0.2}Hz, delays of 107ms and 67ms were achieved

with Ke equal to 8 and 13, respectively. Holding β = 0.1Hz but with
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Figure 6.15: Smooth pursuit of a sum of two sinusoids. The top left figure shows the
target (yellow) and the eye (blue) angles, as the eye tracks a target whose motion is
the sum of two sinusoids. We observe that the eye is no longer able to achieve perfect
tracking. The error in the top right figure does not tend to zero asymptotically. The
cerebellar output uim is shown in the bottom figure.

a = {5, 10, 20}, the model overcomes delays of 197ms, 107ms, and 56ms

with Ke equal to 5, 8 and 15, respectively.

The error clamp experiment explores the role of the error signal using

a technique called retinal stabilization (Barnes et al., 1995; Morris and

Lisberger, 1987; Stone and Lisberger, 1990). A monkey is trained to

track a visual target moving at constant speed. After reaching steady-

state, the retinal error is optically clamped at zero using an experimen-

tal apparatus that places the target image on the fovea. In experiments

it is observed that the eye continues to track the target for some time

after. Figure 6.19 depicts the error clamp behavior with our model,

showing that the eye continues to track the target despite the error

being clamped at e ≡ 0 during the time interval t ∈ [5, 6].

In another series of experiments researchers explored the difference be-
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Figure 6.16: Smooth pursuit of a sum of four sinusoids. The top left figure shows
the target (yellow) and eye (blue) angle, as the eye tracks a target whose motion is
the sum of four sinusoids. The eye is no longer able to achieve perfect tracking, and
the error in the top right figure does not go to zero asymptotically. The cerebellar
output uim is shown in the bottom figure.

tween target stopping and target blanking. In target stopping, a target

with a ramp position is abruptly stopped. It is demonstrated experi-

mentally that during target stopping, the oculomotor system switches

from smooth pursuit to gaze holding (Krauzlis and Miles, 1996; Lue-

bke and Robinson, 1988; Robinson et al., 1986). In target blanking the

target is blanked out or occluded, so that it is no longer visible. It is

shown experimentally that with target blanking the eye continues to

track for some time (Cerminara et al., 2009; Churchland et al., 2003).

Figure 6.20 depicts target stopping, in which r(t) = 10t for t ∈ [0, 2],

and r(t) = 20◦ for t ≥ 2. We observe that the error decays to zero

with an exponential envelope after target stopping, as expected for the

gaze holding system. Target blanking may be interpreted in our model

as a zero error signal. As we have seen from the results of the error

clamp experiment, depicted in Figure 6.19, the smooth pursuit system



120 Slow Eye Movement Systems

0 10 20 30 40 50

Time (secs)

-15

-10

-5

0

5

10

15

T
a
rg

e
t 
a
n
d
 E

y
e
 A

n
g
le

s
 (

d
e
g
)

0 10 20 30 40 50

Time (secs)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
rr

o
r

0 10 20 30 40 50

Time (secs)

-50

0

50

B
ra

in
s
te

m
 c

o
m

m
a
n
d
 U

b

0 10 20 30 40 50

Time (secs)

-10

-5

0

5

10

C
e
re

b
e
lla

r 
c
o
m

m
a
n
d
 U

im
p

0 10 20 30 40 50

Time (secs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
s
i1

0 10 20 30 40 50

Time (secs)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
s
i2

Figure 6.17: Smooth pursuit of a sinusoidal target with a time delay of 107ms
in the retinal error signal. The top left figure shows the target (yellow) and eye
(blue) angle, as the eye tracks a sinusoidally moving target. A time delay of 107ms
is introduced in the measurement of the retinal error. The top right figure shows
that the retinal error tends to zero, despite some additional transients. The middle
figures show ub and uim. The brainstem component ub is modulated according to the
eye position (the head is stationary), while the cerebellar component is modulated
according to the target movement. The bottom figures are the parameter estimates
ψ̂1 and ψ̂2.

continues to track for some time.
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Figure 6.18: Maximum time delay as a function of Ke. The figures show the
relationship between the feedback gain Ke and the time delays that can be tolerated
in the closed-loop system. The left figure shows the smallest value of Ke required to
maintain closed-loop stability as a function of the time delay in the retinal error for
two different frequencies of a sinusoidally moving target. The right figure shows the
smallest value of Ke required to maintain closed-loop stability as a function of the
time delay in the retinal error and as a function of the amplitude of the sinusoidal
target motion.

6.7 Final Remarks

We presented a model of the slow eye movement systems, specifically

the VOR, smooth pursuit, and gaze holding, along with proposed com-

putations for the cerebellum. Despite being fairly simple, the model

captures many of the behaviors of these eye movement systems in a

unified framework.

Two internal model designs were presented in (6.4.6b)-(6.4.6g) and

(6.4.7b)-(6.4.7c). An important open problem is to determine which

model (if either) is more accurate in terms of the cerebellar microcir-

cuit. If it is the first model, then an open problem is to discover the

adaptive brain process that allows the filters (6.4.6b) - (6.4.6e) to syn-

chronize to identical parameter values in the pair (F,G).

Our current model of the slow eye movement systems does not account

for long term adaptation of relevant parameters. Parameters that are

subject to long-term adaptation are the VOR gain αvor and the gain

associated with the neural integrator αx. Similiarly, the model does not

capture how the brainstem neural integrator parameters in (6.4.6a) are

adapted to match the parameters of the oculomotor plant. Investigating



122 Slow Eye Movement Systems

0 2 4 6 8 10

Time (secs)

0

10

20

30

40

50

E
y
e

 A
n

g
le

 (
d

e
g

)

0 2 4 6 8 10

Time (secs)

0

10

20

30

40

50

E
y
e

 A
n

g
u

la
r 

V
e

lo
c
it
y
 (

d
e

g
/s

)

0 2 4 6 8 10

Time (secs)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

Figure 6.19: Smooth pursuit with an error clamp during t ∈ [5, 6]s. The top left
figure shows the eye angle as the eye tracks a constant velocity target. During
t ∈ [5, 6]s, the error is artificially clamped at zero by the experimental apparatus,
yet the eye continues to track the target. The effect is observed in the bottom figure,
which shows the error (difference between target and eye angles for the true target
position). The top left figure shows some disturbance in the eye velocity when the
error clamp is removed at t = 6s.

the adaptive brain processes by which these parameters are calibrated

is an interesting avenue of future avenue of future work.
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Figure 6.20: Smooth pursuit with target stopping at t = 2s. The top left figure
shows the target (yellow) and eye (blue) angle. During t ∈ [0, 2]s, the eye tracks a
constant velocity target. The target then stops, and the oculomotor system switches
to gaze holding. Such behavior is not observed if the target is removed at t = 2s.
The top left figure shows the error (red). The bottom figure is the cerebellar output
uim.
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Optokinetic System

In the previous chapter we considered a model of a part of the cerebel-

lum, the floccular complex (FC), involved in regulation of the vestibulo-

ocular reflex, smooth pursuit, and gazing hold eye movement systems.

This chapter examines a second functional module of the cerebellum,

the nodulus-uvula (NU) which is responsible for regulating the optoki-

netic system.

The optokinetic system is an eye movement system to stabilize vision

on a full-field moving visual surround. This eye movement system con-

trasts with the eye movement systems of the previous chapter whose

goal is to stabilize on object on the fovea. The optokinetic system uti-

lizes visual information impinging not only near the fovea but also on

the periphery of the retina (Leigh and Zee, 2015). How the optokinetic

system interacts with the other eye movement systems is of great inter-

est scientifically, but also theoretically from the perspective of control

theory: can parallel adaptive internal models work collaboratively to

regulate the same error? Or does the brain utilize a switching mecha-

nism to switch from one adaptive internal model to the other, reminis-

cent of switched system architectures for adaptive control (Narendra

and Annaswamy, 1989)? Before such interesting questions can be ad-

124
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dressed, we require a model of the optokinetic system that specifically

takes account of the computations of the cerebellum.

Pioneering experimental work in the 1970’s on the optokinetic system

(Cohen et al., 1977; Raphan et al., 1979; Waespe and Henn, 1978a;

Waespe and Henn, 1978b) lead to the discovery of the velocity storage

mechanism (VSM), a behavior in which eye velocity is stored while

following a constant velocity visual surround, even with intervening

saccades (a fast reset of eye position) in a behavior called nystagmus. A

striking feature of the VSM is that it partially fulfills the requirements

of the internal model principle, as if evolution made a primitive attempt

at architecting a neural internal model for this motor system.

Despite a comprehensive experimental record exposing all major be-

haviors of the optokinetic system, to this day, the two most important

models of the optokinetic system (Cohen et al., 1977; Robinson, 1981)

do not incorporate the computations of the cerebellum. This chapter

develops a model of the optokinetic system for horizontal eye motion

based on regulator design III.

7.1 Oculomotor Plant and Brainstem

In Chapter 6 we presented an open-loop model of the oculomotor plant

and brainstem

ẋ = −Kxx+ u

˙̂x = −Kxx̂+ u

ub = αxx̂− αvorẋh ,

where x ∈ R is the horizontal eye angle, x̂ is the estimate of x provided

by the neural integrator (6.3.2), and ẋh is the horizontal head angular

velocity. The signal ub is the brainstem-only contribution to the motor

command u. The parameter αvor is called the VOR gain.

This open-loop model must be extended to include aspects of the op-

tokinetic system. First, the optokinetic system includes behaviors such

as nystagmus, consisting of both fast and slow phases of eye motion, so

a more suitable model of the oculomotor plant is a second-order model
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(Sylvestre and Cullen, 1999). Second, the optokinetic system is known

to be supported by a so-called velocity storage integrator, which can be

modeled as a leaky integrator (Cohen et al., 1977; Raphan et al., 1979).

Third, to support the optokinetic reflex, the brainstem-only pathway

has a feedforward component of the retinal slip velocity, given by

e := ẋw − ẋh − ẋ .

Signal ẋw(t) ∈ R is the horizontal angular velocity of the visual field,

and ẋ is the horizontal angular eye velocity. A non-zero ẋw is induced

in experiments when a subject is seated inside a rotating optical drum.

Taken together, the open-loop model of the oculomotor plant and brain-

stem for the optokinetic system is

ẋ1 = x2 (7.1.2a)

ẋ2 = α2(−x2 −Kxx1 + u) (7.1.2b)

˙̂x = −Kxx̂+ u (7.1.2c)

v̇ = −Kvv +Kve (7.1.2d)

ub = αxx̂− αvorẋh + αoke+ αvv . (7.1.2e)

Equations (7.1.2a)-(7.1.2b) comprise the second-order model of the

oculomotor plant. Equation (7.1.2c) is the brainstem neural integra-

tor. Equation (7.1.2d) is the velocity storage integrator. Signal x1 = x

is the eye angle; x2 = ẋ is the eye angular velocity; u is the motor

command, now regarded as an acceleration input; v is the state of

the velocity storage integrator; αoke captures the drive provided by

the optokinetic reflex, where αok is the called the optokinetic gain; the

vestibulo-ocular reflex is modeled by αvorẋh, where αvor is the VOR gain;

and αvv captures the drive provided by the velocity storage integrator.

