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Abstract— We study the Output Reach Control Problem
(ORCP) to force the output trajectories of an affine control
system to cross a prescribed exit facet of a simplex in output
space, without first leaving the simplex. Our approach leverages
existing results on the Reach Control Problem (RCP) and
viability theory.

I. INTRODUCTION

The Reach Control Problem (RCP) for affine systems on

simplices and polytopes has received considerable attention

over the past fifteen years. First introduced in [16], the

problem is to design a state feedback to force closed-loop

trajectories starting anywhere in a polytopic state space to

leave the polytope from a prescribed exit facet in finite time.

One motivation for the RCP is a shift from classical control

results that focus on stabilization to more complex control

specifications. Such specifications often include safety con-

straints, where the system states may need to reach a certain

region while avoiding unsafe regions during the transient. In

other situations, there may be a temporal order for the control

tasks, e.g. do task A and only then do task B twice. The RCP

is a tool to deal with such complex specifications. Interesting

applications of the RCP include motion of robots in com-

plex environments [4], aircraft and underwater vehicles [5],

genetic networks [6], smart buildings, process control [19],

among others [14].

The most definitive results on the RCP are focused on

reach control on simplices by affine feedback [7], [17],

[18], [22]. Some more recent results include [1], [2], [8],

[10], [24], which exploit system structure on simplices,

particularly the reach control indices [8] and the concept of

reach controllability [24]. While there is no such structure for

general polytopes, in [20] geometric conditions are imposed

to solve the RCP in a monotonic sense. Finally in [12], the

authors solve the standard RCP by piecewise-affine output

feedback.

This paper presents the Output Reach Control Problem

(ORCP), a variant of the standard RCP in which the output

is restricted to an output simplex S. The control objective is

to force output trajectories to cross a prescribed exit facet of

the simplex without first leaving the simplex. While a related

problem has been studied in [21], transient restrictions were

not guaranteed. Since constraints on the output impose

constraints on the full state, the state space for the ORCP is

a polyhedron. The aim of this paper is to develop a method
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for solving the ORCP that builds on existing techniques for

solving the RCP. Our approach is to further restrict the state

space from a polyhedron to a (bounded) polytope P . By

properly associating the exit facet of S in the output space

to an exit facet of P in the state space, we can apply standard

RCP techniques. The main result of the paper is to prove that

if the standard RCP is solved on P , then the ORCP is solved

in S.

The main technical difficulty in mapping the ORCP to the

RCP is in ensuring that the so-called invariance conditions,

necessary conditions for solving the RCP, are solvable on

P [20]. In order to remedy this problem, we turn to via-

bility theory. First introduced in [3], viability theory studies

the evolution of dynamical systems under state constraints.

Viability algorithms are used to construct sets which are

positively invariant under the system dynamics. Since the

goal of the RCP is to guarantee that trajectories exit polytopic

sets through an exit facet, we modify viability theory to fit

with our problem requirements. We employ the algorithm of

[13], but we relax the set invariance requirement and allow

for an exit facet.

II. PRELIMINARIES

We use the following notation. For vectors x, y ∈ R
n, the

notation x ≺ y (x � y) means xi < yi (xi ≤ yi) for all

1 ≤ i ≤ n. Let X ,Y be vector spaces. If f : X → Y is

a surjective mapping, and W ⊂ Y , then f(f−1(W)) = W ,

where f−1(W) = {x ∈ X | f(x) ∈ W}.

III. OUTPUT REACH CONTROL PROBLEM

Consider a p-dimensional output simplex S :=
co{v0, . . . , vp} ⊂ R

p, the convex hull of p + 1 affinely

independent points vi ∈ R
p, i = 0, . . . , p. Let its vertex set

be V := {v0, . . . , vp} and its facets F0, . . . ,Fp. The facet

is indexed by the vertex it does not contain. Let hj ∈ R
p,

j ∈ {0, . . . , p}, be the unit normal vector to each facet Fj

pointing outside of the simplex. Facet F0 is called the exit

facet. Let I := {1, . . . , p} and define I(x) to be the minimal

index set among {0, . . . , p} such that x ∈ co{vi | i ∈ I(x)}.

