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Abstract: This paper presents a model for manual and automated traffic flow. The
model 1s based on the abstraction of vehicle activities by the space and time taken up
by the vehicle engaged in the activity. The manual driver model includes the activities
of vehicle following and lane change and allows for different levels of aggressiveness
of drivers. The parameters of the activities are calibrated with real highway data.
The expectation is that this model will provide more realistic estimates of highway
capacity while retaining the efficiency of macro-scale simulators.
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1. INTRODUCTION

In this paper we present a model for manual traffic
based on ideas of automated traffic flow modeling.
The model resembles traditional vehicle-follower
models in that i1t uses vehicle follower behavior to
determine the maximum density of traffic flows. It
departs from traditional approaches by allowing
differentiation among types of drivers and types
of activities that drivers perform. The model is
an outgrowth of work on automated traffic flow
on an AHS (Broucke and Varaiya, 1996).

The paper is structured as follows. We begin by
presenting the activity model, including the con-
servation of vehicles law and velocity dynamics
and show how vehicle activities are abstracted in
the model by the space-time they use up. Next
we describe the activities performed by manual
drivers and how these are incorporated in the
model. A tool called SmartCap is used to calibrate
and perform simulations with the model. An ex-
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ample of the model is presented for the Bay Bridge
in San Francisco. In this example, variations in the
driver’s behaviour are modelled by the activity
descriptions which include the desired headway
distribution and tunable parameters for the lane-
changing logic.

2. ACTIVITY MODEL

In automated traffic vehicles perform a sequence
of maneuvers or activities that are implemented
through vehicle control laws. The control law
defines a desired velocity and/or safe spacing from
the vehicle ahead (as well as desired steering
angle). These characteristics of the control law are
abstracted in the activity model by the space-time
of vehicle activities. The space-time abstraction is
used to set an upper limit on the density of traffic
flow. In simplest terms, it means if all vehicles
perform an activity @ and the space-time for this
activity is A(a) = s - 7, with s in meters and 7 in
seconds then the maximum density is k = % The
situation becomes more interesting when s, 7, and
the choice of activity a are all variable.



Thus, the model can predict more realistic esti-
mates of capacity when vehicles are performing
maneuvers on the AHS, such as doing entry or
exit. This idea is carried over to manual traffic,
where manual drivers perform the activities entry,
exit, lane change, and vehicle following.

The highway is divided into segments indexed
t = 1,...1, which are one lane wide and of length
L(7). Time is discretized ¢ = 1,2, ... with a time
period of T seconds. Flow types, indexed by #,
are distinguished in the model by the destination
and vehicle body type. The states of the model
are n(i,t,0), the number of vehicles in each high-
way section at each time and of each flow type
and v(i,t), the average velocity in each highway
section at each time.

Because the model is intended for automated flow
it allows several parameters of the flow to be con-
trolled. These include v4(7,1), the desired average
speed in each section, f(7,t), the volume of entry
flow, and m(a,i,t,6), the proportion of vehicles
of type 6 in section ¢ at time ¢ that will perform
activity a. By including these control parameters
in a manual driver setting we are able to examine
the effect of partial control of manual traffic such
as advised speeds, metering at entrances, and ad-
vised lane changes. The model also allows mixed
manual/automated traffic to be investigated. Val-
ues for the controlled variables are issued by a
Traffic Management Center (TMC). In a manual
driver setting the TMC will model the will of the
collective of drivers.