The brainstem-only component of the motor command is ub. Nominal

parameter values are Kx ≃ 5, αx ≃ 0.95Kx, Kv ≃ 0.05, α2 ≃ 250,

αok = 1, αv = 10, and αvor = 0.65.

7.2 Cerebellum

Next we model the cerebellar contribution to the optokinetic system.

Experimental and physiological evidence supports the idea that the
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driving signal of the optokinetic system is the retinal slip velocity

(Robinson, 1981). Moreover, this is the error signal that the cerebel-

lum regulates to zero. This choice of error signal partitions the work

of the cerebellum so that the nodulus/uvula (NU) regulates a veloc-

ity error, while the floccular complex (FC) regulates a positional error.

This neat division is likely an oversimplification; however, the under-

lying philosophy that each cerebellar module is dedicated to one type

of error signal is well supported by anatomical findings in which the

topographic layout of the inferior olive is matched to the topography

of the cerebellum (Apps et al., 2018; Houck and Person, 2014; Houck

and Person, 2015).

The error model associated with the NU is

ė = −α2e− α2u+ α2Kxx1 + ẍw − ẍh + α2ẋw − α2ẋh .

The motor command is split as

u = ub + us + uim ,

where us is a component for closed-loop stability, and uim is the output

of the NU. Because the error model is already highly stable due to the

large value of α2, we assume us = 0. Substituting ub in the error model

and assuming x̂(t) ≡ x1(t), we have

ė = −α2(1 + αok)e− α2uim + α2K̃xx̂ (7.2.1)

− α2(1 − αvor)ẋh − α2αvv + α2d ,

where

d :=
1

α2
[ẍw − ẍh] + ẋw

is the disturbance that must be rejected. This model may be regarded

as a first-order model of velocity error dynamics, despite the fact that

it includes a positional term α2K̃xx̂ arising from an incomplete cancel-

lation of the drift term Kxx1 of the oculomotor plant by the neural

integrator (7.1.2c). Because the eye position is constantly reset during

nystagmus, x1 remains small. We therefore treat the positional term as

a bounded disturbance acting on the velocity error dynamics. We as-

sume this extra disturbance is not rejected by the cerebellum, so some
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small steady-state errors will remain and a modified stability analysis

will be required.

Remark 7.1. When we wrote the error model (7.2.1) a decision was

taken about what disturbances the cerebellum cancels. An alternative

error model is

ė = −α2(1 + αok)e− α2uim + α2K̃xx̂− α2αvv + α2d .

Now the disturbance to be cancelled is

d :=
1

α2
[ẍw − ẍh] + ẋw + (1 − αvor)ẋh ,

so the NU picks up more disturbance rejection work by canceling the

part of the head velocity signal not already rejected by the brainstem

VOR. Either error model may be used, with neglible effect on the de-

sign of the regulator. The choice of error model will ultimately depend

on how the FC and the NU share the task of rejecting the head veloc-

ity disturbance. We choose to work with (7.2.1) due to considerations

about the neural circuit, to be discussed below. ⊳

Experimental evidence supports the idea that the NU is dedicated to

constant velocity disturbances (Heinen and Keller, 1996); whereas the

FC handles sinusoidal disturbances as well. Thus, we assume the ex-

osystem associated with the NU is first order:

ẇ = Fw +Gd (7.2.2)

d = ψw , (7.2.3)

where w ∈ R, F is Hurwitz, and (F,G) is a controllable pair.

For the internal model we use a modification of the extended design in
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Section 5.3

ẇ0 = Fw0 + FGe (7.2.4a)

ẇ1 = Fw1 −Ge (7.2.4b)

ẇ2 = Fw2 −Guim (7.2.4c)

ẇ3 = Fw3 −Gx̂ (7.2.4d)

ẇ4 = Fw4 −Gẋh (7.2.4e)

ẇ5 = Fw5 −Gv (7.2.4f)

ŵ =
1

α2
w0 +

1

α2
Ge− (1 + αok)w1 − w2 (7.2.4g)

+ K̃xw3 − (1 − αvor)w4 − αvw5 .

This model includes several additional filters (7.2.4d)-(7.2.4f) to ac-

count for feedforward measurements x̂, ẋh, and v, in order that their

effect not be cancelled by the internal model. Taking the derivative of

ŵ and utilizing (7.2.1), we verify again

˙̂w = Fŵ +Gd .

Define the estimation error w̃ := w − ŵ. Then ˙̃w = Fw̃, and since F

is Hurwitz, w̃(t) −→ 0. If the plant parameters were known, then ŵ

would provide a regressor for parameter adaptation. Since these param-

eters are not known, we used the extended regressor ŵd and extended

parameter vector ψd as in Section 5.3.1:

ψd :=
[

1
α2
ψ −(1 + αok)ψ −ψ K̃xψ −(1 − αvor)ψ −αvψ

]

ŵd := (w0 +Ge,w1, w2, w3, w4, w5) .

Then

d = ψw = ψŵ + ψw̃ = ψdŵd + ε ,

where ε = ψw̃ vanishes exponentially. Then we choose

uim = ψ̂dŵd , (7.2.5)

where ψ̂d is an estimate of the unknown parameters ψd. The parameter

adaptation rule is
˙̂
ψd = γeŵT

d , (7.2.6)

where γ > 0 is the adaptation rate.
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7.3 Stability Analysis

The stability analysis focuses on the case when there is no head move-

ment, ẋh = 0. Also we only study the envelope behavior of the eye

velocity (see Figure 7.2) by ignoring the velocity resets caused by sac-

cades. This assumption is reasonable due to the very fast initial rise of

velocity in the slow phases of nystagmus following a saccade due to the

optokinetic reflex. While a full hybrid stability analysis would increase

the rigor of our analysis, we believe it would not necessary add signif-

icantly to the plausibility of the model, which is our primary concern

here.

We begin the analysis with a nominal case when K̃x = 0, meaning there

is no perturbation due to eye position. Define the parameter estimation

error ψ̃d = ψd − ψ̂d. Then the closed-loop system is

ė = −α2(1 + αok)e− α2αvv + α2ψ̃dŵd (7.3.1a)

v̇ = −Kvv +Kve (7.3.1b)

˙̃
ψd = −γeŵT

d . (7.3.1c)

Note that we omitted the exponentially stable w̃ dynamics, which do

not affect the stability outcome. Define the state ξ := (e, v) ∈ R
2. Then

we can write (7.3.1) as

ξ̇ = Aξ +Bψ̃dŵd (7.3.2a)

e = Cξ (7.3.2b)

˙̃
ψd = −γeŵT

d , (7.3.2c)

where

A =

[
−α2(1 + αok) −α2αv

Kv −Kv

]
, B =

[
α2

0

]
, C =

[
1 0

]
.

This model matches the standard error model (4.2.7) or (4.3.10), so it

makes sense to explore if our model is SPR in order to apply stability

results from Section 4.3.

Lemma 7.3.1. Consider the error model (7.3.2) with α2, αok, αv, Kv >

0. Then H(s) = C(sI −A)−1B is SPR.
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Proof. According to Theorem 4.1.5, we must first verify A is Hurwitz.

The characteristic polynomial is det(sI−A) = s2+(Kv+α2(1+αok))s+

α2Kv(1+αok+αv). Since the coefficients of this second-order polynomial

are strictly positive, A is Hurwitz. Second, we verify condition (4.1.3).

We compute

H(jω) =
α2(jω +Kv)

(α2Kv(1 + αok + αv) − ω2) + jω(Kv + α2(1 + αok))
.

Then we have

ℜ [H(jω)] =
α2

2K
2
v (1 + αok + αv) + α2

2ω
2(1 + αok)

(α2Kv(1 + αok + αv) − ω2)2 + ω2(Kv + α2(1 + αok))2
> 0 ,

where we use α2, αok, αv,Kv > 0, by assumption. Finally, it is easily

verified that (A,B) is controllable. By Theorem 4.1.5, H(s) is SPR.

Theorem 7.3.2. Consider the closed-loop system (7.3.2) with α2, αok,

αv, Kv > 0. Suppose d 6= 0 is a constant disturbance. Then the equilib-

rium (ξ, ψ̃d) = (0, 0) is locally exponentially stable.

Proof. By Lemma 7.3.1, H(s) is SPR. Since d is a non-zero constant

disturbance, w is also constant and non-zero, so it trivially satisfies the

PE condition (4.3.1), and w, ẇ ∈ L∞. Also, ŵd is PE by Lemma 4.3.3.

By Theorem 4.3.8, the equilibrium (ξ, ψ̃d) = (0, 0) is locally exponen-

tially stable.

Next we consider the closed-loop system

ξ̇ = Aξ +Bψ̃dŵd +Bν (7.3.3a)

e = Cξ (7.3.3b)

˙̃
ψd = −γeŵT

d , (7.3.3c)

where ν := K̃xx̂ is regarded as a bounded, unmodeled disturbance.

The system (7.3.3) is said to be input-to-state stable (ISS) if there exists

a class KL function β1(·) and a class K function β2(·) such that for any

(ξ(0), ψ̃d(0)) and any K̃xx̂ ∈ L∞,

‖ξ(t)‖ ≤ β1

(
‖ξ(0)‖, t) + β2( sup

0≤τ≤t
‖ν(τ)‖

)
.
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Figure 7.1: Control architecture for the optokinetic system consisting of the oculo-
motor plant (P), the brainstem (B), and the cerebellum (C). The retinal slip velocity
e is the error signal to be regulated.

The following is an immediate application of Lemma 4.6 of (Khalil,

2001).

Theorem 7.3.3. Consider the closed-loop system (7.3.3) with α2, αok,

αv, Kv > 0. Suppose d 6= 0 is a constant disturbance. Then (7.3.3) is

ISS.

7.4 Neural Circuit

A high-level block diagram of the neural circuit of the optokinetic sys-

tem is seen in Figure 7.1. The visual cortex processes visual signals

arrriving from the retina by way of the optic nerve. The nucleus of

the optic tract (NOT) projects to the vestibular nuclei (VN) of the

brainstem (B). In particular, the NOT sends a measurement of reti-

nal slip velocity to the VN (Büttner-Ennever and Horn, 1997). The

brainstem comprises several regions (or functions) relevant to the op-

tokinetic system: the VN, the brainstem neural integrator (NI), and the

velocity storage mechanism (VSM). The VN act as hubs for signals to

and from the cerebellum (see below). The NI provides an eye position

signal (Kaneko, 1999). The VSM, also believed to be located in the VN

(Robinson, 1981), provides “velocity storage” of a constant velocity vi-



7.5. Simulations 133

sual surround - in essence approximating a pure integrator to track

constant disturbances. Finally, the VN output is sent to the oculomo-

tor neurons (MN) to stimulate the muscles and control eye movements

(Leigh and Zee, 2015).