We consider the affine control system

ẋ = Ax +Bu+ a (1)

y = Cx , (2)

where A ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, C ∈ R

p×n,

rank(B) = m, and rank(C) = p. Let B = Im (B), the

image of B. Note that using an output which is a linear

function of the state rather than an affine function y =
Cx + c, c ∈ R

p, is no loss of generality because one can

always translate the origin of the output space to convert an



affine function to a linear function. Let φ(t, x0) denote the

trajectory of (1) starting at x0 under some control law u. Let

y(t, x0) := Cφ(t, x0) be the output trajectory corresponding

to φ(t, x0). We are interested in studying reachability by the

system output of the exit facet F0 of S.

Problem 1 (Output Reach Control Problem (ORCP)). Con-

sider system (1)-(2) and the output simplex S ⊂ R
p. find a

state feedback u = f(x) such that for each initial condition

x0 ∈ R
n with Cx0 ∈ S, there exist T ≥ 0 and γ > 0 such

that

(i) y(t, x0) ∈ S for all t ∈ [0, T ];
(ii) y(T, x0) ∈ F0; and

(iii) y(t, x0) /∈ S for all t ∈ (T, T + γ).

The problem formulation of the ORCP differs from the

standard RCP in that conditions (i)-(iii) are normally imposed

on the state trajectory φ(·, x0), whereas here they are stated

in terms of the output trajectory y(·, x0).
While the ORCP stated is ultimately the problem we

would like to solve, in order to use the existing RCP

literature, we must bound the state space to a polytope.

Since, in general, the states x0 ∈ R
n such that Cx0 ∈ S

form a polyhedron, we further restrict these state to form

a (bounded) polytope. Therefore, we pose a related, but

modified version of the ORCP.

Problem 2. Consider system (1)-(2) and the output simplex

S ⊂ R
p. Find a state feedback u = f(x) and a polytope

P ⊂ R
n such that for each initial condition x0 ∈ P , there

exist T ≥ 0 and γ > 0 such that

(i) y(t, x0) ∈ S for all t ∈ [0, T ];
(ii) y(T, x0) ∈ F0; and

(iii) y(t, x0) /∈ S for all t ∈ (T, T + γ).

IV. FROM ORCP TO RCP

In this section we develop our method to solve Problem

2 with attention on how to find the polytope P . The main

challenge in solving Problem 2 is that it is formulated in the

output space so there are no explicit constraints on the full

state vector, unlike the standard RCP. We seek to impose

extra constraints on the states in order to guarantee that the

evolution of the output meets the requirements of Problem

2. Additionally, we hope to leverage the existing theoretical

tools for solving the standard RCP, since there is now a

substantial literature available [1], [7], [8], [10], [18], [20],

[22], [24]. In essence, Problem 2 will be lifted to the state

space, additional constraints will be imposed on the states, a

feasible state set will be constructed, and finally, we invoke

the standard RCP on that feasible state set. If our procedure

works correctly, then the solution of the standard RCP will

result in a solution of Problem 2 on S.

The main ideas of our methodology are as follows. We

begin by constructing a polytope P ⊂ R
n with the property

that if the initial state x0 satisfies x0 ∈ P , then y0 :=
Cx0 ∈ S. The polytope P is constructed by first “lifting” S
into the state space to create an (unbounded) n-dimensional

polyhedron, and second imposing additional state constraints

to ensure that P is bounded, i.e. it is an n-dimensional

polytope. Existing theory of polyhedra tells us that the lift

of the exit facet of S to P is again a facet of P , so we show

this lifted exit facet can serve as the exit facet for P .