The activity model uses a conservation of vehicles
law and velocity dynamics equation to update the
states. The conservation law can be thought of
as consisting of two steps: first, move vehicles
doing a lane change activity laterally, and sec-
ond, move vehicles longitudinally. We let a, (aq)
denote the set of activities that turn right (left)
and m, (m) be the proportion of vehicles that
turn right (left). w5 is the proportion of vehicles
that go straight. (Note that =, (¢,¢,0)+m (4,¢,0)+
7s(4,t,0) = 1.) We assume that 7, and m repre-
sent successful lane changes. Considering vehicles
that go straight, we define p(i,t) to be the fraction
of vehicles in section 7 at time ¢ that remain in
the section at time ¢ + 1. Using the assumption
of uniform spatial distribution of vehicles of the
same flow type within a section, we have:

v(i,t) x T

plit) = 1— 0 . (1)

Let niong(i,t,0) be the number of vehicles in
section ¢ at time ¢ of type 6 after lane changes
are done, given by:

Niong (1,1, 8) = n(i,t,0)m(i,t,0)+

n(j,t,0)m (4, t,0) +n(k,t,0)m(k,t,0). (2)

Then, the conservation of vehicles law is:

n(t,t 4+ 1,0) = niong(i,t,0)p(i,t)+
1,t,9)[1—p(i—1,t)]—|—f(z l 6) ( )
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The velocity in a section 7 is limited by the space
available in the downstream section. Let v,(i,1)
be the maximum speed in section ¢ so as not to
exceed the space available in section 7 + 1. Then
the speed achieved in a section can be no larger
than vg(i,t) and vs(i,1) and the velocity law gives
the average speed over period ¢ as

v(i,t) = min{wvq(7,t), vs (i, 1)} . (4)

Finally, the flows and activities are constrained
by the maximum available space-time in a section
over one period. First, the space-time for an
activity can be computed using a specification of
the space as a function of time, given by s(t), and
the duration of the activity, given by 7. The space-
time is

The space-time constraint is

L(@)-T =2 (5)
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where j 1s the lane to the left and & is the lane to
the right.
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3. SMARTCAP - A MESOSCALE
SIMULATOR

SmartCap is a tool that simulates automated and
manual traffic based on the activity model just
discussed. It is part of a toolset for evaluating
AHS designs for the National Automated Highway
System Consortium. SmartCap takes as input a
description of the highway in the form of a set of
sections consisting of contiguous lanes which are
typically 500 meters long, and a connectivity map
linking the sections into a graph. The relevant pa-
rameters of the highway configuration are section
length, number of lanes, and exit capacity.

The simulator evolves vehicle flows according to
the conservation and velocity dynamics laws. It



keeps track of flow types, which are distinguished
by vehicle class and by the exit taken by the
vehicle. The rates of entry for each flow type
are defined as functions of time. A simulation is
initialized by specifying the number of vehicles,
average velocity, and proportion of each activity in
each section. The capacity of exits is fixed in order
to model the capacity limits of urban arterials.

The AHS 7design” is encoded in the activity
specification and in the TMC plan. The activity
specification for manual traffic is described below.
The TMC plan models the commands sent to
vehicles from the TMC: proportion of vehicles
of a given flow type in each section performing
an activity a, the desired speed, and the entry
metering policy. Thus, the TMC plan consists of
a velocity plan, entry plan, and activity plan. Each
of these modules will be described for the manual
driver scenario.

One iteration of the algorithm over period ¢ exe-
cutes the following steps:

1. Update TMC commands m(a,i,t,8), vq(i,t),
and f(i,1).

2. Check that space-time is not exceeded in any
section, Equation (6).

3. Given the current TMC commands, compute
vs (4, 1).

4. Calculate n(i,t+1,0), v(i,t+1) using Equations
(1), (2), (3), and (4).

The output produced is n(7,?,0) and v(i,t). Ca-
pacity, travel time, total time delay, queues at
entrances and other performance figures can be
derived from these values.