As already discussed, all modules of the cerebellum have two types of

inputs: mossy fiber (MF) inputs and climbing fiber (CF) inputs. MF

inputs to the NU include: primary afferents from the vestibular nerve

(carrying a head velocity signal) (Barmack et al., 1993); a signal from

the VN; and a signal from the NI. The CF input to the NU comes from

the NOT by way of the inferior olive (IO) (Barmack, 2006). Finally,

the NU projects its sole output via its Purkinke cells (PCs) to the VN

(Büttner and Büttner-Ennever, 2006).

A mapping between the neural circuit and signals in our model is as

follows. Referring to (7.1.2e), the output of the neural integrator is the

signal αxx̂; the direct feedthrough of the retinal slip velocity to support

the optokinetic reflex is the signal αoke; and the output of the VSM is

αvv. Signal e in (7.2.6) is the projection from the IO to the CF input

of the cerebellum. Signals e, uim, x̂, ẋh, and v in (7.2.4) are the MF

inputs to the cerebellum. The PC output of the cerebellum is uim.

7.5 Simulations

The simulations include four basic behaviors of the optokinetic system:

(i) OKN with constant stimulus velocity, both untrained and trained

conditions; (ii) OKAN I in the dark, both untrained and trained con-

ditions; (iii) OKAN suppression; and (iv) OKN suppression. An ad-

ditional behavior called OKAN II is thought to arise from a process

of long-term adaptation which, strictly speaking, lies outside our mod-

eling work. Nevertheless, we provide a plausible argument to explain

OKAN II. Therefore, we include a fifth behavior: (v) OKAN II.

Our simulations only account for the contribution of the NU, which

is sufficient to elicit the main characteristics of the optokinetic system.

The floccular complex also contributes lightly to the optokinetic system,

so the simulations are to be interpreted as behavior with a lesioned
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flocculus. Generally, lesion studies show that ablation of the flocculus

and portions of the paraflocculus only tend to reduce OKN slow-phase

eye velocities and leave OKAN unchanged (Zee et al., 1981; Waespe

et al., 1983).

The parameter values used in the simulations are: α2 = 250, Kx = 5,

Kv = 0.05, αv = 10, αok = 1, αvor = 0.65, αx = Kx, F = −0.01,

G = 0.01, and γ = 1e − 12. The parameters α2, Kx, and Kv were se-

lected according to the known time constants of the oculomotor plant

and the VSM. Parameters αv = 10, αok = 1, and αvor = 0.65 are all

highly adaptable (through a process of long-term adaptation) and can

be selected fairly arbitrarily. The choice αx = Kx implies that eye posi-

tion is not a disturbance in these simulations (this is not a requirement

however). Parameters F and G were selected to give a reasonable time

constant for the NU. The choice of γ reflects the relatively longer time

(on the order of, say, 30 minutes) for the NU to go from trained to

untrained conditions. Finally, in order to make the figures easier to

view, we display saccades only every 5s. In reality they typically occur

roughly every 0.5s (Büttner et al., 1976). However, for the plot of ub,

we show the true interval of saccades otherwise the estimate αxx̂ (and

therefore ub) would be unnaturally large.

7.5.1 OKN and OKAN I

Optokinetic nystagmus (OKN) is perhaps the signature behavior of the

optokinetic system. It is an eye movement in which the eye tracks the

velocity of a (full-field) moving visual surround during the so-called

slow phase, followed by a saccade to rapidly reset the eye position to

zero in the fast phase. OKN is characterized by a fast initial rise in slow-

phase eye velocity, followed by a slower rise to a steady-state velocity

that nearly matches the velocity of the surround (Cohen et al., 1977,

Fig. 3A), (Raphan et al., 1979, Fig. 3B, 4B).

The second signature behavior of the optokinetic system is optokinetic

after-nystagmus I (OKAN I), a behavior following OKN when the lights

are turned off. During OKAN I nystagmus continues in the same di-

rection as OKN, even though there is no visual stimulation. After a
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quick initial drop, the slow-phase velocity slowly decays to zero during

OKAN I (Cohen et al., 1977, Fig 2), (Büttner et al., 1976, Fig 1); also

(Raphan et al., 1979; Zee et al., 1981; Waespe et al., 1984).

Figure 7.2 shows simulation results for OKN and OKAN I using our

model, with the optokinetic drum rotating at a constant velocity of 60

deg/s for 60s. At the start of OKN, the slow-phase velocity jumps to

about 55% of the steady-state value, then rises more slowly and stabi-

lizes around 55◦/s. These characteristics can be attributed to the large

retinal slip velocity at the onset of the experiment and the charging of

the VSM, respectively. The non-zero steady-state error during OKN is

observed because the NU internal model is untrained, meaning this is

the first time the experiment is run with a specific subject.

Once the lights are extinguished at t = 60s, visual signals are no longer

present and the cerebellum is effectively inactive, so the signal e is

unavailable and uim = 0. This causes the slow-phase eye velocity to

rely on the dynamics from the VSM, which slowly dissipates its stored

velocity, creating OKAN I. The slow-phase velocity experiences a 10%

drop, then decays with a time constant of about 18s.

If the subject is involved in repeated trials of the same experiment elicit-

ing OKN and OKAN I, the NU is trained over time. Consequently, the

OKN steady-state slow-phase eye velocity increases (Miki et al., 2020,

Fig 1), the OKAN I time constant decreases (Cohen et al., 1977, Fig

7), and the OKAN I duration decreases (Waespe and Henn, 1978b, Fig

2, 3). Compared to the untrained case in Figure 7.2, the steady-state

velocity during OKN is about 8% higher, the OKAN I time constant is

about 40% lower, and the OKAN I duration is about 36% lower. These

results are shown in Figure 7.3.

It is possible to extract some additional relationships from our simula-

tion results. For the OKN, the steady-state slow-phase eye velocity in-

creases linearly with increasing stimulus velocity (Figure 4B in (Cohen

et al., 1977)). This is shown for our model with stimulus velocities of

60, 100, 120 and 180 deg/s in the left figure of Figure 7.4. For OKAN I,

the peak slow-phase eye velocity is linearly related to stimulus velocity

(Figures 2 and 4C in (Cohen et al., 1977) and Figure 5 in (Koenig and
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Figure 7.2: Untrained OKN and OKAN I. The untrained response during OKN is
characterized by a fast rise in the slow phase eye velocity, followed by a slower rise to
a steady-state eye velocity that nearly matches the velocity of the visual surround.
We note a persistent steady-state error in the eye velocity because the NU internal
model is untrained. During OKAN I, the lights are turned off and the cerebellum
shuts off, but the eye continues to move in the same direction as during nystagmus.
OKAN I is due to the discharge of the velocity storage mechanism when there is no
visual stimulus. During OKAN I, after a quick initial drop, the eye velocity decays
to zero at a slow exponential rate.

Dichgans, 1981)). This is shown for our model with stimulus velocities

of 60, 100, 120 and 180 deg/s in the right figure of Figure 7.4.

7.5.2 OKAN Suppression

OKAN suppression or fixation suppression is an experiment in which

the lights are turned on for a brief period of time during OKAN, reveal-

ing a stationary optokinetic drum on which the subject fixates. Figure

7.5 shows the results of our model when the lights are turned on 2s

after the onset of OKAN I. The lights are left on for 5s, then turned

off again. During fixation, the slow-phase eye velocity drops rapidly, as

shown between the dashed red lines. This is due to the visual signal e

and cerebellar output uim returning during fixation, so the large error

causes the velocity signal to drop along with the inhibitory effects of

the cerebellum which cause the VSM time constant to drop (Waespe
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Figure 7.3: Trained OKN and OKAN I. The trained response during OKN is
characterized by a decrease in steady-state error, suggesting that the NU internal
model is now trained. The trained response during OKAN I shows a decrease in its
duration and the exponential time constant, because the velocity storage mechanism
has drained its state due to the smaller steady-state error during OKN.
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Figure 7.4: The left figure shows the linear relationship between stimulus velocity
and steady-state velocity during OKN. The right figure shows the linear relationship
between stimulus velocity and peak OKAN I velocity.

et al., 1984). Once the lights are turned off again, the velocity is able

to recover at a depressed value due to the VSM having not dissipated

all of its stored activity and continues its decay. This same behavior

is reported in animal studies (Cohen et al., 1977, Fig 8) and (Raphan

et al., 1979, Fig 7B)).

Longer fixation periods are known to inhibit the slow-phase velocity so

that it cannot recover when the lights are turned off again (Cohen et
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Figure 7.5: OKAN suppression with a 5s interval of gaze fixation. In an OKAN
suppression experiment, the lights are turned on for a brief period during OKAN,
revealing a stationary optokinetic drum. During fixation, the eye velocity drops
rapidly, as the gaze fixation system takes over. When the lights are turned off again,
OKAN I continues due to the remaining charge of the velocity storage mechanism.
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Figure 7.6: OKAN suppression with a 5s interval of gaze fixation. If the period of
fixation is increased to 15s then the velocity storage mechanism further discharges its
state, so that when the lights are turned off again, OKAN I is significantly reduced.

al., 1977, Fig 8). For example, with a fixation period of 15s introduced

2s after the onset of OKAN I, the slow-phase eye velocity is completely

inhibited, as is shown in Figure 7.6.
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Figure 7.7: In an OKN suppression experiment, the subject fixates on a stationary
target while the optical drum rotates in teh background. The effect of the rotating
optical drum is to charge the velocity storage mechanism, even though hte eye is
not moving. Thus, when the lights are turned off, OKAN I is elicited, though the
response is reduced compared to the OKAN I response following OKN.

7.5.3 OKN Suppression

OKN suppression is an experiment in which the subject fixates on a

target straight ahead while the illuminated optokinetic drum is rotating.

Although nystagmus is not elicited, the VSM still charges while the

drum is moving due to a reduced visual signal e, but to a lesser extent

than without a fixation target. This causes a small velocity jump at the

start of OKAN I when the lights are turned off, followed by a decay to

zero (Waespe and Schwarz, 1986, Fig 8). This behaviour is replicated by

our model as seen in Figure 7.7. Although the eye velocity is unchanged

during the stimulation period, the VSM is still storing activity. The

stored activity causes the slow-phase velocity to rise just past 10◦/s

once the lights turn off to elicit OKAN I.