Once the initial condition set P has been formed and

an exit facet identified, one would like to solve a standard

RCP on P . It is well-known that a necessary condition

for solvability of the RCP is that the so-called invariance

conditions are solvable [20]. Unfortunately, these conditions

are not guaranteed to be solvable on P . Thus, we invoke

viability theory [3], [11] to construct (a polytopic estimate)

of the largest subset of P on which the invariance conditions

are solvable. An algorithm inspired by [13] is proposed with

the crucial property that any intermediate solution of the

algorithm Pk includes the exit facet of P , and moreover,

the invariance conditions are solvable on Pk. This implies

that the algorithm can be terminated after any number of

iterations to obtain an estimate Pj of P∗, the largest subset

of P containing the exit facet and such that the invariance

conditions are solvable. The differences between the usual

application of viability theory and our approach for reach

control will be highlighted in the sequel. Finally, it is worth

pointing out that our algorithm can be applied to any instance

of the standard RCP on a polytope when the invariance

conditions do not hold a priori, not only problems originating

from Problem 2.

A. Computing P

In this section we develop our method to construct the

initial polytope P . It consists of two steps: first, lift the output

simplex S ⊂ R
p into the state space R

n; second, impose

additional constraints on the states so that the resulting set

is a bounded polytope. Define the output map

y(x) := Cx .

Also, for V ⊂ R
n, let y(V) := {Cx | x ∈ V}, and for

W ⊂ R
p, let y−1(V) := {x ∈ R

n | Cx ∈ V}. The lift of S to

R
n is defined to be y−1(S). It is easily shown that y−1(S) is

an n-dimensional polyhedron. To convert it to a (bounded) n-

dimensional polytope we must impose additional constraints

on the states, particularly the states in KerC. To that end,

let R
n = Im CT

⊥
⊕ KerC. Also let C

′

∈ R
n×p be a

maximal rank solution of CC
′

= 0. Define the coordinate

transformation x = T x̃, where T =
[
CT C

′
]
. Let x̃ :=

(x̃1, x̃2) where x̃1 ∈ R
p and x̃2 ∈ R

n−p. Let a, b ∈ R
n−p

with a ≺ b. Define

Pbox := {x = T x̃ | a � x̃2 � b} .

Then we define

P := y−1(S) ∩ Pbox . (3)

Lemma 3. P is an n-dimensional polytope.

Proof. First, since rank(C) = rank(CT ) = p, rank(CCT ) =
p and (CCT )−1 exists. Define the sets

W̃1 := {x̃1 ∈ R
p | x̃1 = (CCT )−1y, y ∈ S}

W̃2 := {x̃2 ∈ R
n−p | a � x̃2 � b} .



The set W̃1 is compact since S is compact, and W̃2 is

compact by construction. Hence, W̃1 × W̃2 is compact. We

claim that

P = {x = T x̃ | x̃ = (x̃1, x̃2) ∈ W̃1 × W̃2} . (4)

To prove the claim, let x ∈ P . By definition of P , y =
Cx ∈ S. Then y = CT x̃ = CCT x̃1 + CC′x̃2. But CC′ =
0, so y = CCT x̃1 and x̃1 = (CCT )−1y. Since y ∈ S,

we conclude x̃1 ∈ W̃1. Also since x ∈ Pbox, a � x̃2 �
b, so x̃2 ∈ W̃2. We conclude x̃ ∈ W̃1 × W̃2, as desired.

Conversely, suppose x = T x̃ with x̃ ∈ W̃1 × W̃2. Then

a � x̃2 � b, so x ∈ Pbox. Also since x̃1 ∈ W̃1, y =
Cx = CCT x̃1 ∈ S, so x ∈ y−1(S). We conclude x ∈ P =
y−1(S) ∩ Pbox.

Since P is related to W̃1 × W̃2 through a (nonsingular)

coordinate transformation and W̃1 × W̃2 is a polytope, so

is P . It remains to show that W̃1 × W̃2 is n-dimensional,

from which we conclude P is an n-dimensional polytope. Let

ṽi = (CCT )−1vi for i = 0, . . . , p. Since vi ∈ S, ṽi ∈ W̃1.

Observe that (ṽi, c) ∈ W̃1 × W̃2 for any c ∈ R
n−P with

a � c � b. We will show there are n+1 points of this form

in W̃1×W̃2 which are affinely independent, from which we

conclude W̃1 × W̃2 and P have dimension n. To that end,

consider the n+ 1 points in W̃1 × W̃2:

w̃i = (ṽi, a) , i = 0, . . . , p

w̃p+1 = (ṽp, (b1, a2, . . . , an−p))

...

w̃n = (ṽp, (b1, b2, . . . , bn−p)) .