4. MANUAL DRIVER MODEL

In traditional macro-level traffic flow models the
characteristics of drivers are described by statisti-
cally generated distributions and the parameters
of the model are calibrated with field data. Alter-
natively, micro-level models capture the dynamics
of vehicle-following and lane keeping in detail. We
take a somewhat different approach in that we
do not directly incorporate a statistical represen-
tation of the driver’s vehicle follower behavior in
the model nor do we use vehicle dynamics models.
An abstracted model of driver behavior is used
which includes the activities of vehicle following
and lane change and allows for different levels
of aggressiveness of drivers. (Entry and exit as
separate activities from lane change have not been
studied.) The parameters of these activities are
calibrated with real highway data. The expecta-
tion is that this model will provide more realistic
estimates of highway capacity while retaining the
efficiency of macro-scale simulators.

The driver types are distinguished by their rela-
tive aggressiveness. The driver types are indexed
by Ty, a driver type code (in the range of 1 —5)
which is assigned according to a normal distribu-
tion with its peak at the average. Very cautious
drivers have index 1 and dangerous drivers have
index 5. Ty will be used determining the distance
needed before taking an exit and in determining
the likelihood to do lane changes in order to in-
crease speed.

4.1 Vehicle following

To incorporate vehicle following in the activity
model it was necessary to investigate headways
from real freeway data. Field data was collected
along the 1-880 freeway in Oakland (Petty et
al., 1996) from loop detectors during peak hours.
The loop detectors are placed 1/3 of a mile apart
on the freeway and on all entry and exit ramps.
The detectors are placed in pairs. The controller
that monitors the loop detector records the time
of every transition of the current across the pre-
defined threshold. Taking the time difference be-
tween “down” transitions on a pair of loop de-
tectors and knowing the distance between the
detectors the speed is calculated:

B D
BT
where D is the distance between the loop detec-
tors and t¥ is the kth sample time of a ”down”
impulse on loop detector i. These values of speed
are averaged over N cars, where N is a tunable
parameter; its default value is 10. Taking the time
interval between the ”up” impulses on a single
loop detector and using the average value of speed
we obtain the headway:

Sk = (5T — %)@

where v is the average velocity found above. The
analysis of this data, conducted in accordance
with the guidelines found in (Petty et al., 1996)
revealed a discrepancy between the minimal head-
way to avoid collision and the desired (comfort-
able) headway distance. A significant proportion
of cars (up to 15 — 25%) keeps a headway dis-
tance within 15 — 25 meters regardless of speed,
whereas the average headway distance is highly
dependent on the velocity. The headway distribu-
tion depends somewhat on the lane. Rightmost
lanes have larger average headways, as expected.
The average headways are much longer — about
40 — 50 meters at 25 m/s. Similar headway es-
timates could be found in (de Vos et al., 76th
Annual Meeting, 1997). This means that even the
least aggressive driver is able to stay incident—free
within the short headway; in order to get a more



comfortable headway his only choice is to slow
down or change lane. Thus in the SmartCap man-
ual model the space-time for the activity “follow”
is a constant 207" m-sec minimum spacing.

The headway that is selected 1s a minimum head-
way observed, but this headway is too short for all
drivers, so an adaptive adjustment is performed.
In the TMC plan, if the average headways, derived
from the densities, in the current lane and its
adjacent lanes are determined to be too short
for the given speed, the speed is reduced to a
value at which the headways are comfortable. In
this manner, the model captures the behavior of
drivers to reduce speed in congested conditions.

4.2 Lane change

Lane-changing behaviour in microscopic simula-
tions is typically based on two assumptions: (1)
impedance (slow down) caused by a preceding
vehicle and availability of a gap in an adjacent
lane, (2) proximity of a destination (freeway exit).
These formulations may not go into particularities
of the driver’s behaviour and may lead to unreal-
istic oscillations of lane change between two lanes.
Other factors that can be considered are:

o The vehicle is in a lane that does not acco-
modate its type.

e The downstream impedance in the lane is
excessive.

e The current lane ends (or exit reached).

e The geometry downstream requires lane change

soon.

Following (Skabardonis, 1996; Ahmed et al., 1995)
we classify the lane-change behaviour in two cat-
egories: discretionary and mandatory.