7.5.4 OKAN II

OKAN II is a second phase of OKAN that arises only after a subject has

become habituated to unidirectional optokinetic stimulation. That is,

the optokinetic drum only spins in the positive or negative sense. The
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presence of OKAN II depends on the duration of the optokinetic stimu-

lation. After potentially many hours of stimulation (lasting 24 hours to

8 days in some experiments (Pettorossi et al., 1999)), it is observed that

the eye velocity in the slow phase of nystagmus reverses direction from

the original stimulus direction (Waespe and Henn, 1978b). OKAN II is

believed to arise from a process of long-term adaptation (Maioli, 1988;

Pettorossi et al., 1999; Waespe and Henn, 1978b) as a compensatory

behavior to offset a natural condition called gaze-evoked nystagmus in

which weakening of the muscles of the eye on one side causes the eye

to slip in one direction only, resulting in repeated corrective saccades

to maintain steady gaze.

OKAN II may be explained in our model by considering that weaken-

ing of the eye muscles in one direction would correspond to a reduction

in the parameter Kx for stimulus in the positive sense. We posit that

the long-term adaptation process that is activated by prolonged unidi-

rectional nystagmus is a process that calibrates the time constant of

the neural integrator via a parameter K̂x to match the time constant

of the oculomotor plant determined by Kx. Instead of utilizing (7.1.2c)

in which time constants are matched, to elicit OKAN II we utilize the

neural integrator model

˙̂x = −K̂xx̂+ u . (7.5.1)

To model that the muscles have been weakened, we assume K̂x ≪ Kx.

Define the parameter mismatch

∆Kx := Kx − K̂x > 0 .

Also define the estimation error x̃ = x − x̂. Based on the first-order

model of the oculomotor plant, a reasonable approximation of the esti-

mation error dynamics is:

˙̃x = −K̂xx̃− ∆Kxx1 .

If the optokinetic experiment involves a slow phase in the positive sense,

then x1(t) ≥ 0 (or on average x1(t) is positive). Since ∆Kx > 0, x̃(t)

will progressively drift with more negative values.
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The oculomotor plant model during OKAN when the lights are off is

ẋ1 = x2

ẋ2 = α2(−x2 −Kxx1 + αxx̂+ αvv)

= α2(−x2 − K̃xx1 − αxx̃+ αvv) .

We see that the effect of the mismatch between plant and neural inte-

grator is to introduce a term αxx̃. The neural integrator generally works

to cancel the eye position term −Kxx1 via its contribution αxx̂. Since

we now have a parameter mismatch in which K̂x ≪ Kx, we would ex-

pect αx to be greatly reduced as well. We posit that αx < 0 so that the

residual signal causes the slow-phase velocity to drift in the negative

sense. In summary, OKAN II arises during OKAN when the cerebel-

lum is inactive and when the velocity storage integrator has depleted its

contribution, so αvv ≃ 0. What remains is the negative drive supplied

by the drift term αxx̃.

Our model generates OKAN II with parameter values of Kx = 5,

K̂x = 0.001, αx = −0.002Kx. Because the results are now dependent on

the eye position, the simulations use a small saccade interval to demon-

strate more realistic values. Figure 7.8 shows an experiment starting

with 60s of unidirectional optokinetic stimulation before the lights are

extinguished. OKAN I proceeds for about 53s as it decays to zero. Now

the appearance of OKAN II is observed as the slow-phase velocity in-

creases in the negative sense. The velocity reaches a peak value of about

−3.5◦/s, and eventually decays to zero (not pictured). These character-

istics are very comparable to behavioral studies where the optokinetic

stimulation is applied in one direction for 60s (Figure 1 in (Büttner

et al., 1976)).

With repeated trials or a longer stimulus duration, OKAN I is known

to decrease in duration while OKAN II is known to increase in peak

velocity and in duration (Waespe and Henn, 1978b, Fig 2), (Büttner

et al., 1976, Fig 2). Figure 7.9 shows results with our model over 100s of

optokinetic stimulation in the positive sense. Comparing to Figure 7.8,

the duration of OKAN I has decreased and the peak velocity of OKAN

II has indeed increased with a longer stimulation duration.
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7.6 Final Remarks

We presented a model of the optokinetic system that captures the main

behaviors during constant velocity optokinetic nystagmus. The model

proposes that the computations of the cerebellum, specifically the NU,

comprise an adaptive internal model to realize the internal model prin-

ciple of control theory.

The modeling and analysis may be extended in several directions. First,

because of the relatively longer time required experimentally (up to 30

minutes) to go from an untrained to trained NU, we did not carry

out the full simulation, but rather set the initial conditions consistent

with the two states of the NU. The theoretical analysis proves that this

transition from untrained to trained occurs; nevertheless, this aspect of

the simulations is worth revisiting. Another extension of the analysis

would be to include saccades by treating the model as a hybrid system

with state dependent guard and reset conditions (Goebel et al., 2009).

In Remark 7.1 we discussed that an alternative error model including

the head velocity as a disturbance may be attributed to the NU. This

highlights the issue that the proper choice of error model must be

ascribed to each cerebellar module in order to fully characterize its

role in disturbance rejection. If the alternative error model is correct,

then an open problem is to determine how the FC shares the workload

with the NU to suppress the disturbance on vision induced by head

movement.

Analogous to the situation with the flocculus and the VOR gain αvor,

no account is given of long-term adaptation of the optokinetic reflex

gain αok. Finally, more research is needed to fully elucidate the adaptive

mechanisms underlying OKAN II.
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Figure 7.8: OKN followed by OKAN I and OKAN II. OKAN II is characterized
by a reversal of the direction of eye movement relative to OKN and OKAN I. The
effect is amplified when the duration of OKN is extended by many hours.
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Figure 7.9: Longer duration of OKN, followed by OKAN I and OKAN II. The
effect of a longer duration of OKN is to prolong the time of OKAN II (compare
to the previous figure) during which the eye moves in the opposite direction to its
initial direction during OKN.
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Adaptive Internal Models in Discrete-Time

This chapter prepares the theoretical background for studying visuo-

motor adaptation and the saccadic system, subjects of Chapter 9. We

present a regulator design that is more general than what is required

for those models. By giving a more general treatment it becomes possi-

ble to appreciate that visuomotor adaptation and saccade adaptation

sit in a general framework of disturbance rejection, and therefore they

are driven by the same underlying mathematical principles as the ocu-

lomotor system.

The discrete-time regulator design is closest to the continuous-time

regulator design V of Section 5.5. The motivation for giving a separate

treatment of the discrete-time case is twofold. First, most researchers

working in the area of visuomotor adaptation deal only with discrete-

time models, so there is value to use a mathematical language that

is familiar to them. Second, while it is possible to move seamlessly

between discrete-time and continuous-time models in classical regula-

tor theory, this is not so when dealing with adaptive internal mod-

els due to the nonlinear, time-varying nature of parameter adaptation

laws. As such, a comparison between Section 5.5 and this chapter re-

veals that the discrete-time design of the regulator follows verbatim the

145
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continuous-time design. Lemmas 8.1.2-8.1.4 are the direct analogues of

Lemmas 5.2.2-5.2.5. Differences begin to appear in the parameter adap-

tation law (8.1.14), and particularly in the Lyapunov arguments of the

proof of the main result Theorem 8.2. Futher comments on working in

discrete-time v.s. continuous-time are found in the concluding chapter.

8.1 Regulator Design VI

Consider the discrete-time system

x(k + 1) = Ax(k) +Bu(k) + Eζ(k) (8.1.1a)

ζ(k + 1) = Sζ(k) (8.1.1b)

e(k) = Cx(k) +Dζ(k) , (8.1.1c)

where x(k) ∈ R
n is the state, ζ(k) ∈ R

q is the exosystem state, u(k) ∈ R

in the input, and e(k) ∈ R is the error to be regulated. Here Dζ(k)

is a disturbance that enters additively in the error, and Eζ(k) is a

disturbance that enters in the state equation.

Assumption 8.1.1. We assume the system (8.1.1) satisfies the follow-

ing assumptions:

(A1) (A,B) is a controllable pair.

(A2) (C,A) is an observable pair.

(A3) S has simple eigenvalues on the unit circle in the complex plane.

(A4) det

[
A− λI B

C 0

]
6= 0 for all λ ∈ σ(S). Then by Lemma 2.3.2,

there exist (Π,Γ) such that

ΠS = AΠ +BΓ + E (8.1.2a)

0 = CΠ +D . (8.1.2b)

(A5) (Γ, S) is an observable pair.

(A6) Dimension q is interpreted as a known upper bound on the order

of the exosystem, while parameters (S,D,E) are unknown.
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(A7) The parameters (A,B,C) are known.

(A8) The measurement is e.

Remark 8.1. Assumptions (A1) and (A2) may be relaxed; for instance,

we may replace (A1) by (A,B) is stabilizable. (A3) guarantees that ref-

erence and disturbance signals are bounded. In (A4), the solution (Π,Γ)

is unknown, but we assume it exists. (A5) is without loss of generality

since one can trim off the unobservable part of the exosystem without

affecting the plant. In (A6), the interpretation of q as an upper bound

on the exosystem order means the exosystem may be overmodeled for

a given disturbance. ⊳

In the sequel, let ε(k) represent any arbitrary exponentially stable term.

We say the SISO transfer function H(z) is stable if its poles lie inside

the unit circle in the complex plane.

We develop a controller of the form

u(k) = us(k) + uim(k) . (8.1.3)

First we design us for closed-loop stability. Define z(k) = x(k)− Πζ(k).

Using (8.1.2) we obtain the error model

z(k + 1) = Az(k) +Bu(k) −BΓζ(k) (8.1.4a)

e(k) = Cz(k) . (8.1.4b)

Under Assumptions (A1)-(A2), we can define an observer of the form:

ẑs(k + 1) = Aẑs(k) +Bus(k) + Ls(e(k) − Cẑs(k)) , (8.1.5)

where Ls is selected so that (A − LsC) is Schur stable. Define the

estimation error z̃s(k) := z(k) − ẑs(k). Using (8.1.3), we obtain

z̃s(k + 1) = (A− LsC)z̃s(k) +Buim(k) −BΓζ(k) .

Assuming we can design uim such that (uim(k) − Γζ(k)) −→ 0 inde-

pendently of the z̃s error dynamics, then z̃s(k) −→ 0. Therefore, we

choose us(k) = Kẑs(k) such that (A+BK) is Schur stable in order to

stabilize the z dynamics.
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Next we design uim. First, we transform the exosystem using the meth-

ods in Section 5.2. The proof of the next result is analogous to that of

Lemma 5.2.2, so it is omitted.

Lemma 8.1.2. Consider a linear exosystem ζ(k+1) = Sζ(k) generating

a discrete-time signal d(k) = Γζ(k), and suppose that (Γ, S) is an

observable pair. Let (F,G) be a controllable pair such that σ(F ) ∩
σ(S) = ∅. Then there exists a coordinate transformation w(k) = Mζ(k)

such that in new coordinates, the exosystem is

w(k + 1) = Fw(k) +Gd(k) (8.1.6a)

d(k) := ψw(k) , (8.1.6b)

where ψ = ΓM−1.