We will show that if

λ0w̃0 + · · ·+ λnw̃n = 0 (5)

with λi ∈ R
n such that λ0 + · · · + λn = 0, then λ0 =

· · · = λn = 0. The first p components of each vector in

(5) give λ0ṽ0 + · · · + λp−1ṽp−1 + (λp + · · · + λn)ṽp = 0.

Since λ0 + · · ·+λp−1 +(λp + · · ·+λn) = 0 and ṽ0, . . . , ṽp
are affinely independent in R

p, λ0 = · · · = λp−1 = (λp +
· · · + λn) = 0. The (p + 1)th component of each vector in

(5) gives (λ0 + · · · + λp)a1 + (λp+1 + · · · + λn)b1 = 0,

which implies that λp(a1 − b1) = 0, and therefore λp =
0. Repeating this argument with the remaining components

leads to λ0 = · · · = λn = 0, as desired.

We have now constructed an initial n-dimensional poly-

tope P on which we can formulate a standard RCP. However,

we still need to define a suitable exit facet for P based on

the exit facet of S. The exit facet F0 of S naturally lifts

to an exit facet FP
0 of P using standard arguments about

projections of polytopes [25].

Definition 4. A projection of polytopes f : P → P ′ is

an affine map f : R
n → R

p, where P ⊆ R
n is an n-

dimensional polytope, P ′ ⊆ R
p is a p-dimensional polytope,

and f(P) = P ′.

Lemma 5. [25] Let f : P → P ′ be a projection of polytopes.

Then for every face F ′ of P ′, the preimage f−1(F ′) = {x ∈
P | f(x) ∈ F ′} is a face of P .

The next result shows that the linear map y : Rn → R
p is

a projection of polytopes.

Lemma 6. Let S ⊂ R
p and P = y−1(S) ∩ Pbox. Then

y(P) = S.

Proof. Let ȳ ∈ y(P). By the definition of P , ȳ ∈ y(y−1(S)).
Since y : R

n → R
p is surjective, y(y−1(S)) = S,

and therefore ȳ ∈ S. Conversely, let ȳ ∈ S. Select any

x̃2 ∈ R
n−p such that a � x̃2 � b and define x̃ :=

((CCT )−1ȳ, x̃2). By the proof of Lemma 3, x̃ ∈ W̃1 ×W̃2,

and therefore x := T x̃ ∈ P . This leads to Cx = C(CT x̃1 +
C′x̃2) = (CCT )(CCT )−1y = y ∈ y(P), as desired.

Using the previous two lemmas we can now define a

feasible exit facet of P by lifting F0, the exit facet of S:

FP
0 := y−1(F0) ∩ P . (6)

Lemma 7. FP
0 is a facet of P with outward normal vector

given by hP
0 = CTh0

||CTh0||
.

Proof. The exit facet of S is F0 = co{v1, . . . , vp}. Define

ṽi := (CCT )−1vi, i = 1, . . . , p. By Lemma 5, FP
0 is a face

of P . We show it is a facet of P by showing FP
0 is (n− 1)-

dimensional. To that end, let wi := T w̃i, i = 1, . . . , n,

with w̃i given in the proof of Lemma 3. We will show

that wi ∈ FP
0 , i = 1, . . . , n. Then since {w̃1, . . . , w̃n} are

affinely independent, so are {w1, . . . , wn}, so we conclude

FP
0 is (n − 1)-dimensional. To show wi ∈ FP

0 , first recall

from the proof of Lemma 3 that w̃i ∈ W̃1 × W̃2. Then

by (4), wi = T w̃i ∈ P , i = 1, . . . , n. Second, we have

Cwi = CTw̃i = CCT ṽi = vi ∈ F0, for i = 1, . . . , n. Thus,

wi ∈ y−1(F0). We conclude wi ∈ P ∩ y−1(F0) = FP
0 , as

desired.