Before describing the types of lane changes, we
first describe how the space—time for lane change
is computed. We assume the duration of the ma-
neuver is 7 = 3 seconds. The space requirement
for the lane change 1s assumed to be a constant
30 + L,, where L, is the length of the vehicle,
provided the speed is the same in both lanes.
The space requirement deviates from a constant
value whenever the speed in the adjacent lane is
different. In this case

s= (30+ Ly) + Co(T)  |Ve — Vil

Here C,(Ty) is an adjustment function with re-
spect to the driver type. Values for C,(Ty) are
2.6 for very cautious, 2.3 for cautious, 2 for av-
erage, 1.6 for aggressive, and 1.1 for dangerous.
Thus, the total space—time needed for the lane—
changing maneuver is the car—following headway
in the current lane and st m-sec in the adjacent
lane.

Mandatory lane changes are executed imminently,
provided the space is available in the adjacent
target lane. The distance remaining to the des-
tination for a mandatory lane change may be
different for different driver types. More aggressive
drivers require less distance to the exit.

More difficult to model is the discretionary lane
change, which is usually represented in macro-
simulators by a probabilistic parameter. At the
SmartCap level of abstraction we evaluate instead
the proportion of cars of a certain type which
exercise the discretionary lane change. The cal-
culation of this proportion is based on an es-
timate of the benefit to the vehicle conducting
the lane change. Higher speed in an adjacent
lane is an obvious trigger for a discretionary lane
change. However, whenever the volume of traffic
is less than capacity, the speed, in steady-state,
is maximum. A better indicator of the likelihood
of discretionary lane change is density. We eval-
uate the differences in density or in the pro-
portion of space remaining free in the adjacent
lanes. Thus the standard way for describing the
discretionary lane-changing logic at the micro-
level (Skabardonis, 1996; Ahmed et al., 1995) is
substituted by a comparison of the densities in
adjacent lanes and average velocity adjustments
in the velocity calculation module of the TMC.

We denote f, € [0, 1] to be the proportion of free
space in the current lane and f, € [0,1] to be
the proportion of free space in the adjacent lane.
If f. < f, then some proportion of vehicles are
modeled as changing lanes in order to balance the
density. The proportion will depend on the values
of f. and f,, and these in turn depend on the
speeds in the lanes, because speed is used in the
calculation of space—time for lane change, as we
have seen. The proportion will also depend on the
driver type Ty.

More specifically, the TMC implementation in
SmartCap models a balancing of densities in ad-
jacent lanes by selecting a proportion of discre-
tionary lane changes as follows:

Je+ [

c : a fc)
where Dy is a coefficient depending on driver type.
It is current set to a constant .075, but can be
adjusted to be lower for lower values of T,;. This
parameter requires tuning to fit the real traffic
data.

P = Dg(Ta)(

4.3 Velocity plan

The velocity plan for the manual driver model
is designed to augment the velocity dynamics
achieved by Equation (4). The velocity dynamics



of Equation (4) causes shock waves which pro-
pogate too quickly compared to what is typical
for manual traffic. In order to smooth the effect
of shock waves a damping or averaging effect is
included in the velocity dynamics. The velocity
plan checks the average speed in the lane ahead
and the adjacent lane and precribes a slowdown
from V, to (Ve + V4)/2, where V; is the current
lane average velocity, and V, is an adjacent lane
average velocity. The adjustment is only done if
the difference |V, — V,| > R., where R, is a
threshold value which is equal to 3 m/s if V,
corresponds to the lane ahead and is equal to 2
m/s if V, corresponds to an adjacent lane.

5. BAY BRIDGE TRAFFIC

We have validated our model of manual driving
using a SmartCap simulation of the San Francisco
Bay Bridge during the morning rush hour. The
San Francisco Bay Bridge is one of the busiest
bridges in the world; estimating its capacity and
comparing this estimate to real data comprises a
good test for the model.