Applying Lemma 8.1.2, we obtain an error model

z(k + 1) = Az(k) +Bu(k) −Bψw(k) (8.1.7a)

e(k) = Cz(k) , (8.1.7b)

where d(k) = ψw(k) is the disturbance modeled by the exosystem

(8.1.6). We build the internal model in two stages, beginning with the

state observer

ẑd(k + 1) = Aẑd(k) +Bu(k) + Ld(e(k) − Cẑd(k)) (8.1.8)

where we choose Ld such that Ad := A − LdC is Schur stable. Next,

define z̃d(k) := z(k) − ẑd(k). Then

z̃d(k + 1) = Adz̃d(k) −Bd(k) (8.1.9a)

df (k) := Cz̃d(k) , (8.1.9b)

where df is the filtered disturbance. Define the stable transfer function

Hd(z) := −C(zI − Ad)
−1B. Then we can write df = Hd(z) [d]. The

next result provides an alternative representation of df , analogous to

Lemma 5.2.4 for the continuous-time case.

Lemma 8.1.3. Consider a discrete-time signal d generated by the ex-

osystem (8.1.6). Define the filtered signal df := Hd(z) [d], where Hd(z)
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is a stable transfer function. Then df can be expressed as

wf (k + 1) = Fwf (k) +Gdf (k) (8.1.10a)

df (k) = ψwf (k) + ε(k) , (8.1.10b)

where wf (k) ∈ R
q.

Proof. Let Hψ(z) = ψ(zI − F )−1G. Then d = Hψ(z)[d]. Since sta-

ble scalar transfer functions commute, modulo an exponentially stable

term, we have

df = Hd(z)[Hψ(z)[d]]

= Hψ(z)[Hd(z)[d]] + ε

= Hψ(z)[df ] + ε .

A realization of Hψ(z)[df ] proves the result.

Remark 8.2. Consider again the situation of Lemma 8.1.3. Let H(z) be

a stable transfer function, and w,wf , d, df as given above. Let H(z)I [w]

denote the component-wise application of the filter H(z) to w. Analo-

gous to the proof of Lemma 8.1.3, we can derive

H(z)I [w] = H(z)I
[
(zI − F )−1G [d]

]

= (zI − F )−1G [H(z) [d]] + ε

= (zI − F )−1G [df ] + ε

= wf + ε .

Based on this calculation, we call wf := H(z)I [w] the filtered regressor.

⊳

Recalling that df = e(k) −Cẑd(k), we complete the internal model for

the filtered disturbance using

ŵf (k + 1) = Fŵf (k) +G(e(k) − Cẑd(k)) . (8.1.11)

Define the estimation error w̃f (k) = wf (k)− ŵf (k). Using (8.1.11) and

Lemma 8.1.3, we get w̃f (k + 1) = Fw̃f (k). Since F is Schur stable, we

have w̃f (k) −→ 0 exponentially. To show that (8.1.8) and (8.1.11) form

an internal model of d, we require the following.



150 Adaptive Internal Models in Discrete-Time

Lemma 8.1.4. Consider a discrete-time signal d generated by the ex-

osystem (8.1.6). Define the filtered signal df := H(z) [d] with respective

state wf , where H(z) is a stable transfer function. Suppose that no zero

of H(z) is an eigenvalue of S′ = F+Gψ. Then there exists a nonsingular

matrix T ∈ R
q×q such that

wf = Tw + ε

and d = ψfwf + ε with ψf = ψT−1.

Proof. By Remark 8.2, wf = H(z)I[w]+ε. Let H(z) = N(z)
D(z) with N(z)

and D(z) coprime polynomials. Then

D(z)I [wf ] = N(z)I [w] + ε .

From (8.1.6) and (8.1.10), it follows that

D(S′)wf (k) = N(S′)w(k) + ε(k) .

Since the roots of N(z) do not coincide with the eigenvalues of S′, then

N(S′) is invertible. Similarly, D(S′) is invertible because D(z) is Schur

stable. Letting T = D−1(S′)N(S′) we have our result.

We can apply the previous lemma by noting that because of (A4), no

zero of C(zI −A)−1B is an eigenvalue of S′. Since state feedback does

not move the zeros of a scalar transfer function (Brockett, 1965), then

also Hd(z) has the same property. Now we can write

d(k) = ψfwf (k) + ε(k) = ψf ŵf (k) + ε(k) . (8.1.12)

Finally, we define

uim(k) = ψ̂f (k)ŵf (k) , (8.1.13)

where ψ̂f (k) ∈ R
1×q is an estimate of ψf .

Next we must design the parameter adaptation law. The error model

(8.1.7) cannot be used for this purpose since in general A may be unsta-

ble. Instead, we use the observer (8.1.11) and invoke the discrete-time

equivalent of the swapping lemma (Sastry and Bodson, 1989).
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Lemma 8.1. Let ψ : Z −→ R
1×q and w : Z −→ R

q be discrete signals.

Let H(z) := C(zI −A)−1B be a stable scalar transfer function. Then

ψH(z)I [w] −H(z) [ψw]

= Hc(z)
[
zHb(z)

[
wT
]

(z − 1)[ψT]
]
,

where Hb(z) = (zI −A)−1B, and Hc(z) = C(zI −A)−1.

Proof. Consider the state space models

η1(k + 1) = Aη1(k) +Bw(k)T , y1(k) = Cη1(k)ψ(k)T

η2(k + 1) = Aη2(k) +B(ψ(k)w(k)) , y2(k) = Cη2(k) .

Notice that y1(k) = ψ(k)H(z)I [w] and y2 = H(z) [ψw], assuming zero

initial conditions of all states. Define η̃(k) = η1(k)ψ(k)T − η2(k) and

∆ψ(k) := ψ(k + 1) − ψ(k). Then we compute

η̃(k + 1) = (Aη1(k) +Bw(k)T)ψ(k + 1)T −Aη2(k) −Bw(k)Tψ(k)T

= Aη̃(k) +Aη1(k)∆ψ(k)T +Bw(k)T∆ψ(k)T

= Aη̃(k) + η1(k + 1)∆ψ(k)T .

Putting it all together,

y1(k) − y2(k) = Cη̃(k) = Hc(z)
[
zη1(z − 1)ψT

]

= Hc(z)
[
zHb(z)[w

T](z − 1)ψT
]
.

Using the discrete-time swapping lemma, we have

df = ψfw + ε ,

where w := Hd(z)I[ŵf ]. Hence we define the augmented error

e(k) := e(k) − (Cẑd(k) + ψ̂f (k)w(k))

= df (k) − ψ̂f (k)w(k)

= ψ̃f (k)w(k) + ε(k) ,
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where ψ̃f (k) := ψf−ψ̂f (k). Finally, we choose the parameter adaptation

law

ψ̂f (k + 1) = ψ̂f (k) + γ(k)e(k)w(k)T (8.1.14a)

γ(k) =
γ

1 +w(k)Tw(k)
, (8.1.14b)

where γ(k) > 0 is the adaptation rate and γ ∈ (0, 2).

We summarize the overall design:

ẑs(k + 1) = (A+BK)ẑs(k) + Ls(e(k) − Cẑs(k)) (8.1.15a)

ẑd(k + 1) = Aẑd(k) +Bu(k) + Ld(e(k) − Cẑd(k))(8.1.15b)

ŵf (k + 1) = Fŵf (k) +G(e(k) − Cẑd(k)) (8.1.15c)

w(k) = Hd(z)I [ŵf ] (8.1.15d)

e(k) = e(k) − Cẑd(k) − ψ̂f (k)w(k) (8.1.15e)

ψ̂f (k + 1) = ψ̂f (k) + γ(k)e(k)w(k)T (8.1.15f)

u(k) = Kẑs(k) + ψ̂f (k)ŵf (k) . (8.1.15g)

8.1.1 Stability Analysis

To analyze stability we require several discrete-time analogues of continuous-

time results in Chapters 4 on persistency of excitation.

Definition 8.1.5. A discrete signal w : N → R
q is said to be stationary

if the following limit exists, uniformly in k0:

Rw(k) := lim
T→∞

1

T

k0+T∑

τ=k0+1

w(τ)wT(τ + k) .

The limit, if it exists, is called the autocovariance of w.

Theorem 8.1.6. Consider an error e(k) = ψ̃r(k)wr(k), where wr is

bounded. Suppose ψ̃r(k)wr(k) −→ 0 and ∆ψ̃r(k) = ψ̃r(k+1)−ψ̃r(k) −→
0. If wr is stationary and Rw(0) > 0, then ψ̃r(k) −→ 0.

Proof. Since wr is stationary it has an autocovariance Rw(k). We will

show that ψ̃r(k)Rw(0)ψ̃Tr (k) −→ 0. By assumption Rw(0) > 0, which

implies ψ̃r(k) → 0 as required.
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Since ψ̃r and wr are bounded, there exists κ > 0 such that

‖ψ̃r(k)‖ , ‖wr(k)‖ < κ , ∀k ≥ 0 . (8.1.16)

Fix ǫ > 0. We will show there exists T1 > 0 such that for all k ≥ T1,

ψ̃r(k)Rw(0)ψ̃T
r (k) < ǫ. Since wr has an autocovariance, there exists

T > 0 such that for all k0 ≥ 0

∥∥∥∥Rw(0) − 1

T

k0+T∑

τ=k0+1

wr(τ)wTr (τ)

∥∥∥∥ ≤ ǫ

3κ2
. (8.1.17)

Then using (8.1.16), we have

∥∥∥∥ψ̃r(k)Rw(0)ψ̃T
r (k) − ψ̃r(k)

1

T

k0+T∑

τ=k0+1

wr(τ)wT
r (τ)ψ̃T

r (k)

∥∥∥∥ ≤ ǫ

3
. (8.1.18)

Since ψ̃r(k)wr(k) −→ 0 and ∆ψ̃r(k) −→ 0, there exists T1 > 0 such

that for all k > T1

‖ψ̃r(k)wr(k)‖2 ≤ ǫ

3
, (8.1.19)

and

‖∆ψ̃r(k)‖ ≤ ǫ

6κ3T
. (8.1.20)

Using (8.1.20), we have

‖ψ̃r(k) − ψ̃r(τ)‖ ≤ ǫ(τ − k)

6κ3T
,

for all τ > k > T1. Then, using (8.1.16) we have for all k > T1

∥∥∥∥ψ̃r(k)
1

T

k+T∑

τ=k+1

wr(τ)wT
r (τ)ψ̃T

r (k) − 1

T

k+T∑

τ=k+1

ψ̃r(τ)wr(τ)wT
r (τ)ψ̃T

r (τ)

∥∥∥∥

=

∥∥∥∥
1

T

k+T∑

τ=k+1

wT
r (τ)(ψ̃T

r (k) − ψ̃T
r (τ))wT

r (τ)(ψ̃T
r (k) + ψ̃T

r (τ)

∥∥∥∥

≤ ǫ

3
. (8.1.21)

Using (8.1.19), we have for all k > T1

‖ 1

T

k+T∑

τ=k+1

ψ̃r(τ)wr(τ)wT
r (τ)ψ̃T

r (τ)‖ ≤ ǫ

3
. (8.1.22)



154 Adaptive Internal Models in Discrete-Time

Finally, using (4.3.4), (4.3.7), and (4.3.8) we have for all k > T1,

ψ̃r(k)Rw(0)ψ̃r(k)T ≤ ǫ .