Next, we assume without loss of generality (w.l.o.g.) that

0 ∈ F0, so 0 ∈ y−1(F0). We observe that if x ∈ y−1(F0),
then y = Cx ∈ F0, so h0 · Cx = 0. Equivalently, (CTh0) ·
x = 0. Now Ker(CT ) 6= {0} since rank(CT ) = p, so

h0 6= 0 implies h0 6∈ KerCT . Hence CTh0 6= 0 so the unit

vector hP
0 = CTh0

||CTh0||
is well-defined. Finally, it is easy to

show since h0 is the outward normal vector of F0, then hP
0

is also the outward normal vector of FP
0 .

We have now constructed an n-dimensional polytope P
and an appropriate exit facet FP

0 which consistently lift the

requirements of Problem 2 on the output simplex S up to

the full state space. The next step is to solve the standard

RCP on this polytope and show that the solution of the RCP

on P results in solving Problem 2 on S. Unfortunately, our

work is not complete because to solve the standard RCP, it

is necessary that so-called invariance conditions are solvable

on P [18], [22]. In the next section we address this gap

by proposing a viability algorithm introduced in [13] but

adapted to the RCP to help ensure the invariance conditions

are met on a possibly smaller polytope in P .



V. VIABLE POLYTOPE FOR REACH CONTROL

In this section we present an algorithm that provides a

polytopic under-approximation of the original state space

polytope P given in (3) such that the under-approximation

satisfies the invariance conditions associated with the RCP.

There are two additional considerations to address, beyond

satisfaction of the invariance conditions. First, the exit facet

for each iterate Pk must be well-defined to guarantee that

solutions of the affine system under a suitable feedback

do indeed exit through the given exit facet FP
0 . Second,

it is necessary to introduce a bound on the control inputs

to make the algorithm computationally tractable. We begin

this section by stating the invariance conditions. Then we

define the notion of an exit set in FP
0 . This exit set will

become the first iterate P0 of the algorithm. Finally, we

present the algorithm and give comparisons to a standard

viability algorithm.

We consider an n-dimensional polytope

P := co{p0, . . . , pr}

with vertex set V P := {p0, . . . , pr} and facets FP
0 , . . . ,FP

q ,

where FP
0 is the exit facet. Let hP

j be the unit normal to each

facet FP
j pointing outside the polytope. Define the index set

J = {1, . . . , q}. For each x ∈ P define the closed, convex

cone

C(x) :=
{
y ∈ R

n | hP
j · y ≤ 0, j ∈ J s.t. x ∈ FP

j

}
.

Next we introduce a bound on the control inputs. To that

end, we define U = co{u1, . . . , uM} to be a polytope that

bounds the inputs. The invariance conditions will be stated

in terms of this bound.

Definition 8. We say the invariance conditions are solvable

on a polytope P if for each v ∈ V P there exists u ∈ U such

that

Av +Bu+ a ∈ C(v) . (7)

Next we define the exit set of an exit facet. The exit set

can be thought of as the set of points on the exit facet such

that there exists a velocity vector of the affine system to force

trajectories to immediately leave the polytope.

Definition 9 (Exit Set). Consider the affine system (1) on a

polytope P . Let FP
0 be a facet of P . The exit set of FP

0 is

the set

FP
exit := cl

{
x ∈ FP

0 | (∃u ∈ U) hP
0 · (Ax+Bu+ a) > 0

}
.

There are three pathologies which can arise with FP
exit.

First it may be empty. In that case, the RCP is not solvable,

and there is no point to proceed with the algorithm. Second,

FP
exit may not be a full dimensional facet of P . But this is

impossible as FP
exit has been constructed as the closure of an

open subset in FP
0 . Finally, FP

exit may not be a polytopic set,

a requirement for the algorithm. This is resolved by finding

any polytopic under-approximation of FP
exit. We omit this

step and we assume that FP
exit is already presented as an

(n− 1)-dimensional polytope

P0 := FP
exit = co {v ∈ V 0} ,

where V 0 is the vertex set of P0. By construction P0 is an

n− 1 dimensional polytope in the exit set of FP
0 .