The model simulates the west-bound traffic flow
over the 12 km span of the bridge which has 5
lanes and the maze of exits in San Francisco. The
exit capacities estimated by Caltrans in vehicles
per hour are: Embarcadero - 800; Fremont - two
lanes, 1500 each; Fifth St. - two lanes 1500 each,
Civic center - 1000; the continuation of the I-101
freeway is treated as an exit and its three lanes
have a capacity of 1800 vehicles per hour each.

We used real OD data (Bay Area Origin-Destination

travel survey, 1994) to model the flows entering
the bridge and heading to their destination exits.
This data reveals that the total number of vehicles
passing the bridge in the morning rush hour is
around 7000 vehicles per hour, or one vehicle every
2.25 seconds in each lane. Since the bridge has no
stopping (curb) lane there may be no preference
towards a particular lane with respect to safety.
During peak hours there is a Caltrans dispatcher
on duty who balances the load of the bridge, so
the traffic density typically is uniform over all 5
lanes. Because of these two factors the driver type
frequency is assumed to be uniform over the 5
lanes of the bridge (this is different for the regular
freeway where the least aggressive drivers tend not
to use left-most lanes). Here we assume

P Dﬂ(fcfrfa _fc)’
2
where D; = 0.75 is a damping factor for the
discretionary lane change.

As before, the driver/vehicle types were repre-
sented by an array of 5 types from the very cau-
tious to very aggressive driver, their frequency of

occurence given by the normal distribution with
the peak of the distribution on the average type
(50% of all vehicles). All vehicles are assumed to
be passenger cars with a length of 5 meters.

The mandatory lane change maneuver 1s pre-
scribed within the last 1200 meters of the bridge
span, thus enabling the flows to proceed to their
proper exit. All other sections of the bridge and
the highway permit a discretionary lane change.

Observations show that a significant flow of traffic
entering highway I-101 downstream which is be-
yond the scope of our model causes a slow-down
and a shock wave propagated as far back as the
last 4000 meters of the bridge span. In order to
model this effect we explicitly programmed the
velocity plan in the TMC module to slow down
gradually from 25 m/s to 18 m/s by the end of
the bridge.

In general the results of the simulation match the
real life situation. The aggregated value of the
space remaining free allows headways comparable
or longer than given by the FSP data (Petty et
al., 1996).

The capacities of the exits exceed current demand.
This implies that introduction of automated or
semi-automated lanes may eliminate the slow-
down on the bridge thus decreasing the overall
travel time.

Acknowledgements The authors are grateful
to Adib Kanafani for his informed advice.

6. REFERENCES

Ahmed, K., M. Ben-Akiva, H. Koutsopoulos
and R. Mishalani (1995). Integrated sim-
ulation framework for evaluating dynamic
traffic management systems. In: Proceedings
of the First World Congress on Applica-
tions of Transport Telematics and Intelli-
gent Vehicle-Highway Systems, Paris, France,
1994. Artech House. UK. pp. 863-870.

Bay Area Origin—Destination
survey (1994). Technical report. Metropolitan
transportation commission. Qakland, CA.

Broucke, M. and P. Varaiya (1996). A theory of
traffic flow in automated highway systems.
Transpn Res.-C 4, 181-210.

de Vos, A.P., J. Theeuwes, W. Hoekstra and M.J.
Coemet (76th Annual Meeting, 1997). Behav-
ioral aspects of automatic vehicle guidance
(avg); the relationship between headway and
driver comfort. Technical report. Transporta-
tion Research Board. Washington, DC.

Petty, K., H. Noeimi, D. Rydzewski, A. Skabar-
donis, P. Varaiya and H. Al-Deek (1996).

The freeway service patrol evaluation project:

travel



Database, support programs, and accessibil-
ity. Transpn Res.-C 4(2), 71-85.
Skabardonis, A. (1996). Improved models of
driver-vehicle interactions. Technical report.
Institute of Transporation Studies. University

of California, Berkeley, CA 94720.