This proves the result.

The following is the main result on stability.

Theorem 8.2. Consider the system (8.1.1) satisfying Assumptions (A1)-

(A8), and consider the regulator given in (8.1.3), (8.1.5), (8.1.8), (8.1.11),

(8.1.13), and (8.1.14). Suppose Acl := A + BK, As := A − LsC, and

Ad := A−LdC are Schur stable. Then ψ̂f (k) is bounded, ψ̃f (k)ŵf (k) −→
0, and e(k) −→ 0.

Proof. We study the adaptive subsystem consisting of

e(k) = ψ̃f (k)w(k) + ε(k)

ψ̃f (k + 1) = ψ̃f (k) − γ(k)e(k)w(k)T .

To deal with the exponentially stable term ε(k), we note that there

exists a pair (Cε, Aε) with Aε Schur stable such that ε(k+ 1) = Aεε(k)

and |ε(k)| ≤ |Cεε(k)|. For α > 0, let Pε be positive definite and solve

the discrete-time Lyapunov equation

AT
ε PεAε − Pε = −αI .

Define the Lyapunov function

V (k) := ||ψ̃f (k)||2 + ε(k)TPεε(k) .

Then we compute

∆V (k) = V (k + 1) − V (k)

= −2γ(k)e(k)
[
e(k) + ε(k)

]
+ γ(k)2e(k)2w(k)Tw(k) − α‖ε(k)‖2 .

Noting that −2γ(k)e(k)ε(k) ≤ γ(k)2e(k)2 + ε(k)2, we have

∆V (k) ≤ −γ′(k)e(k)2 − (α− ||Cε||2)||ε(k)||2

γ′(k) := (2 − γ)γ(k) ,
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where γ′(k) > 0 and α is selected so that α > ||Cε||2. We conclude

∆V (k) ≤ 0 and so ψ̂f (k) is bounded. By the monotone convergence

theorem,

V (k) = V (0) +
k∑

j=1

∆V (j)

converges and thus the divergence test tells us that ∆V (k) −→ 0. Now

we also know by (A3) that w(k) and therefore ŵf (k) are bounded. Since

Hd(z) is stable, w(k) is also bounded. In turn, for any γ ∈ (0, 2), γ′(k)

is bounded away from zero, and so it must be that e(k) −→ 0.

By (A3) and (8.1.10), there exist matrix Mr ∈ R
q×(2s+1) and vector

ŵr(k) such that ŵf (k) = Mrŵr(k) + ε(k) and

ŵr(k) = (1, cos(ω1k), sin(ω1k), . . . , cos(ωsk), sin(ωsk))

with 0 < ωi < π, ωi 6= ωj for i 6= j, and 2s+ 1 ≤ q. Then we have

w = Hd(z)I [Mrŵr + ε] = MrHd(z)I [ŵr] + ε .

Since Hd(z) is stable, Hd(z)I [ŵr] = wr + ε, where

wr = (Hd(1), |Hd(e
jω1)| cos(ω1k + φ(ω1)), |Hd(e

jω1)| sin(ω1k + φ(ω1)), . . . ,

|Hd(e
jωs)| cos(ωsk + φ(ωs)), |Hd(e

jωs)| sin(ωsk + φ(ωs))) ,

and φ(ωi) = ∠Hd(e
jωi). One can verify by direct calculation that wr

is stationary, i.e. its autocovariance Rwr
(k) exists. Moreover, it can be

shown that

Rwr
(0) = diag

(
Hd(1)2,

|Hd(e
jω1)|2
2

, · · · , |Hd(e
jωs)|2
2

)
.

The zeros of Hd(z) are the same as those of the plant C(zI − A)−1B

(Brockett, 1965), and by (A4), Hd(1) 6= 0 and |Hd(e
jωi)| 6= 0, for i =

1, . . . , s. Then Rwr
(0) is positive definite.

The augmented error becomes

e(k) = ψ̃f (k)Mrwr(k) + ε(k) =: ψ̃r(k)wr(k) + ε(k) .

We have established that ψ̃r(k)wr(k) −→ 0, ∆ψ̃r(k) = ∆ψ̃f (k)Mr −→
0, and Rwr

(0) > 0. Then we can apply Theorem 8.1.6 to conclude that

ψ̃r(k) −→ 0. This implies ψ̃f (k)ŵf (k) = ψ̃r(k)ŵr(k) −→ 0.
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Recalling that z̃s(k) = z(k) − ẑs(k), one has

z(k + 1) = Aclz(k) −Bψ̃f (k)ŵf (k) −BKz̃s(k) + ε(k)

z̃s(k + 1) = Asz̃s(k) −Bψ̃f (k)ŵf (k) + ε(k) .

Hence, z̃s(k) −→ 0 which implies z(k) −→ 0. Finally, e(k) −→ 0 as

desired.
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Saccadic System and Visuomotor Adaptation

The saccadic eye movement system is responsible for generating sac-

cades, a fast reset of eye position either back to the central position

or to a visual target of interest. Saccades are among the fastest move-

ments of the body, with a typical duration of 20− 30ms during reading

and a peak velocity of 900◦/s.

The saccadic system is equipped with a capability called sensorimo-

tor adaptation, which has been described as follows: “an error-driven

process of movement modification characterized, firstly, by a specific

repeated pattern of muscle activation with changes only in certain vari-

ables (e.g. endpoint position); second, the change occurs gradually over

repetitive trials; and third, once adapted, subjects are unable to retrieve

the prior behaviour except by re-adapting with the same gradual pro-

cess” (Martin et al., 1996). Motor adaptation is termed short-term when

it occurs over minutes or hours, contrasting with long-term adaptation

that takes place over days or weeks (Robinson et al., 2006). A spe-

cial case of sensorimotor adaptation is visuomotor adaptation, in which

adaptation is elicited by a visual error closely following the execution

of a movement.

157
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In saccade adaptation experiments, a visual error can be artificially

introduced by inserting an intersaccadic step in the target position

while the saccade is underway. The subject perceives that the target is

misaligned with the fovea at the end of the saccade, thus triggering the

adaptation process (Kojima et al., 2004). In the visuomotor rotation

experiment, a subject experiences a visual error at the end of a fast

arm reach when a cursor on a computer screen representing the hand

position is rotated from the true hand position (Krakauer et al., 2005;

Shadmehr and Wise, 2005).

This chapter presents a model of visuomotor adaptation based on adap-

tive internal models. Because we are working with event driven pro-

cesses that take place almost instantaneously, a different modeling

approach is required compared to the differential equations-based ap-

proach of prior chapters, in order to capture, within a reasonably sim-

ple model, the main characteristics of adaptation over successive move-

ments. Neuroscientists have adopted discrete-time models for this pur-

pose.

9.1 Visuomotor Adaptation Experiments

Visuomotor adaptation experiments consist of repetitive trials of a cer-

tain movement such as a saccade or arm reach, and each trial corre-

sponds to an update of an associated discrete-time model. The trials

are classified by type, and sequences of blocks of trials of specific types

are utilized to elicit so-called dynamic behaviors of adaptation. The

types of blocks most commonly include:

1. Baseline (B). An initial block of trials when the subject is being

familiarized with the experiment.

2. Learning (L). The first block of trials after the baseline block

when a disturbance or perturbation is introduced in the visual

error at the end of each trial.

3. Washout (W). A block of trials following a learning block when

the disturbance is removed.
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4. Unlearning (U). A block of trials following a learning block in

which the sign of the disturbance is reversed.

5. Relearning (R). A second learning block using the same dis-

turbance as in the first learning block. Typically, a washout or

unlearning block is inserted between the first and second learning

blocks.

6. Downscaling (D). A second learning block in which the distur-

bance is set to a fraction of its value in the first learning block.

A typical experiment proceeds in blocks of a prespecified order. For

example, a BLUW experiment consists of a baseline block, a learning

block, an unlearning block, and a washout block, in this order. The

number of trials in each block may also be important. For example, a

B50L100U30W100 experiment consists of 50 trials in the baseline block,

100 trials in the learning block, 30 trials in the unlearning block, and

100 trials in the washout block.

When blocks of trials are sequenced in a particular order and with

a particular number of trials in each block, then several phenomena

emerge in experiments:

• Savings is a behavior in which learning is sped up in the second

learning block relative to the first one. Two experiments in which

savings can be exhibited are BLUR or BLWR.

• Reduced savings is a behavior in which savings is reduced by in-

serting a washout block of trials after the unlearning block. After

the washout block, relearning does not proceed as rapidly as in

the savings experiment. An experiment in which reduced savings

may be exhibited is BLUWR.

• Anterograde interference is a behavior in which a previously learned

task reduces the rate of subsequent learning of a different (and

usually opposite) task. An experiment in which anterograde in-

terference may be exhibited is BLU.

• Rapid unlearning is a behavior in which the rate of unlearning is

faster than the rate of initial learning, if the number of trials in the

learning block is small. An experiment in which rapid unlearning

may be exhibited is a BLW experiment.
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• Rapid downscaling is a behavior in which the rate of learning in

a secondary learning block is faster when the rotation is set to a

fraction of its value in the initial learning block. An experiment

in which rapid downscaling may be exhibited is a B50L50D50

experiment, with the disturbance during the D block set to half

its value in the L learning block.

• Spontaneous recovery is a behavior observed during the washout

block of a BLUW experiment in which the response partially

“rebounds” to its value at the end of the learning block rather

than converging monotonically to zero.

9.2 Dynamic Properties of Adaptation

It is possible to formalize the dynamic properties of visuomotor adapta-

tion in terms of the transient response of a stable forced linear system.

We make three simplifying assumptions. First, we focus on motor adap-

tation tasks involving a single output. That is, we restrict our attention

to one degree of freedom of movement; for instance, horizontal move-

ment of the eye, hand angle relative to a reference angle in a horizontal

plane, forward (coronal) inclination of the body relative to a vertical

reference, the horizontal angle of a dart thrown by a subject, and so

forth. Second, we assume the model is linear time-invariant, as such

models have promise to explain motor adaptation (Smith et al., 2006).

Third, we focus on disturbances that are constant within a block of

trials (but can change instantaneously between different blocks), as cur-

rently there is a dearth of experiments with non-constant disturbances

(Cassanello et al., 2016).