Now we introduce the notation of the algorithm. We use

P0 to designate the initial polytope, as defined above. The

polytope at iteration i is P i and it’s vertex set is V i. The

polytope P given by (3) is the largest possible polytope that

the algorithm could construct. The vertex set D bookkeeps

the vertices in V i not yet used in the ith iteration.

The algorithm attempts to find the largest polytope P i ⊂
P such that the invariance conditions hold on P i. At each

iteration, an optimization problem is solved. The objective

of the optimization problem is to take a vertex v of P i, and

extend the polytope P i by adding new vertices along the

rays between v and each of the vertices of P . This creates

a new candidate polytope which consists of the convex hull

of the new vertices and the old vertices of P i, except for

v. The constraint of the optimization problem is that the

new polytope must satisfy the invariance conditions. This

process continues until the current polytope can no longer

be enlarged, while satisfying the invariance conditions.

Algorithm 10 (Viable Polytope for Reach Control).

1) Initialization:

P = co{p0, . . . , pr}; i = 0;

V 0 = {p00, . . .}; P0 = co{v ∈ V 0}; D := V 0.

2) If D = ∅, end with P i.

3) If D 6= ∅, select v ∈ D.

4) Solve the optimization problem:

argminwj∈co{v,pj}

∑r

j=0
||wj − pj ||2

subject to: (7) hold for the polytope P with vertex set

V := V i ∪ {w0, . . . , wr} \ {v}.

5) If P̄ 6= P i, V i+1 = V ; D = V i+1;

i = i+ 1. Return to step 2.

6) If P̄ = P i, D = D \ {v}. Return to step 2.

This algorithm has been modified from the one presented

in [13]. The difference is that in [13] each polytope P i is

positively invariant, while in this algorithm we allow the

exit facet to be unrestricted. Note that while the problem

has a linear objective function, the constraints are bilinear.

Although existing algorithms can be applied to this optimiza-

tion problem [23], the problem involves converting the poly-

tope P i from the V-representation to the H-representation,

which can be computationally demanding. What gives this

algorithm promise is that not only do we have a viable

polytope at each iteration, we also have that the polytopes

are non-decreasing in size with each iteration. The following

proposition captures the salient properties of the algorithm

that we inherit directly from [13].

Proposition 11 (Prop. 2 of [13]). Each P i generated by

the algorithm satisfies its invariance conditions. Moreover,

P i ⊆ P i+1 ⊆ P .

We also require some further properties which are specific



to our problem. These are summarized in the next lemma.

The first property guarantees that the ORCP will still be

solvable using P i rather than the original P . The second

property guarantees that each P i has a well-defined exit

facet.

Lemma 12. Suppose that each P i generated by the algo-

rithm is full dimensional. Then for each such P i,

(i) P i ⊂ y−1(S).
(ii) FPi

0
:= y−1(F0) ∩ P i is the exit facet of P i.

Proof.

(i) By construction, P ⊂ y−1(S) and by Proposition 11,

P i ⊂ P . Hence, P i ⊂ y−1(S).
(ii) We need only show that FPi

0
is a facet of P i. The fact

that it supplies a consistent exit facet for the ORCP

is treated in the next section. Recall from Lemma 7

that FP
0 = y−1(F0) ∩ P is a facet of P . Let H be

the hyperplane in R
n that contains FP

0 . Since P i ⊂
P , P i lies in the closed half-space bounded by H and

containing P . By construction P0 ⊂ y−1(F0) and by

Proposition 11, P0 ⊂ P and P0 ⊂ P i. Thus, P0 ⊂
y−1(F0) ∩ P = FP

0 ⊂ H. Thus H ∩ P i 6= ∅. We

conclude that H is a supporting hyperplane of P i so

FPi

0 = y−1(F0)∩P i is a face of P i [15]. Since P0 ⊂
FPi

0 and P0 is, by construction, (n − 1)-dimensional,

we obtain, moreover, that FPi

0 is a facet of P i.