Consider the discrete-time system

ξ(k + 1) = Aξ(k) + Ew(k) (9.2.1a)

y(k) = Cξ(k) +Dw(k) , (9.2.1b)

where ξ(k) ∈ R
n is the state, w(k) ∈ R

q is a disturbance, and y(k) ∈ R

is the scalar measurement or output. Suppose that the unforced system

(when w(k) ≡ 0) is asymptotically stable, i.e. σ(A) ⊂ C1, the open unit

disk in the complex plane. In all definitions below, let d0 ∈ R
q and
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y0 ∈ R be constants and let k0 ≥ 0 be an integer. We assume that the

disturbance is a constant vector w(k) ≡ d0. Since the system is stable,

we can define yss to be the steady-state value of y when w(k) ≡ d0.

Also −yss is the steady state value of y when w(k) ≡ −d0.

Definition 9.2.1 (Savings). Suppose we have discrete times k3 ≥ k2 >

k1 > k0 such that: w(k) = d0 for k ∈ [k0, k1) ∪ [k2,∞), and y(k3) =

y(k0) = y0. Let Tr0 and Tr3 be the rise times starting at k0 and k3,

respectively. We say (9.2.1a) - (9.2.1b) exhibits savings if Tr0 > Tr3.

Additionally, if w(k) = −d0 for k ∈ [k1, k2), then we say (9.2.1a) -

(9.2.1b) exhibits savings with counter perturbation (CP). If w(k) = 0

for k ∈ [k1, k2), then we say (9.2.1a) - (9.2.1b) exhibits savings with

washout (WO). ⊳

Remark 9.1. The rise time is the number of trials for y(k) to reach

90% of its steady-state value. However, it need not be the case that

y(k) has already reached 90% of its steady-state value yss at discrete

time k1 when the first learning block ends. The rise time is computed

by extending forward in time the solution curve of the relevant block

of trials. ⊳

Definition 9.2.2 (Reduced Savings). Suppose we have a duration

Two > 0 and times k2 > kwo + Two > kwo > k1 > k0 such that:

w(k) = d0 for k ∈ [k0, k1) ∪ [kwo + Two,∞), w(k) = −d0 for k ∈
[k1, kwo), w(k) = 0 for k ∈ [kwo, kwo + Two), and y(k2) = y(k0) = y0.

Let Tr0 and Tr2 be the rise times starting at k0 and k2, respectively.

We say (9.2.1a) - (9.2.1b) exhibits reduced savings if Tr0 ≥ Tr2 and

limTwo→∞ Tr2 = Tr0. ⊳

Definition 9.2.3 (Anterograde Interference). Suppose there exist dis-

crete times k2 > k1 > k0 such that: w(k) = d0 for k ∈ [k0, k1),

w(k) = −d0 for k ∈ [k1,∞), and y(k2) = −y(k0). Let Tr0 and Tr2
be the rise times starting at k0 and k2, respectively. We say (9.2.1a)

- (9.2.1b) exhibits anterograde interference if Tr0 < Tr2. Moreover Tr2
increases as the number of trials in the first learning block increases. ⊳

Definition 9.2.4 (Rapid Unlearning). Suppose there exist discrete

times k2 > k1 > k0 such that: w(k) = d0 for k ∈ [k0, k2), w(k) = 0 for
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k ∈ [k2,∞), and y(k1) = yss − y(k2). Let Tr1 and Tr2 be the rise times

starting at k1 and k2, respectively. We say (9.2.1a) - (9.2.1b) exhibits

rapid unlearning if Tr1 > Tr2. Moreover Tr2 decreases as the number of

trials in the first learning block decreases. ⊳

Definition 9.2.5 (Rapid Downscaling). Suppose there exist α ∈ (0, 1)

and discrete times k2 > k1 > k0 such that: w(k) = d0 for k ∈ [k0, k2),

w(k) = αd0 for k ∈ [k2,∞), and y(k1) = (1 + α)yss − y(k2). Also,

we assume that the steady-state value of y(k) for k ≥ k2 is αyss, and

|y(k2)| > α|yss|. Let Tr1 and Tr2 be the rise times starting at k1 and

k2, respectively. We say (9.2.1a) - (9.2.1b) exhibits rapid downscaling

if Tr1 > Tr2. Moreover Tr2 decreases as the number of trials in the first

learning block k2 − k0 decreases. ⊳

Remark 9.2. The justification for the expression y(k1) = (1 + α)yss −
y(k2) in the previous definition is as follows. To make a fair comparison

between the rise times for the learning block and the downscaling block,

the output y(k) must vary over the same range of values. If the initial

time for the measurement of rise time in the learning block is selected

to be k1, then the total variation of y(k) from this time to steady-state

is yss − y(k1). Similarly, for the downscaling block, the total variation

of y(k) is y(k2) − αyss. Equating these two expressions and solving for

y(k1), we obtain the expression above. ⊳

Definition 9.2.6 (Spontaneous Recovery). Suppose there exist dis-

crete times k2 > k1 > k0 such that w(k) = d0 for k ∈ [k0, k1), w(k) =

−d0 for k ∈ [k1, k2), w(k) = 0 for k ∈ [k2,∞), and y(k2) = y(k0).

We say (9.2.1a) - (9.2.1b) exhibits spontaneous recovery if the percent

overshoot starting from y(k2) = y0 satisfies: OS% > 0. ⊳

The most important observation regarding the dynamic properties of

visuomotor adaptation, also confirmed experimentally (Kojima et al.,

2004), is that they cannot arise from a first-order LTI model.

Lemma 9.2.7. Consider the stable system (9.2.1a)-(9.2.1b). If the sys-

tem is first-order, then it does not exhibit savings, anterograde inter-

ference, rapid unlearning, rapid downscaling, or spontaneous recovery.
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9.3 Visuomotor Adaptation Model

Consider the scalar open-loop system

x(k + 1) = Ax(k) +Bu(k) (9.3.1a)

e(k) = r(k) − x(k) − d . (9.3.1b)

This model provides a high-level, abstract description of the quanti-

tative change in movement over successive trials of a single degree of

freedom of the body. Integer k is the trial number; x(k) is the state of

that single degree of freedom at the end of the k-th trial; u(k) captures

the overall motor command; r(k) is the desired target position for the

k-th trial; d models a constant additive visual disturbance at the k-th

trial; and e(k) is a visual error observed by the subject shortly following

the completion of the k-th trial. The term Ax(k) models a retention or

memory mechanism of the state in the previous trial. Since we assume

disturbances are constant, q = 1 and S = 1. Also, we assume w.l.o.g.

that r(k) = 0.

To obtain a model of visuomotor adaptation, we follow the design steps

in Section 8.1. These steps include selecting the stabilizing controller

us, the adaptive internal model, and the parameter adaptation law. To

this end, it is helpful to consider the error model, derived from (9.3.1b):

e(k + 1) = Ae(k) −Bu(k) + (A− 1)d (9.3.2)

= Ae(k) −Bu(k) +Bψw(k) . (9.3.3)

Since e(k) is available for measurement, the stabilizing observer (8.1.5)

that generates ẑs is not required. We take us(k) = Ke(k) where K

is such that |A − BK| < 1. The adaptive internal model is given in

(8.1.8) and (8.1.11), where z(k) = e(k), and we take note of the minus

sign multiplying B. We define ê(k) = ẑd(k) in (8.1.8). This notation

suggests that df (k) = e(k) − ê(k) may be interpreted as a prediction

error (Slotine and Li, 1991). Using this notation, (8.1.8) and (8.1.11)

become:

ê(k + 1) = Aê(k) −Bu(k) + Ld(e(k) − ê(k))

ŵf (k + 1) = Fŵf (k) +G(e(k) − ê(k)) .
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Finally, we must specify the parameter adaptation law. Visuomotor

adaptation can be differentiated as short-term adaptation taking place

over minutes, and long-term adaptation taking place over days and

weeks (Robinson et al., 2006). We interpret short-term adaptation in

terms of disturbance rejection, with the dominant behavior arising from

the dynamics of ŵf . Long-term adaptation is known to regard adapta-

tion to changes in plant parameters (Robinson et al., 2006). Because we

only model short-term adaptation, we assume (8.1.8) already utilizes

the correct values of A and B.

The last assumption is that because we restrict the model to constant

disturbances, we assume that ψ̂f has already adapted to its correct

value. To derive this expression, define ẽ(k) := e(k) − ê(k). Then

ẽ(k + 1) = Adẽ(k) +Bψw(k) ,

where Ad = A− Ld. In steady-state we have

df (k) =
B

1 −Ad
ψw(k) = ψwf (k) .

Therefore,

d(k) = ψw(k) =
1 −Ad
B

ψwf (k) = ψfwf (k) ,

so ψf = 1−Ad

B
ψ. Then we take uim(k) = ψf ŵf (k).

In summary, our model of visuomotor adaptation is

x(k + 1) = Ax(k) +Bu(k) (9.3.4a)

e(k) = −x(k) − d (9.3.4b)

ê(k + 1) = Aê(k) −Bu(k) + Ld(e(k) − ê(k)) (9.3.4c)

ŵf (k + 1) = Fŵf (k) +G(e(k) − ê(k)) (9.3.4d)

u(k) = Ke(k) + ψf ŵf (k) . (9.3.4e)

9.4 Simulations

Consider the visuomotor rotation experiment (Krakauer et al., 2005;

Shadmehr and Wise, 2005), in which a human subject makes rapid
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reaches with a mouse or manipulandum from a start position to a

target position on a computer screen. The hand is occluded from view,

but its position at the end of each reach is momentarily presented by

a cursor on the screen. In this scenario, x(k) is the angle (in degrees)

of the final hand position at the k-th reach relative to a reference line

and measured at a predetermined radius from the start position; d is

an experimentally imposed disturbance (in degrees) in the observed

cursor angle on the k-th reach. The disturbance d is constant within

a particular block of trials, while it instantaneously jumps in value

between blocks of trials. The cursor angle within a block of trials at

the k-th reach observed by the subject is y(k) = x(k) + d. We assume

w.l.o.g. that r(k) = 0 is the constant reference angle of the target disk.

If we assume only constant disturbances, no proprioception of the hand

position (A = 0), and B = 1, the error model within a block of trials

is:

e(k + 1) = −u(k) − d .

Next consider a different behavior called saccade adaptation. It is known

that proprioception plays no role in saccade adaptation, so A = 0. Also

w.l.o.g. let B = 1. The reference r(k) represents the desired change in

eye position (the desired saccade size) for the k-th saccade; x(k) repre-

sents the change in eye position during the k-th saccade; and e(k) rep-

resents the error between the final eye position and the target position

at the end of the k-th primary saccade. The disturbance d represents

an experimentally imposed displacement of the target position intro-

duced while the saccade is underway. The error is therefore given by

e(k) = r(k) + d − x(k). Now the error model within a block of trials

(with constant disturbance) is:

e(k + 1) = −u(k) + r(k + 1) + d .