VI. MAIN RESULTS

We consider again an n-dimensional polytope

P := co{p0, . . . , pr}

with vertex set V P := {p0, . . . , pr} and facets FP
0 , . . . ,FP

q ,

where FP
0 is the exit facet. Let hP

j be the unit normal to each

facet FP
j pointing outside the polytope. We assume that the

standard RCP is solvable on this polytope P . The polytope

may have been obtained as the output of Algorithm 10 to

guarantee solvability of the invariance conditions. We abuse

notation and rename the output of the algorithm as P . It is

assumed that the exit facet of P is FP
0 = y−1(F0)∩P , with

outward normal hP
0 . Also P ⊂ y−1(S).

Solvability of the RCP on P means that there exists a state

feedback u(x) such that for all x0 ∈ P , there exist T ≥ 0
and γ > 0 such that

(i) φ(t, x0) ∈ P for all t ∈ [0, T ],
(ii) φ(T, x0) ∈ FP

0 , and

(iii) φ(t, x0) 6∈ P for all t ∈ (T, T + γ).

The following lemma will be used in the main theorem.

It examines the case when φ(T, x0) is on the intersection

of several facets. The lemma shows that trajectories cannot

cross a restricted facet without crossing the exit facet. The

proof will be published elsewhere. A similar result can be

found in [17], their proof does not address the issue of

chattering; namely, trajectories may cross two facets with

infinitely high frequency.

Lemma 13. Let P be an n-dimensional polytope with facets

FP
i and corresponding outward normal vectors hP

i . Suppose

(after possibly an affine coordinate transformation) that 0 ∈
FP

0 ∩ · · · ∩ FP
k , where k < q. Consider the system ẋ =

f(x) defined on P with f : Rn → R
n Lipschitz continuous.

Further, suppose that

hP
i · f(x) ≤ 0 , x ∈ FP

i , i ∈ {1, . . . , k} . (8)

Let φ(t, 0) be the solution starting at φ(0, 0). There do not

exist γ > 0 and l ∈ {1, . . . , k} such that if φ(t, 0) ∈ {x ∈

R
n |

l⋂
i=1

hP
i · x > 0} for all 0 < t < γ, then φ(t, 0) ∈

{x | hP
0 · x ≤ 0} for all 0 < t < γ.

We now present our main theorem.

Theorem 14. Suppose the RCP is solved on P . Suppose

w.l.o.g. φ(T, x0) = 0 ∈ FP
0 ∩ · · · ∩ FP

k , where 0 ≤ k < q is

the largest such integer. Further suppose the following holds.

(iv) For each i ∈ {0, . . . , k} there exists γi > 0 such that

either hP
i · φ(t, x0) ≤ 0 for all t ∈ (T, T + γi) or

hP
i · φ(t, x0) > 0 for all t ∈ (T, T + γi).

Then the ORCP given in Problem 2 is solved on S.

Proof. We must show (i)-(iii) of Problem 2 are satisfied.

(i) Since P ⊂ y−1(S), φ(t, x0) ∈ P for all t ∈ [0, T ].
This implies that φ(t, x0) ∈ y−1(S) for all t ∈ [0, T ], and

thus y(t, x0) ∈ S ∀t ∈ [0, T ].
(ii) Since φ(T, x0) ∈ FP

0 = y−1(F0) ∩ P , we have that

y(T, x0) ∈ y(y−1(F0)) = F0.

(iii) We know that φ(t, x0) 6∈ P for all t ∈ (T, T + γ).
First, suppose that hP

i · φ(t, x0) ≤ 0 for all t ∈ (T, T +
γ) and for all i ∈ {1, . . . , q}. Then it must be that hP

0 ·
φ(t, x0) > 0 for all t ∈ (T, T+γ). By Lemma 7, the outward

normal vector of FP
0 is hP

0 = CTh0

||CTh0||
. Thus hP

0 ·φ(t, x0) =
1

||CTh0||
h0 ·Cφ(t, x0) > 0 for all t ∈ (T, T+γ). This implies

h0 · y(t, x0) > 0 for all t ∈ (T, T + γ), which proves (iii).

In the first case we assumed φ(t, x0) did not cross a

restricted facet FP
i , i = 1, . . . , q, on the interval (T, T + γ).

Second, suppose w.l.o.g. that the first l restricted facets

are crossed at certain times in the interval (T, T + γ). By

assumption, φ(T, x0) 6∈ Fk+1 ∪ · · · ∪ Fq. Therefore, there

exists γ̄ > 0 such that φ(t, x0 does not cross the restricted

facets FP
i , i = k + 1, . . . , q, on the interval (T, T + γ̄). Let

γ′ := min{γ̄, γ, γ0, . . . , γl}. Then by (iv), φ(t, x0) ∈ {x ∈
R

n | hP
j · x > 0 , j = 1, . . . , l} for all t ∈ (T, T + γ′).

By Lemma 13, there exists T ′ ∈ (T, T + γ′) such that

φ(T ′, x0) ∈ {x ∈ R
n | hP

0 · x > 0}. Then again by (iv),

φ(t, x0) ∈ {x ∈ R
n | hP

0 · x > 0} for all t ∈ (T, T + γ′).
This implies h0 · y(t, x0) > 0 for all t ∈ (T, T + γ), which

proves (iii).

VII. EXAMPLE

Consider the system

ẋ1 = x2

ẋ2 = u, u ∈ [−1, 1]

y = x1 ∈ [0, 1]



where S = [0, 1] is the output simplex, and F0 = 1 is the

exit facet. The control objective is for the output trajectories

to leave through the facet F0 in finite time, without crossing

y = 0 first. We be begin by constructing the polytope P .

Since T = [CT C′] = I for this problem, we have that

x = x̃. Let Pbox = {x | − 1 ≤ x2 ≤ 1}. We have that

P = y−1(S) ∩ Pbox = {x | x ∈ [0, 1] × [−1, 1]} shown in

Figure 1a below with exit facet FP
0 = y−1(F0) ∩ P .

Let P := co{p0, p1, p2, p3} as seen in Figure 1a. The

invariance conditions fail for vertex p2, and therefore the

standard RCP is not solvable for P . We use Algorithm 7 to

create a polytope which satisfies the invariance conditions.

We have that P0 = cl{x ∈ FP
0 | hP

0 (Ax + a) > 0} = {x ∈
FP

0 | x2 ≥ 0} = co{(1, 1), (1, 0)} := co{p00, p
0
1}.

In step 3) we choose v = p00. Proceeding to

step 4), since D 6= ∅, we solve the optimization

problem which yields {w0, w1, w2, w3} =
{(0, 1), (1, 1), (0.36,−0.28), (1,−0.95)}. Since P̄ 6= P0,

we have a viable polytope P1 = P̄ = co{w0, w1, w2, w3}
as shown in Figure 1b below.
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h1

h3

1

0

−1

1

x2

x1

(a) P

1

0

−1

1

x2

x1

(b) P1

v = (1, 1)

1

0

−1

1

x2

x1
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v = (0, 1)
1

0

−1

1

x2

x1

(d) P3

v = (1, 1)

1

0

−1

1

x2

x1

(e) P3

v = (1,−1)

1

0

−1

1

x2

x1

(f) P3

v = (1,−1)

Fig. 1: Progression of the viability algorithm

The dashed lines are to show that each wj ∈ co{v, pj}.

Continuing the algorithm selecting v for step 3) as

shown in each of the figures, we arrive at P3 =
co{(0, 1), (1, 1), (0, 0), (0.25,−0.5), (0.75,−1), (1,−1)}
where the algorithm terminates.

With a viable polytope, we can try and use standard RCP

techniques to ensure trajectories exit the polytope. In this

example we choose to triangulate the polytope P3 and solve

the RCP on each simplex. The proposed triangulation is

shown in Figure 1f. Also shown in the figure are the chosen

closed-loop velocity vectors. Using Algorithm 5.2 of [18] we

solve the desired RCP on the polytope P3.

It is clear from the closed-loop velocity vectors that any

initial condition in P3 has a solution which ensures that

x1 ≥ 0, and that x1 leaves the output simplex through F0

as desired.
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