This error model seems not to be amenable to our analysis since the

desired saccade size r(k) varies from saccade to saccade in a possibly

random manner. This contrasts with the visuomotor rotation experi-

ment where the target position is assumed to be fixed throughout the

experiment. Therefore, we cannot regard r(k+ 1) + d to be a constant

disturbance. However, it is known that saccade adaptation occurs over
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Figure 9.1: Savings with CP in a BLUR experiment. The top left figure shows
the disturbance angle (yellow) and the top right figure shows the hand angle (blue).
During the two learning blocks, the disturbance has a value −30◦. The bottom figure
demonstrates that learning has occurred in the second learning block. In the figure,
x(k) during the learning block is plotted in blue superimposed with a horizontally
shifted version of x(k) during the relearning block in purple. The purple curve is
larger than the blue curve corresponding to faster learning in the relearning block.

adaptation fields (Frens and Opstal, 1994), where each adaptation field

corresponds to saccades of roughly the same size and direction. This

means that for a given adaptation field, r(k) may be regarded once

again to be a constant r. Thus, the error model within a block of trials

becomes

e(k + 1) = −u(k) + r + d .

In sum, we can study either the saccadic system or the visuomotor

rotation experiment with the same parameters: A = 0, B = 1, and

S = 1.

Figures 9.1-9.6 present simulation results for the visuomotor rotation

experiment. As discussed above, we assume that A = 0 (no proprio-
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Figure 9.2: Reduced savings in a BLUWR experiment. The top left figure shows
the disturbance angle (yellow) and the top right figure shows the hand angle (blue).
During the two learning blocks, the disturbance has a value −30◦. An intervening
unlearning block with the opposite disturbance and a washout block with no distur-
bance are inserted between the two learning blocks. The bottom figure demonstrates
that learning is reduced in the second learning block. In the figure, x(k) during the
learning block is plotted in blue superimposed with a horizontally shifted version of
x(k) during the relearning block in purple. The purple curve is no longer larger than
the blue curve, meaning faster learning does not take place in the relearning block.

ception), B = 1, and S = 1 (all reference and disturbance signals are

constant). Also, K = 0.22, F = 0.8, G = 0.2, Ld = 0, and r(k) = 0. In

all figures, the left figure shows the disturbance as a function of the in-

dex k and the middle figure shows x(k). For example, the left figure in

Figure 9.1 shows that d = 0 during the baseline block, d = −30 during

the learning block, d = 30 during the counter-perturbation block, and

d = −30 during the relearning block. The center figure shows that x(k)

approaches its steady-state value xss = 30 during the learning block,

and the steady-state value −xss = 30 during the unlearning block.

The right figure in Figure 9.1 verifies that savings has occurred in the
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BLUR experiment. We plot x(k) during the learning block superim-

posed with a horizontally shifted version of x(k) during the relearning

block. Precisely, x(k) over the discrete time interval k ∈ [k0, k0 + 20] is

shown in blue, and x(k+ k3) over the time interval k ∈ [0, 20] is shown

in purple. The time k3 is the second time when x(k3) equals 0. We can

see that the purple curve is larger than the blue curve, corresponding

to faster learning in the relearning block.

In Figure 9.2 a washout block with d = 0 has been inserted between

the learning and relearning blocks. In the right figure x(k+k1) over the

time interval of the learning block is shown in blue, and x(k+ k2) over

the time interval of the relearning block is shown in purple. The discrete

time k1 near the beginning of the learning block and the discrete time

k2 near the beginning of the relearning block are selected such that

x(k1) = x(k2). We can see that the purple curve is almost identical to

the blue curve, corresponding to reduced savings.

The striking similarity between our simulation results and the experi-

mental results reported in Figure 3A of (Kojima et al., 2004) is note-

worthy. Particularly, the inflections noted in (Kojima et al., 2004) and

observed on the right of Figure 9.1 following the fast rise of x(k) seem

to be an intrinsic feature of the adaptation response of the saccadic

system.

Remark 9.3. The appearance of savings can be understood in terms

of the two components of the input (6.4.6k). When there is a sudden

change in the disturbance, as is the case between learning/unlearning

blocks, the Ke(k) term responds proportionally to this error with K

relatively small. Then the change in hand angle from one trial to the

next is (K − 1)e(k), with e(k) large, resulting in a fast change in the

hand position at the start of each block. Instead, the change in ŵ(k) is

significantly slower. ⊳

Figures 9.3-9.5 demonstrate anterograde interference, rapid unlearning,

and rapid downscaling, with the interpretations of plots analogous to

the interpretations for Figure 9.1. Figure 9.6 demonstrates spontaneous

recovery. The right figure shows x(k), particularly that x(k) rebounds

to a value greater than 0 during the washout block corresponding to
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Figure 9.3: Anterograde interference in a BLU experiment. The top left figure
shows the disturbance angle (yellow) and the top right figure shows the hand angle
(blue). The bottom figure demonstrates that learning the first disturbance in the
first learning block slows down learning of the second and opposite disturbance in
the unlearning block. In the right figure x(k) over the interval of the learning block
is shown in blue, and −x(k+ k2) over the interval of the unlearning block is shown
in purple. The blue curve is larger than the purple curve indicating that the learning
rate is reduced in the unlearning block.

k ∈ [140, 240], even though the steady state value for the washout block

is xss = 0.
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Figure 9.4: Rapid unlearning in a BLW experiment. The top left figure shows
the disturbance angle (yellow) and the top right figure shows the hand angle (blue).
The bottom figure demonstrates that due to the brevity of the learning block, the
disturbance is rapidly unlearned. In the figure, x(k) over the interval of the learning
block is shown in blue, and −x(k + k2) over the interval of the washout block is
shown in purple. The purple curve is larger than the blue curve indicating that the
rate of unlearning the disturbance in the washout block is faster than the rate of
learning in the learning block.
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Figure 9.5: Rapid downscaling in a BLD experiment. The top left figure shows the
disturbance angle (yellow) and the top right figure shows the hand angle (blue). The
bottom figure demonstrates that learning a downscaled disturbance is sped up after
first learning the full disturbance (here −30◦). In the figure, x(k) over the interval of
the learning block is shown in blue, and a suitably scaled version of −x(k+ k2) over
the interval of the downscaling block is shown in purple. The purple curve is larger
than the blue curve indicating that the learning rate is larger in the downscaling
block.
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Figure 9.6: Spontaneous recovery in an LUW experiment. The top left figure shows
the disturbance angle (yellow) and the top right figure shows the hand angle (blue).
The right figure shows that the hand angle rebounds to a value greater than zero
during the washout block, even though xss = 0.
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Concluding Remarks

This monograph explores the idea that the brain, particularly the cere-

bellum, utilizes internal models in order to satisfy the requirements of

the internal model principle of control theory. This interpretation of

cerebellar function in terms of disturbance rejection of exogenous sig-

nals has brought into view results from control theory on the regulator

problem, particularly recent progress on adaptive internal models.

We used adaptive internal models to model the contribution of the cere-

bellum to the eye movement systems: the vestibulo-ocular reflex, gaze

holding, smooth pursuit, and the optokinetic system. We also jointly

studied the saccadic system and visuomotor adaptation from the per-

spective of disturbance rejection. A modeling approach based on the

internal model principle has the benefit to render a unified interpreta-

tion to seemingly disparate phenomena of motor systems. Nevertheless,

many unsolved problems and open questions remain.

Linear regulator theory. We have initiated a discussion on linear

regulator theory for neuroscience applications. A number of areas need

to be further developed. First, we have not considered adaptation to

changes in plant parameters. This subject is part of a general inquiry to

173
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understand so-called long-term adaptation. Particularly, what are the

mathematical processes underpinning long-term adaptation, and what

is the involvement of the cerebellum? Second, it is likely necessary to

revisit designs based on error feedback - Regulator Design V was in-

spired by currently available engineering designs, but it is not known

to what extend the observers utilized in that design may be present in

the brain. Third, we have used state feedback and observers to stabilize

the closed-loop system, as these methods were expedient in the partic-

ular designs being considered. However, robust stabilization methods,

high gain feedback, high gain observers, and adaptive pole placement

are some methods that may be considered so that stabilization can

be fully decoupled from processes associated with regulation and dis-

turbance rejection. Such a modular approach is far more realistic in a

neurological setting.

Intermittent Measurements. A mathematical framework that ex-

tends regulator theory to handle intermittent error measurements in

neuroscience applications must be developed. Current frameworks for

handling intermittent measures in regulator theory are generally based

on engineering design principles that do not accord with experimental

findings in neuroscience. Visuomotor adaptation is a specific case in

point.

Time Delays. All of the models presented here made no special pro-

visions for time delays in sensory measurements arriving at the cere-

bellum. An extension of the presented regulator designs is to include

additional adaptive processes that cancel the effects of unknown time

delays.

Robustness. More generally, the issue of robustness was not treated

in any of the designs we presented. The primary issue we believe needs

to be addressed is the presence of unmodeled, bounded disturbances.

Modified parameter adaptation laws may need to be investigated, and

assumptions about persistency of excitation may need to be revisited

in the context of biological problems.

Nonlinear regulator theory. It will be necessary to extend nonlin-

ear regulator theory for neuroscience appications, particularly to under-
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stand the cerebellum’s contribution to locomotion and limb movement.

Adaptive control of robotic manipulators will no doubt provide inspi-

ration for this development. The challenge for these motor systems is

that they also involve a recurrent loop between the cerebellum and the

motor cortex.

Parallel Adaptive Internal Models. So far we have only investi-

gated two functional modules of the cerebellum: the part of the floc-

cular complex responsible for the slow eye movements and the part of

the nodulus/uvula responsible for regulating the optokinetic system.

Of great interest is to understand the combined behavior of the floccu-

lar complex and the nodulus/uvula using the mathematical insights of

control theory.

Cerebellar Micro-circuit. The models we are working with for the

cerebellum are abstract and high level. A mapping from these high level

models to the cerebellar microcircuit is required.

Visuomotor Adaptation Model. Complex nonlinear phenomena,

such as saturation in the controller, have been discovered for visuomo-

tor adaptation (Hafez et al., 2021). A great deal more work is needed to

complete the model of visuomotor adaptation. Of particular interest is

the role played by the cerebral cortex. What are the mathematical pro-

cesses underlying consolidation and learning transfer? What role does

the cerebellum play in enabling these processes?

Discrete-time v.s. Continuous-time Models. We have worked

both in discrete-time and ccontinuous-time to model processes in the

brain. However, ultimately, all signals in the brain are continuous time.

Our model of visuomotor adaptation is considerably more abstract

than, say, our model of the slow eye movement systems, for which it has

been possible to make concrete comparisons with signals recorded in

the brain. The development of more realistic, continuous-time models of

discrete-time, event-driven phenomena such as visuomotor adaptation

provides an intriguing avenue to obtain deeper insight on the universal

computations of the cerebellum.
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